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ABSTRACT 

   The paper presents a highly accurate power flow solution, reducing the possibility of ending at local 

minima, by using Real-Coded Genetic Algorithm (RCGA) with system reduction and restoration. The 

proposed method (RCGA) is modified to reduce the total computing time by reducing the system in size to 

that of the generator buses, which, for any realistic system, will be smaller in number, and the load buses are 

eliminated. Then solving the power flow problem for the generator buses only by real-coded GA to calculate 

the voltage phase angles, whereas the voltage magnitudes are specified resulted in reduced computation time 

for the solution. Then the system is restored by calculating the voltages of the load buses in terms of the 

calculated voltages of the generator buses, after a derivation of equations for calculating the voltages of the 

load busbars. The proposed method was demonstrated on 14-bus IEEE test systems and the practical system 

362-busbar IRAQI NATIONAL GRID (ING). The proposed method has reliable convergence, a highly 

accurate solution and less computing time for on-line applications. The method can conveniently be applied 

for on-line analysis and planning studies of large power systems.                                                            

   Keywords: Load flow analysis, Load modeling, Power system modeling, Real Coded Genetic algorithms,           

                       Simulation, Voltage measurement 
 

 

 

مع أختزال الشبكة ذات التشفير الحقيقي الكهربائي بأستخدام الخوارزمية الجينية سريان الحمل السريع والموثوق لحل ال

 وأعادتها
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 الخلاصة

بأستخدام الخوارزمية ل أحتمالية الانتهاء في الحدود الدنيا المحلية يتقلو الكهربائي ل البحث طريقة عالية الدقة لحساب سريان الحم يقدم   

زمن ( لتقليل ذات التشفير الحقيقيالطريقة المقترحة ) الخوارزمية الجينية تم تطوير ومع أختزال الشبكة وأعادتها  ذات التشفير الحقيقي الجينية

ل الزمن يلتقل بعد أختزال عدد محطات الأحمال في النظام الحقيقي أو الواقعيفقط,  توليدبتقليل حجم النظام الى عدد محطات ال الحساب الكلي

لكل محطة توليد بأستخدام الخوارزمية الجينية ذات التشفير  الفولتيةتحديد مقدار  دبع الفولتيةومن ثم يتم حساب زاوية طور  , اللازم للحساب

مقدار النتائج المستحصلة لبأستخدام الأحمال  اتكل محطل اتالفولتينظام ككل وحساب مقدار وزاوية طور لتم أعادة تمثيل ايبعد ذلك ,  الحقيقي

بصيغة ل احمألأ اتكل محطل اتفولتيمقدار وزاوية طور توليد بعد أشتقاق المعادلات المطلوبة لحساب ال اتكل محطل اتالفولتيوزاوية طور 

الطريقة المقترحة عالية الدقة, .للعمل على الشبكة الوطنية العراقيةتم تطبيقها الطريقة المقترحة ,  توليدال اتمحط اتفولتيوزاوية  مقدار

وأثناء  قليل وكذلك ممكن تطبيقها في دراسات التحليل والتخطيط للأنظمة الكهربائية كبيرة الحجم الحل  للوصول الى موثوقة والزمن اللازم

 .أشتغال المنظومة 
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1.  INTRODUCTION 

   The power flow problem, which is to determine the power system static states (voltage magnitudes 

and voltage phase angles) at each busbar to find the steady state operating condition of a system, is 

very important and the most frequently carried out study by electrical power utilities for power system 

on-line operation, planning and control. The mathematical formulation of the electrical power flow 

problem results in a set of non-linear algebraic equations. The optimization numerical methods such as 

Newton-Raphson method or the artificial intelligence methods such as Genetic Algorithm (GA) are 

applied to solve the power flow problem. The power flow problem has multiple solutions, Kubba 

