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ABSTRACT 

Steady natural and mixed convection flow in a square vented enclosure filled with water-saturated 

aluminum metal foam is numerically investigated. The left vertical wall is kept at constant 

temperature and the remaining walls are thermally insulated. Forced convection is imposed by 

providing an inlet at cavity bottom surface, and a vent at the top surface. Natural convection takes 

place due to the temperature difference inside the enclosure. Darcy-Brinkman-Forchheimer model 

for fluid flow and the two-equation of the local thermal non-equilibrium model for heat flow was 

adopted to describe the flow characteristics within the porous cavity. Numerical results are obtained 

for a wide range of width of the inlet as a fraction of the height of the enclosure (  ⁄         ), 

the porosity of aluminum foams (      ,     ), Grashof numbers (            ), and 

Reynolds number (       ). Effects of pertinent physical parameters are performed in terms of 

the flow and temperature fields, as well as the average Nusselt number variations. The results show 

that the average Nusselt number increases with   ⁄  and    and decreases with the porosity 

increasing. The fluid temperature distribution has a little difference from the solid matrix 

temperature distribution.  

Key words: mixed convection, square vented enclosure, thermal non-equilibrium, numerical study, 

metal foams, porous media. 

 

 حٍز مربع ٌحوي فتحات و مملوء برغوة معذنٍةالمختلط فً  الحر و الحمل
 

 لمى فاضل علً د.م.

 لسى هُذست انًُكاَُك

 جايؼت بغذاد / كهُت انهُذست
 :الخلاصة

فٍ حُس يربغ رو فخحاث يًهىء برغىة يؼذَُت انًخخهط انًسخمر  انطبُؼٍ و َمذو انبحث انحانٍ دراست َظرَت لأَخمال انحرارة بانحًم

نمذ حى حثبُج درجت حرارة انجذار انؼًىدٌ الاَسر يغ ابماء انجذراٌ انًخبمُت يؼسونت حرارَا. اٌ انحًم يٍ الانًُُىو يشبؼت بانًاء. 

انحًم . الاػهًانسطح ٍ طرَك فخحت انذخىل انًىجىدة ػهً انسطح انسفهٍ و فخحت انخهىَت انًمابهت نها فٍ انمسرٌ َخكىٌ ػ

فىرشهاًَر نجرَاٌ انًائغ -برَكًاٌ-حى اسخخذاو يؼادنت دارسٍانحرارٌ انحر َخكىٌ َخُجت لأخخلاف درجاث انحرارة داخم انحُس. 

حرارة نىطف خظائض انجرباٌ داخم انحُس انًسايٍ. اٌ انُخائج انؼذدَت حى و يؼادنخٍ ػذو انخىازٌ انحرارٌ انًحهٍ نخذفك ان

⁄  َسبت ػرع فخحت انذخىل نهحُس انً ارحفاع انحُس ) يٍ انًخغُراث و هٍانحظىل ػهُها نًذي واسغ  و  (        

. (       )و رلى رَُىنذز  (            )و رلى كراشىف  (     ,      )انًسايُت نرغىة انلايُُىو 

دراسخها بذلانت يجانٍ انجرَاٌ و درجاث انحرارة بالاػافت انىخغُر يؼذل لُى َسهج. اٌ حأثُر انخىاص انفُسَائُت انىثُمت انظهت حى 

اٌ انفرق بٍُ حىزَغ  و َُخفغ بسَادة انًسايُت.   و  ⁄  نمذ اظهرث انُخائج انًسخحظهت اٌ يؼذل رلى َسهج َسداد بسَادة 

 حرارة انًائغ و حىزَغ درجت حرارة انجسء انظهب لهُم جذا.درجت 

 

 : انحًم انًخخهط, حُس يربغ رو فخحاث, ػذو انخىازٌ انحرارٌ, دراست ػذدَت, رغىة يؼذَُت, وسط يسايٍ.الكلمات الرئٍسٍة
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1. INTRODUCTION 

The study of fluid flow and heat transfer induced by the combined effects of natural and forced 

convection, referred as mixed convection, in porous media is substantially increased in recent years 

due to its wide practical applications encountered in engineering and natural science. Some of these 

applications involve use of metal foams for enhanced cooling in electronic equipment, foam filled 

heat exchangers, open-cell metal foams, and solar energy collectors.  