1991.The numerical methods and some of the artificial intelligence methods suffer from the local 

minima problem. Also there are many criteria which should be taken into consideration such as the 

speed of solution, storage requirement and the degree of solution accuracy. With increasing computer 

speeds, researchers are increasingly applying artificial and computational intelligence techniques, 

especially in power system problems. These methods offer several advantages over traditional 

numerical methods. Among these techniques is that of genetic algorithm. Genetic algorithms (GAs) 

are efficient stochastic search techniques that emulate natural phenomena. They have been used 

successfully to solve a wide range of optimization problems. Because of existence of local minima, 

these algorithms offer promise in solving large-scale problems. A genetic algorithm mimics Darwin’s 

evolution process by implementing "survival of the fittest" strategy. Genetic algorithm solves linear 

and nonlinear problems by exploring all regions of the search space and exponentially exploiting 

promising areas through selection, crossover, and mutation operations. They have been proven to be 

an effective and flexible optimization tool that can find optimal or near-optimal solutions, Wong, et 

al., 1999. In this study, an improved genetic algorithm solution of the load flow problem is presented 

in order to minimize the total active and reactive power mismatches of the given systems, a real-coded 

genetic algorithm has been implemented. The proposed method has been demonstrated on a typical 

test system, and was used to solve the Iraqi National Grid load flow problem. 

2. THE REAL-CODED (CONTINUOUS) GENETIC ALGORITHM (RCGA) 

   The binary genetic algorithm is conceived to solve many optimization problems that stump 

traditional techniques. But, the attempting to solve a problem where the values of the variables are 

continuous and want to define them to the full machine precision. In such a problem, each variable 

requires many bits to represent it. If the number of variables is large, the size of the chromosome is 

also large. In principle, any conceivable representation could be used for encoding the variables. When 

the variables are naturally quantized, the binary genetic algorithm fits nicely. However, when the 

variables are continuous, it is more logical to represent them by floating-point numbers, i.e., real 

number. In addition, since the binary genetic algorithm has its precision limited by the binary 

representation of variables, using floating-point numbers instead easily allows representation to the 

machine precision. This continuous genetic algorithm also has the advantage of requiring less storage 

than the binary genetic algorithm because a single floating-point number represents the variable 

instead of Nbits integers. The continuous genetic algorithm is inherently faster than the binary genetic 

algorithm, because the chromosomes do not have to be decoded prior to the evaluation of the cost 

function (objective function), Ippolito, et al., 2006. Since the continuous GA is implemented using 

floating point numbers, i.e., real numbers we have called this as Real-Coded GA (RCGA).  

 

3. MATHEMATICAL DESCRIPTION & COMPONENTS OF A CONTINUOUS GENETIC  

    ALGORITHM (RCGA) 
   The real-coded genetic algorithm is very similar to the binary genetic algorithm, but the primary 

difference is the fact that variables are no longer represented by bits of zeros and ones, but instead by 

floating-point real numbers over whatever range is deemed appropriate. However, this simple fact 

adds some nuances to the application technique that must be carefully considered. In particular, we 

will present the RCGA operators, which are used in this research.  
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3.1 The Variables and Cost Function  

   A cost function generates an output from a set of input variables (a chromosome). The cost function 

may be a mathematical function, or from experiment. The objective is to modify the output in some 

desirable fashion by finding the appropriate values for the input variables. The goal is to solve some 

optimization problem where we search for an optimum (minimum) solution in terms of the variables 

of the problem. The term fitness is extensively used to designate the output of the objective function in 

the genetic algorithm literature. Fitness implies a maximization problem.  Fitness has a closer 

association with biology than the term cost, and thus we have adopted the term cost, since most of the 

optimization literature deals with minimization, hence cost. They are equivalent. If the chromosome 

has Nvar variables (a 2N-dimensional optimization problem) given by    (b1, b2,……, bNvar) where N is 

the number of buses, then the  chromosome is written as an array with (1×Nvar) elements so that:                                    

      chromosome = [b1, b2, b3, ………, bNvar]                                                                                         (1)  

In power flow problem, the chromosome is written in terms of the voltages magnitudes and voltages 

phase angles variables of all the buses as follows:                         

     chromosome  = [V1, V2,….,VN, θ1, θ2,…..,θN]                                                                                 (1.1)                                  

In this case, the variable values are represented as floating-point numbers. Each chromosome has a 

cost found by evaluating the cost function (f) at the variables (V1, V2,….,VN, θ1,θ2,…..,θN).                                                                      

     cost = f(chromosome)= f(b1,b2,…,bNvar)                                                                                           (2)  

Equations (1) and (2) along with applicable constraints constitute the problem to be solved. Our 

primary problem in this research is the continuous functions introduced below. The two cost functions 

are:                   