The pure conduction, natural convection, forced convection, and mixed convection of a lid driven 

square enclosure which is filled with water-saturated aluminum foams, and provided with a bottom 

heated wall and a top moving wall was investigated numerically by Jeng, and Tzeng, 2008. Their 

work uses the Brinkman-Forchheimer model for the momentum equation and the two-equation 

model for the energy equation. The variable parameters included the porosity of the aluminum 

foams, the Grashof number, and the Reynolds number. They found that the fluid temperature 

distribution differs little from the solid temperature distribution which means that one-equation 

model for energy may be employed to save computational time. Additionally, the higher porosity 

promotes much more enhancement of convective heat transfer while the lower porosity is important 

for higher total heat transfer due to the higher effective thermal conductivity value. Kurtbas, and 

Celik, 2009 carried out an experimental study for the case of assisting mixed convection in a 

rectangular horizontal channel top and bottom heated surface and filled with aluminum foam of 

different pore densities. Different values of uniform heat flux, Reynolds number, Richardson 

number, and cross-sectional aspect ratio were tested and new empirical correlations had been 

constructed to link the Nusselt number. Later, Venugopal, et al., 2010 developed a simple 

inexpensive metallic porous material and investigated experimentally the mixed convection heat 

transfer in a vertical duct with this metallic porous structure. It was showed that the developed 

porous medium has similar thermo-hydrodynamic performance to those seen in metal foams. The 

experimental study of hydraulic performance and heat transfer in flow assisted mixed convection in 

channel containing aluminum metal foams of high porosity was conducted by Kamath, et al., 2011. 

They utilized a wide range of Richardson and Reynolds numbers to cover the forced convection 

dominant and mixed convection regimes and developed useful heat transfer correlations. 

Mixed convection flow in a lid-driven enclosure filled with a fluid-saturated porous medium was 

studied by many authors. Khanafer, and Chamkha, 1999 investigated numerically the unsteady, 

laminar, mixed convection flow inside a square enclosure filled with a fluid-saturated uniform 

porous medium. The two vertical walls of the enclosure are insulated while the horizontal walls are 

maintained at constant temperatures with the top surface is moving from left to right at a constant 

speed. Furthermore, the enclosure filled with a fluid-saturated porous medium with top moving lid-

driven wall and various types of boundary conditions was scrutinized numerically by number of 

authors like Kumari, and Nath, 2011, Basak, et al., 2012, Oztop, et al., 2012, and Sivasankaran, 

and Pan, 2012. The problem of mixed convection flow and heat transfer in a lid-driven cavity with 

heat generating porous medium was investigated numerically by Muthtamilselvan, et al., 2010. 

The top and bottom walls are moving in opposite directions at different temperatures, while the side 

vertical walls are adiabatic. Moreover, laminar, two-dimensional, steady, mixed convection in a 

parallel two-sided lid-driven square cavity filled with a fluid-saturated porous medium was analyzed 

numerically by Vishnuvardhanarao, and Das, 2008. Then, a few number of articles considered the 

mixed convection flow and heat transfer in a two-sided lid-driven enclosures filled with fluid-

saturated porous medium, such as Kumar, et al., 2009, Vishnuvardhanarao, and Das, 2009, and 

Vishnuvardhanarao, and Das, 2010. 
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The mixed convection can be resulted also from vented openings or exit ports. For this type of 

mixed convection Mahmud, and Pop, 2006 studied numerically the steady mixed convection flow 

inside a square vented enclosure filled with a fluid-saturated porous medium. The vertical wall of 

the cavity is kept at constant temperature and the remaining walls are perfectly insulated. They 

assumed that the fluid and the porous medium are in local thermal equilibrium and the viscous drag 

and inertia terms of the momentum equations are negligible therefore they utilized the Darcy flow 

model in the momentum equation. The governing parameters performed in their work are the 

Rayleigh number, Peclet number, and the width of the inlet as a fraction of the height of the 

enclosure. Ghazanfarian, and Abbassi, 2007 performed the steady laminar mixed convection 

inside a square cavity filled with a fluid-saturated porous medium and different positions of the 

outlet port. The same boundary conditions and flow model of Mahmud, and Pop, 2006 was used 

and the governing equations had been solved by numerical finite difference method. While, Barna, 

et al., 2008 constituted numerically the same vented enclosure and flow model in the momentum 

equation but with all enclosure walls being isothermal surfaces. Afterwards, Rathish Kumar, and 

Krishna Murthy, 2010 proposed numerically the mathematical model for steady mixed convection 

process in a non-Darcian fluid saturated vertical enclosure under multiple Injection/Suction effects. 