                           N 

      ΔPi = Pi
sp – Vi ∑Vk (Gik cosθik + Bik sinθik)                                                                                      (3) 

                         k=1  

Where Pi
sp is the specified active power at bus i, eqn.3 is for ″PV″ (generator buses), and ″PQ″ (load 

buses),                                                                                     

                              N 

      ΔQi =Qi
sp – Vi ∑ Vk (Gik sinθik – Bik cosθik)                                                                                     (4) 

                              k=1  

Where Qi
sp is the specified reactive power at bus i, eqn.4 is for PQ buses only, Where   θik = θi – θk   

and,(ΔPi) is the mismatch active power at bus (i) and (ΔQi) is the mismatch reactive power at bus (i). 

(Vi, Vk, θi, θk)    are the voltage magnitude and angle at buses (i) and (k) respectively, which are the 

variables of the two cost functions and (N) is the number of buses, Kubba, 2008. 

 

3.2 Variable Encoding, Precision, and Bounds        

   Here, the difference between binary and continuous genetic algorithms is shown. It is no longer 

needed to consider how many bits are necessary to represent accurately a value. Instead, (V) and (θ) 

have continuous values that are limited between appropriate bounds which are in our problem,         

0.9 ≤ V ≤ 1.1 and -20 ≤ θ ≤ 20. Since the genetic algorithm is a search technique, it must be limited to 

exploring a reasonable region of variable space. Sometimes, this is done by imposing a constraint on 

the problem. If one does not know the initial search region, there must be enough diversity in the 
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initial population to explore a reasonably sized variable space before focusing on the most promising 

regions. 

 

3.3 Initial Population 

   The genetic algorithm starts with a group of chromosomes known as the population. A matrix 

represents the population with each row in the matrix being a (1×Nvar) array (chromosome) of 

continuous values. Given an initial population of Nind chromosomes, the full matrix of (Nind×Nvar) 

random values is generated. All variables are normalized to have values between 0 and 1, the range of 

a uniform random number generator. The values of a variable are “unnormalized” in the cost function. 

If the range of values is between blo and bhi, then the unnormalized values are given by: 

b=(bhi–blo)bnorm+blo                                                                                                                   (5) 

where, bhi is highest number in the variable range,  blo is lowest number in the variable range, and                                   

bnorm is normalized value of variable.  This society of chromosomes is not a democracy; the individual 

chromosomes are not all created equal. Each one's worth is assessed by the cost function. So at this 

point, the chromosomes are passed to the cost function for evaluation. In this research, we had used a 

population size (initial population) of 20 individuals (chromosomes) for 14-bus IEEE system power 

flow solution and 500 individuals for 362-bus Iraqi National Grid (ING) power flow solution which 

depends on the number of variables for each system. These population sizes are kept constant 

throughout the whole solution process.  

3.4 Natural Selection 

   Survival of the fittest translates into discarding the chromosomes with the higher costs. First, the Nind 

costs and associated chromosomes are ranked from lowest cost to highest cost. Then, only the best are 

selected to continue, while the rest are deleted. The selection rate, Xrate, is the fraction of Nind that 

survives for the next step of mating. The number of chromosomes that are kept each generation is: 

Nkeep=Xrate.Nind                                                                                                                            (6) 

Natural selection occurs each generation or iteration of the algorithm. Of the Nind chromosomes, only 

the top Nkeep survive for mating, and the bottom (Nind – Nkeep) are discarded to make room for the new 

offspring. Deciding how many chromosomes to keep is somewhat arbitrary. Letting only a few 

chromosomes survive to the next generation limits the available genes in the offspring. Keeping too 

many chromosomes allows bad performers a chance to contribute their traits to the next generation. 

We use 50% (Xrate=0.5) in the natural selection process. Another approach to natural selection is called 

thresholding (Truncation Selection) is used in this research. In this approach, all chromosomes that 

have a cost function lower than some truncation threshold survive. The threshold must allow some 

chromosomes to continue in order to have parents to produce offspring. Otherwise, a whole new 

population must be generated to find some chromosomes that pass the test. At first, only a few 

chromosomes may survive. In later generations, however, most of the chromosomes will survive 

unless the threshold is changed. An attractive feature of this technique is that the population does not 

have to be sorted. 

 

3.5 Selection                                                                    
   In this process, two chromosomes are selected from the mating pool of Nkeep chromosomes to 

produce two new offspring. Pairing takes place in the mating population until (Nind – Nkeep) offspring 

are born to replace the discarded chromosomes. Pairing chromosomes in a genetic algorithm can be as 

interesting and varied as pairing in an animal species. Two types of selection are used in this research, 

which are: 
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3.5.1. Rank-weighted roulette wheel: This approach uses a uniform random number generator to select 

chromosomes. The row numbers of the parents are found using: 

 

ma = ceil (Nkeep * rand(1, Nkeep/2)) 

pa = ceil (Nkeep * rand(1, Nkeep/2)),  

 

Where ceil rounds the value to the next highest integer and rand generates arrays of random numbers 

whose elements are uniformly distributed in the interval (0, 1). This approach is problem independent 

and finds the probability from the rank of the chromosome. Rank weighting is slightly more difficult 

to program than the other selection types. Small populations have a high probability of selecting the 

same chromosome. The probabilities only have to be calculated once. We tend to use rank weighting 

because the probabilities do not change each generation. This approach of selection had been used in 

14-bus IEEE-system. 

3.5.2. Tournament selection: Another approach that closely mimics mating competition in nature is to 

randomly pick a small subset of chromosomes (two or three) from the mating pool, and the 

chromosome with the lowest cost in this subset becomes a parent. The typical value accepted by many 

applications is k =2 (so-called tournament size). The tournament repeats for every parent needed. 

Thresholding and tournament selection make a nice pair, because the population never needs to be 

sorted. Tournament selection works best for large population sizes because sorting becomes time-

consuming for large populations. Each of the parent selection schemes results in a different set of 

parents. As such, the composition of the next generation is different for each selection scheme. Rank-

weighted Roulette-wheel and tournament selection are standard for most genetic algorithms. It is very 

difficult to give advice on which selection scheme works best. In our problem, we follow the roulette-

wheel and tournament parent selection procedures for 14-bus IEEE-system and 362-bus ING 

respectively, Younes, and M. Rahli, 2006. 

 

3.6 Crossover (Recombination)                                                                                    
   As for the binary algorithm, two parents are chosen, and the offspring are some combination of these 

parents. Many different approaches have been tried for crossing over in continuous genetic algorithm. 

The simplest methods choose one or more points in the chromosome to mark as the crossover points. 

Then the variables between these points are merely swapped between the two parents. For example, 

consider the two parents to be:   

                                                              

       parent 1= [bm1, bm2, bm3, bm4, bm5, bm6, ……, bmNvar]                                                                    

       parent 2 = [bd1, bd2, bd3, bd4, bd5, bd6, ……, bdNvar]  

     

   Crossover points are randomly selected (at points (3, 4)), and then the variables in between are 

exchanged:  

                                                          

      offspring  1 = [bm1, bm2, bd3, bd4, bm5, bm6, ……, bmNvar]  

      offspring  2 = [bd1, bd2, bm3, bm4, bd5, bd6, ……, bdNvar] 

  

The extreme case is selecting Nvar points and randomly choosing which of the two parents will 

contribute its variable at each position. Thus, one goes down the line of the chromosomes and, at each 

variable, randomly chooses whether or not to swap information between the two parents. This method 

is called uniform crossover:  

                                          

          offspring  1 = [bm1, bd2, bm3, bm4, bd5, bm6, ……, bdNvar] 

          offspring  2 = [bd1, bm2, bd3, bd4, bm5, bd6, ……, bmNvar]   
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   The problem with these point crossover methods is that no new information is introduced; each 

continuous value that was randomly initiated in the initial population is propagated to the next 

generation, only in different combinations. Although this strategy works fine for binary 

representations, there is now a continuum of values, and in this continuum we are merely 

interchanging two data points. These approaches totally rely on mutation to introduce new genetic 

material. The blending methods remedy this problem by finding ways to combine variable values from 

the two parents into new variable values in the offspring. A single offspring variable value bnew comes 

from a combination of the two corresponding parents variable values: 

bnew=βbmn+(1–β)bdn                                                                                                                   (7) 

Where, β is a random number on the interval [0,1], bmn = nth variable in the mother chromosome,                       

bdn = nth variable in the father chromosome.                          