To the best knowledge of the author, no attention has been paid to the problem of natural and mixed 

convection in vented enclosure filled with fluid-saturated metal foam. The present study focuses on 

a problem of steady natural and mixed convection inside a square vented cavity filled with water-

saturated aluminum metal foam, with the left vertical sidewall being at constant temperature and the 

remaining enclosure walls being perfectly adiabatic. The Brinkman-Forchheimer-extended Darcy 

model in steady two dimensional and non-local thermal equilibrium are employed.  

The main objective of the present work is to investigate the influence of the flow governing 

parameters including Reynolds and Grashof numbers, and the width of the inlet and outlet as a 

fraction of the height of the enclosure for two types of aluminum metal foam on the flow 

characteristics. Numerical results are obtained for streamlines, isotherms for fluid and solid matrix, 

and the heat transfer rate at the heated wall in terms of local Nusselt number and average Nusselt 

number are presented graphically. 

 

2. MATHEMATICAL FORMULATION 

Consider a steady two-dimensional vented enclosure filled with a fluid saturated metal foam with 

the left vertical sidewall at constant temperature    whereas the other walls are well-insulated. The 

physical model of the problem is shown in Fig. 1 which is a square enclosure of length   with a slot 

at the bottom edge of the vertical surface and a vent at the top edge for outflow. The slot and vent of 

width   are responsible of the forced convection arising while the buoyancy effects are induced 

because of the temperature difference of the left vertical sidewall and the stream temperature    

which has a constant velocity    at the enclosure inlet. It is assumed that the porous medium is 

homogeneous, hydrodynamically and thermally isotropic and saturated with a fluid that is in thermal 

non-equilibrium with the solid matrix. The thermo-physical properties of the fluid and porous media 

are constant except for density dependency of the buoyancy term in the momentum equation, which 

is satisfied by the Boussinesq approximation. Under these assumptions, the conservation equations 

for mass, momentum and energy for the two-dimensional laminar thermal non-equilibrium model 

are, Nield, and Bejan, 2006: 
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where   
  and   

  are given by Calmidi, and Mahajan, 2000: 
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The hydrodynamic and thermal boundary conditions are specified as: 

 

Left isothermal wall:      ,               on        ,                                        (8a) 

 

Inlet:    ,     ,                                   on        ,                                        (8b) 

 

Bottom adiabatic wall:      , 
   

  
 
   

  
     on        ,                                       (8c)  

 

Right adiabatic wall:      , 
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Outlet:    , 
   

  
 
   

  
                                      on        ,                                       (8e) 

 

Upper adiabatic wall:      , 
   

  
 
   

  
        on        ,                                      (8f)  

 

The following dimensionless parameters are utilized in the present study: 
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Substitute these dimensionless variables into Eqs. (1)-(5) and (8), the corresponding dimensionless 

governing equations and boundary conditions are written as: 
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where    is the thermal dispersion and was obtained by the empirical equation modified by 

Calmidi, and Mahajan, 2000: 
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   is the volumetric heat transfer of aluminum foam was also calculated by the empirical 

equation reported by Calmidi, and Mahajan, 2000: 
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The dimensionless boundary conditions are casted as: 

 

Left isothermal wall:      ,    ,    
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Top adiabatic wall:      ,    
 

 
,    

   

   
, 
   

  
 
   

  
   on    ,   ⁄       (16f)  

 

Equations (10) to (13) are solved numerically with the applied boundary conditions to simulate the 

mixed convection in the vented enclosure. The local Nusselt number (  ) and average Nusselt 

number (  ̅̅ ̅̅ ) at the left vertical heated wall are formulated as: 

 

    
  
 

  

   

  
|
   

 
  
 

  

   

  
|
   

                                                                                                       (17) 

 

  ̅̅ ̅̅  ∫ ( 
  
 

  

   

  
|
   

 
  
 

  

   

  
|
   
)   

 

 
                                                                                         (18) 

 

In the present study, the aluminum foam is chosen as the porous medium saturated with water. The 

numerical data properties of the fluid and solid phase used in the present work are given in Table 1. 

 

3. NUMERICAL TECHNIQUE AND CODE VALIDATION 

The governing equations for dimensionless vorticity, stream-function, and solid and fluid energy 

equations together with the boundary conditions were solved numerically using the method of finite 

difference. The spatial derivatives of the governing equations are approximated by the central 

difference scheme, Patanker, 1980. The finite difference scheme reduces the continuum problem to 

a discrete problem prescribed by a system of algebraic equations written as tri-diagonal matrix and 

this matrix was solved by a line-by-line procedure of tri-diagonal matrix algorithm (TDMA), 

Patanker, 1980. For convergence criteria, the relative variations of the vorticity, stream-function, 

and solid-phase and fluid-phase temperatures was less than      between successive iterations. 

Finally, algorithms based on the Simpson,s rule is employed to perform the numerical integration of 

the average Nusselt number. 

An in-house numerical computer code was developed for the solution of the problem considered. 

The computer program was built in MATLAB R2010a software and consists of a main program and 

a TDMA solver subroutine and a subroutine for working out the numerical integration by Simpson's 

rule. Additionally, the program lasts from eight to twenty three hours depending on the Reynolds 

number value. The flow chart of the built computer program is illustrated in Fig. 2. 

A uniform grid in   and   directions is used in the calculation domain and all numerical results 

were checked for the grid independence analysis to evaluate a more convenient grid size by 

monitoring the average Nusselt number on the heated wall. This was achieved by obtaining 

solutions with an increasing number of grid nodes in   and   directions, until a point is reached 

were the solution is unchanged with a further increase in the number of nodes. Grid convergence 

was studied for the case of      ,       , and        with grid sizes from       to 

       . The percentage error accomplished from the grid independence test between the grid 

       ,        , and         and the asymptotic value were      ,     , and      , 

respectively. Moreover, the size of the grid size was refined until the average Nusselt number did 

not change by more than      . However, the grid         was chosen for further numerical 

results because it is a good compromise between computational time and accuracy requirements. 

To validate the accuracy of the developed computer code for the present simulation, the results of 

the present numerical code were tested and compared with the work of, Jeng, and Tzeng, 2008 in a 
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mixed convection of a lid driven square enclosure filled with two types of water-saturated aluminum 

foams for Reynolds number of    and different values of Grashof number varies from     to 

     . The comparison of the average Nusselt number on the bottom heated wall shows excellent 

agreement between the present and the previous results as illustrated in Table 2. These effects 

provide credence to the accuracies of the present code and numerical method. 

 

4. RESULTS AND DISCUSSION 

The governing equations are solved for a wide range of Reynolds number, Grashof number, and the 

width of the inlet as a fraction of the height of the enclosure (  ⁄ ). Two aluminum foams with 

various porosities were utilized in the numerical simulations of the present work and the working 

fluid was chosen as water as listed in Table 1. For each type of aluminum foam, the Reynolds 

number is varied from   to   , the Grashof number is varied from     to      , and the width of 

the inlet as a fraction of the height of the enclosure (  ⁄ ) variations is from     to    . 

Additionally, the value of Darcy number was taken as              for the     -porosity 

sample and            for the     -porosity aluminum foam sample. 

The streamlines corresponding to five different   ⁄  values and three values of Grashof numbers for 

the case of      are shown in Fig. 3. In this case, natural convection is the dominant heat transfer 

mode. By increasing the Grashof number, the buoyancy forces are strengthened, and consequently, 

the vorticity component near the inlet of the vented cavity is strengthened especially when        

for        and       . Therefore, in the case of        and       , the buoyancy force is 

much greater than the shear force and it dominates the flow field resulting in a stronger vortex as 

illustrated in Fig. 3c. Moreover, the streamlines of        and        with different   ⁄  

posses no vortex generation because of the low Grashof number which induces a negligible 

buoyancy force in the present porous enclosure as shown in Fig. 3a. Finally, the rotating vortex 

strength is decreased with the increasing of inlet width to enclosure height fraction. 