   The same variable of the second offspring is merely the complement of the first (i.e. replacing β by 1 

– β). If β = 1, then bmn propagates in it's entirely and bdn dies. In contrast, if β = 0, then bdn propagates 

in it's entirely and bmn dies. When β = 0.5, the result is an average of the variables of the two parents. 

This method has been demonstrated to work well on several interesting problems. Choosing which 

variables to blend is the next issue. Sometimes, this linear combination process is done for all 

variables to the right or to the left of some crossover point, Woon, 2004. Any number of points can be 

chosen to blend, up to Nvar values where all variables are linear combinations of those of the two 

parents. The variables can be blended by using the same β for each variable or by choosing different 

β's for each variable. These blending methods effectively combine the information from the two 

parents and choose values of the variables between the values bracketed by the parents; however, they 

do not allow introduction of values beyond the extremes already represented in the population. Of 

course, the factor (0.5) is not the only one that can be used in such a method. Heuristic crossover is a 

variation where some random number β is chosen on the interval [0, 1] and the variables of the 

offspring are defined by:   

           bnew = β(bmn-bdn)+bdn                                                                                                                   (8) 

Variations on this theme include choosing any number of variables to modify and generating different 

β for each variable. This method also allows generation of offspring outside of the values of the two 

parent variables. Sometimes, values are generated outside of the allowed range. If this happens, the 

offspring is discarded and the algorithm tries another β. In our problem, we want to find a way to 

closely mimic the advantages of the binary genetic algorithm scheme. It begins by randomly selecting 

a variable c in the first pair of parents to be the crossover point, Yin, 1993:                                                                                                                                                                                  

          c= round up {random*Nvar}                                                                                                        (9) 

Where, (round up) is rounding mode that rounds to the nearest allowable quantized value.                                                 

We’ll let: parent 1 = [bm1, bm2, ……, bmc, ……, bmNvar]   parent 2 = [bd1, bd2, ……, bdc, ……, bdNvar],                    

Where (m) and (d) subscripts discriminate between the mom and dad parent. Then, the selected 

variables are combined to form new variables that will appear in the children: 

bnew1 = bmc – β (bmc – bdc) 

bnew2 = bdc + β (bmc – bdc) 

Where, β is also a random value between 0 and 1. The final step is to complete the crossover with the 

rest of the chromosome as in binary genetic algorithm: 
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offspring  1 = [bm1, bm2, ……, bnew1, ……, bdNvar] 

offspring  2 = [bd1, bd2, ……, bnew2, ……, bmNvar]   

If the first variable of the chromosomes is selected, then only the variables to the right of the selected 

variable are swapped. If the last variable of the chromosomes is selected, then only the variables to the 

left of the selected variable are swapped. This method does not allow offspring variables outside the 

bounds set by the parent unless β > 1, Younes, and Rahli, 2006-Jain, and Martin1, 1998. 

3.7 Mutation 

   Random mutations alter a certain percentage of the genes in the list of chromosomes.  If care is not 

taken, the genetic algorithm can converge too quickly into one region of the cost surface. If this area is 

in the region of the global minimum, that is good. However, some functions, such as the one we are 

modeling, have many local minima. If nothing is done to solve this tendency to converge quickly, it 

may end up in a local rather than a global minimum. To avoid this problem of overly fast convergence 

(premature convergence), the routine is forced to explore other areas of the cost surface by randomly 

introducing changes, or mutations, in some of the variables. Mutation points are randomly selected 

from the (Nind×Nvar), total number of genes in the population matrix.        

   Increasing the number of mutations increases the algorithm's freedom to search outside the current 

region of variable space. It also tends to distract the algorithm from converging on a popular solution.                                                               

With the process of the crossover and mutation taking place, there is a high chance that the optimum 

solution could be lost as there is no guarantee that these operators will preserve the fittest string. To 

counteract this, elitist models are often used. In an elitist model, the best individual in the population is 

saved before any of these operations take place. After the new population is formed and evaluated, it is 

examined to see if this best structure has been preserved. If not, the saved copy is reinserted back into 

the population. The genetic algorithm then continues on as normal, Ibrahim, 2005- Vasconcelos, et 

al., 2002. 