The mechanism of heat transfer inside the vented cavity consist of the combination effect of forced 

and natural convection. Therefore, when the Reynolds number is increased to a higher value of 

      relative to the Grashof number values considered in the present study, the primary mode of 

heat transfer is the forced convection. As a result, the weak natural convection regime weakens the 

strength of vorticity in the present cavity and this causes the flow field to be regular, without any 

rotating vortexes as depicted in Fig. 4. It also can be noticed that, the streamlines are the same for 

different Grashof number values at certain width of the inlet as a fraction of the height of the 

enclosure (  ⁄ ) value. Besides, the value of the streamline is decreased with the increasing of   ⁄  

value for specific value of   . This observation is noticed also from Fig. 3 for the case of     . 

Contours of fluid temperature for various   and    values and      and       are presented in 

Fig. 5 and Fig. 6 respectively. From Fig. 5a and Fig. 5b, it can be observed that the increase in 

Grashof number for certain porosity value of        has very little effect on the fluid isothermal 

lines compared with the increase of   from      to      at       . This is because the Grashof 

number promotes a stronger effect of buoyancy force with higher porosity than its increase influence 

at certain porosity value. As a result, the regions of higher temperature are constricted with the 

increasing of porosity. Also, it is regarded from Fig. 5 that the increase in the inlet width to 

enclosure height fraction (  ⁄ ) increases the amount of natural convection which results in a wider 

regions of lower fluid temperature values. This is owing to the   ⁄  increase that leads to higher 

amount of cold fluid enters the cavity compared with hot left vertical side temperature of the 
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enclosure which means higher natural convection quantity. As the Reynold number is increased to 

  , the same behavior of the  ,   , and   ⁄  variation is clearly shown in Fig. 6 but with expanded 

lower temperature regions compared with the case of     . This is because of the stronger forced 

convection effect which tends to increase with the porosity and   ⁄  increase and permits higher 

convection currents of lower inlet temperature to the enclosure compared with the hot wall 

temperature of the enclosure. Fig. 6a and Fig. 6b depicts the negligible effect of Grashof number for 

certain   and   ⁄  compared with the simultaneous monitoring of Fig. 6b and Fig. 6c of different 

porosity and certain Grashof number value of    . It is also clearly depicted that the fluid isothermal 

lines become nearly parallel to the hot wall left vertical side with the increasing of the   ⁄  values 

especially when the porosity is     , the Grashof number is    , the inlet width to enclosure height 

fraction is     and     as illustrated in Fig. 6c. 

The isothermal lines of solid matrix is displayed for various porosity and Grashof number values 

and Reynolds number of   and    are displayed in Fig. 7 and Fig. 8 respectively. By comparing the 

isothermal lines depicted in Fig. 5 and Fig. 7 for      and Fig. 6 and Fig. 8 for      , it is 

indicated that the fluid temperature distribution has a little difference from the solid matrix 

temperature distribution. Therefore, the thermal equilibrium energy equation model may be utilized 

for computational time saving with good accuracy. 

The local Nusselt number distribution at the left vertical heated wall for different values of   ⁄ , 

Reynolds number, and certain value of Grashof number value of     is demonstrated in Fig. 9a and 

Fig. 9b for        and        respectively. It is clear from these two figures that the Nusselt 

number decreases with increasing   and    is high in magnitude at the lower left region of the 

enclosure. This is because of the higher values of temperature gradient around this region. Besides, 

the variation of the inlet width as a fraction of enclosure height and Reynolds number for the two 

types of aluminum metal foam have no considerable effect on the local Nusselt number values. 

The average Nusselt number relation with the width of the inlet as a fraction of the enclosure height 

(  ⁄ ) at the left heated vertical sidewall for different Reynold and Grashof number values and the 

two porosities of aluminum foam is displayed in Fig. 10. The Nusselt number increases with the 

increasing of   ⁄  and   . That is, the temperature gradient of the fluid and solid matrix increases 

with   ⁄  and   . In such a situation the larger inlet will allow more forced flow which causes the 

fluid and solid matrix isotherms more concentrated to the left wall and tends to increase the 

temperature gradient and hence the average Nusselt number. Additionally, the increase of Reynolds 

number from   to    provides a much greater shear force effect than the buoyancy force effect and 

causes the fluid and solid matrix temperature gradient to increase as indicated previously in their 

temperature contours. This is also the reason behind the little influence of Grashof number 

increasing for certain   value. Furthermore, the heat convection due to fluid flow is better in the 

higher-porosity aluminum foam. Accordingly, a lower average Nusselt number value is resulted 

because of the smaller value of the effective thermal conductivity and the decreasing of the 

temperature gradient of the fluid and solid matrix of the water saturated aluminum metal foam with 

the increasing of porosity, see Fig. 10a and Fig. 10b. 

 

5. CONCLUSION 

A numerical investigation of natural and mixed convection in a square vented enclosure filled with 

water saturated aluminum metal foam and heated at constant temperature on the left vertical side 

and the other walls are thermally insulated is demonstrated in the present paper. The variable 
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parameters included the Grashof number, the Reynolds number, the aluminum foam porosity, and 

the inlet width as a fraction of the enclosure height. The following conclusions are made from this 

scrutinization: 

 The increasing of the Grashof number causes the vorticity component to strengthen near the 

cavity inlet and has no effect on the streamlines. 

 The increasing of inlet width to enclosure height fraction and the Reynolds number tends to 

weaken the vorticity strength. 

 The value of the streamline is decreased with the increasing of inlet width to enclosure height 

fraction value for specific value of Grashof number. 

 The Grashof number increase for certain porosity value has very little effect on the fluid 

isothermal lines compared with the increase of porosity at specific Grashof number value which 

constrict higher temperature regions. 

 Increasing the inlet width to enclosure height fraction results in a wider regions of lower fluid 

temperature values and these regions are more expanded with Reynolds number increasing. 

 The fluid temperature distribution has a little difference from the solid matrix temperature 

distribution.  

 The average Nusselt number increases with the increasing of inlet width to enclosure height 

fraction  and Reynolds number and the porosity decreasing 

 Grashof number variation has very little influence on the average Nusselt number values. 
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   inertial coefficient of the porous medium. 

    fluid specific heat at constant pressure,      ⁄ . 

  width of the inlet and the vent,  . 

  gravitational acceleration,    ⁄ . 

   volumetric heat transfer coefficient,      ⁄  

  cavity height,  . 

   thermal dispersion thermal conductivity,     ⁄ . 

   fluid thermal conductivity,     ⁄ . 

  
  effective fluid thermal conductivity,     ⁄ . 

   solid matrix thermal conductivity,     ⁄ . 

  
  effective solid matrix thermal conductivity,     ⁄ . 

  permeability of the porous medium,   . 

  effective pressure,   . 

   fluid temperature,  . 

   temperature of the through flow at the inlet,  .  

   temperature of the isothermal vertical surface,  . 

   solid matrix temperature,  . 

  velocity component along   axis,   ⁄ . 

  velocity component along   axis,   ⁄ . 

   absolute value of the velocity of the forced flow at the inlet,   ⁄ . 

 ,   Cartesian coordinates,  . 

  coefficient of thermal expansion,   ⁄ . 

  porosity. 

   fluid dynamic viscosity,      ⁄ . 

   fluid density,     ⁄ . 

  stream function. 

  vorticity.  
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Table 1. Properties of aluminum foams , Jeng, and Tzeng, 2008 and Calmidi, and Mahajan, 

2000, and saturated water. 
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Table 2. Comparison of the average Nusselt number computed in the present work with the data 

reported by, Jeng, and Tzeng, 2008 when      . 
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Figure 1. Physical model and the coordinate system of the cavity. 
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Figure 2. Flow Chart for the Computer Program. 
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Figure 3. Streamlines for various  ,   , and   ⁄  and     . 
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Figure 4. Streamlines for various  ,   , and   ⁄  and      . 
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Figure 5. Isothermal lines of the fluid for various  ,   , and   ⁄  and     . 
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Figure 6. Isothermal lines of the fluid for various  ,   , and   ⁄  and      . 
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Figure 7. Isothermal lines of the solid matrix for various  ,   , and   ⁄  and     . 
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Figure 8. Isothermal lines of the solid matrix for various  ,   , and   ⁄  and      . 
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Figure 9. Local    as a function of   ⁄  for various    and       . 

 

 

 

                           
 

                           
Figure 10. Average    as a function of   ⁄  for various    and   . 
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