4. PROPOSED TECHNIQUE 

   In the proposed method the load busbars are eliminated, retaining only generator busbars for the 

iterative process. The system equations in terms of generator busbars and load busbars can be written 

as:  

      𝐼𝐺

      𝐼𝐿
   =   

𝑌11 𝑌12

𝑌21 𝑌22
      

 𝑉𝐺

𝑉𝐿
                                                                                                                   (10)

   

If the voltage of the Kth  load busbar is initially assumed to be VLk = 1.0  0
o  . Then the current in the 

busbar to the load is:                                                                                                                                   

           ILk = 

   𝑃𝐿𝑘 −𝑗𝑄𝐿𝑘   

𝑉∗𝐿𝑘 
                                                                                                                           (11)  

From the second row of eqn. 10, we have                                                                                                                                          

             𝑉𝐿 =  −𝑌2 2   
−1 𝑌21   𝑉𝐺 +  𝑌22

−1  𝐼𝐿                                                                                                (12)  

Substituting eqn. 12 in the first row of eqn. 10, we get                                                                                                           

              𝐼𝐺 =  𝑌11 𝑉𝐺  +  𝑌12(−𝑌22
−1 𝑌21 𝑉𝐺 +  𝑌22

−1 𝐼𝐿 )                                                                          (13)   

 The above equation is written as                                                                                                                                         

             𝐼𝐺 =  𝑌𝐺𝐺  𝑉𝐺 +  𝑌𝐺𝐿𝐼𝐿                                                                                                                (14) 



 
 

8 
 

Where: 𝑌𝐺𝐺 =  𝑌11 −  𝑌12 𝑌22
−1 𝑌21     and     𝑌𝐺𝐿 =  𝑌12𝑌22

−1                                                                 (15)     

From eqn. 14, the   ith  generator busbar is:                                                                                                                                     

           𝐼𝑖 = ∑ 𝑌𝑖𝑘 𝑉𝑘
𝑚
𝑘=1 +  𝑎𝑖 ,   for  i= 1,2,…..,m.                                                                               (16)          

Where  ai is the ith element of the column vector A given by                                                                                                       

            𝐴 =  𝑌𝐺𝐿 𝐼𝐿                                                                                                                                 (17)   

The complex power at the busbar is                                                                                                                                                     

           𝑆𝑖 = 𝑉𝑖
∗ 𝐼𝑖 =  𝑉𝑖

∗  ∑ 𝑌𝑖𝑘
𝑚
𝑘=1  𝑉𝑘 +  𝑉𝑖

∗  𝑎𝑖                                 

for  i=1,2,……,m.                                                                                                                                (18) 

The real power injection at the busbar is    

 

𝑃𝑖 = 𝑅𝑒 𝑆𝑖 = ∑ 𝑒𝑖
𝑚
𝑘=1  (𝑒𝑘𝐺𝑖𝑘 −  𝑓𝑘𝐵𝑖𝑘) +  ∑ 𝑓𝑖

𝑚
𝑘=1 (𝑒𝑘𝐵𝑖𝑘 +          𝑓𝑘𝐺𝑖𝑘) + 𝐿𝑖                                                                             

for  i=1,2,….,m.                                                                                                                                   (19) 

Where  𝐿𝑖 =  𝑒𝑖𝑐𝑖 + 𝑓𝑖𝑑𝑖                                                                                                                      (20) 

(Li) can be considered as an equivalent local load at generator busbar i due to elimination of the load 

busbars ,  Mithulananthan, et al., 2004 .                     

5.  COMPUTER ALGORITHM OF THE PROPOSED METHOD 

   The computer algorithm for the proposed method is as follows:                                                                                                 

1. Read the lines data and form the nodal admittance matrix.                                                                                                                   

2. Read the busbars data, such as the specified active power, voltage magnitude of the generator buses, 

specified active and reactive power of the load buses, slack bus voltage, and initial estimate of the 

voltage of the load buses, assuming (1.0 p.u., 0.1 MW/MVAr)                                                                                                                                                     

3. Eliminate the load busbars and reduce the network to the size of that of the generators busbars.                                                 

4. Compute (IL) using Eqn. (11) for all load buses, form the column vector (A) given by Eqn. (17), 

then form (Li) assuming (ei) equal to the specified values, and (fi) initially is zero.                                                                                     

5. Execute the Real-Coded Genetic Algorithm on the generator buses only to find the most recent 

value of the voltages, implementing all the GA operators such as Selection with Rank-Weighting 

Roulette Wheel, Tournament selection with truncation threshold, Single-point Crossover with 

blending method, and Mutation (rate of Mutation=0.2), we use initial population of 20 chromosomes 

for 14-bus IEEE system and 500 chromosomes for Iraqi National Grid (ING) system. At each 

generation (iteration) of the GA, we calculate the most recent values of (VL) from Eqn. (12),  (IL) from 

Eqn. (11)  and (Li), then calculate (Pi) from Eqn. (19).                                                                                                                                                           

6. Convergence Test: The mismatch active powers for the generator buses (cost function) are 

calculated at each GA generation (iteration) according to the following equation:                                                                                                                                 

        ∆𝑃𝑖 =  𝑃𝑖
𝑠𝑝 −  𝑃𝑖

𝑐𝑎𝑙 , for   i=1,2,…,m.                                                                                           (21) 

When the mismatch active powers (cost function) for all generator buses except the slack bus are less 

than a small tolerance value (usually 0.001), 0.1MW/MVAR then the solution has converged.                                                                                                                          

7. Restore the system and calculate the load busbars voltages using Eqn. (12).                                                                                    

8. Print results and end.   
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6. IMPLEMENTATIONS AND RESULTS 

   Two test systems were used to demonstrate the performance of the proposed method, namely:                                           

1. 14 busbars IEEE International test system, the lines and buses data are present in, Kubba, 1991. 

The ″14- bus″ test system consists of: 1 slack bus, 4 generator buses (PV) and 9 load buses(PQ).                                                                               

2. The Iraqi National Grid (ING) which consists 362 busbars, 1 slack bus, 29 generator buses (PV) and 

332 load buses (PQ) , Al-Bakri, 1994 . 

   The load flow solution using real-coded genetic algorithm programs with and without the method of 

Reduction and Restoration have been developed by the use of MATLAB version 7, and tested with a 

Pentium 4, 3GHz (Cache 2M) PC with 2GB RAM. Table 1 illustrates the power flow solution for a 

14-bus IEEE test system using conventional RCGA with two objective functions, which are the 

mismatch active and reactive powers at each bus according to its constraints except the slack bus. The 

sum of weighted cost multi-objective functions is used. The most straightforward approach to multi-

objective optimization is to weight each function and add them together, Abido, 2003. 

           h 

cost =∑wifi                                                                                                                               (22) 

          i=1  

 

   Where fi  is the cost function (i), wi is the weighting factor, h is the number of objective functions,  

and                                  

              h                                                                                                        

             ∑ wi = 1.                                                                                                                                  (23) 

             i=1  

        

   Implementing this multiple objective optimization approach in a real-coded genetic algorithm only 

requires modifying the cost function to fit the form of Eqn. (22) and does not require any modification 

to the genetic algorithm. Thus, Eqn. (22) becomes: 

 

cost =wf1+(1-w)f2                                                                                                                    (24) 

 

   Where f1 and f2 are the mismatch active and reactive powers respectively, and have the same rank of 

importance. This approach is adopted in this research for its simplicity, easy of programming and 

gives us the required accuracy. Here, (w) is chosen to be (0.5), Riccieri, and Falcao, 1999.    

Because of the stochastic nature of the genetic algorithm process, each independent run will probably 

produce a different number of generations and consequently the computation time and the best 

amongst these should be chosen. The best of the 10 implementations runs are shown in the tables. The 

total computation time was 7.156 sec. Table 2 illustrates the power flow solution of the same IEEE 

test system using RCGA with the method of system Reduction and Restoration (Proposed Method). 

Since, we only retain the generator buses for the GA process, so a single objective function (mismatch 

active power) is needed. The total computation time for the whole load flow solution was 0.18 second. 

The power flow solution results for the Iraqi National Grid (362-bus) by using RCGA with the method 

of system reduction and restoration were tabulated in Table 3 and Table 4. Since the proposed method 

(RCGA with system Reduction and Restoration) implements the complete cycles of the genetic 

algorithm on the generator busbars only which are the first thirty buses of the system, then Table 3 

shows the results and number of generations for each generator busbar and the power flow solution for 

the total Iraqi National Grid are presented. Table 4 shows the voltages of load buses which are 

calculated after restoring the system, also the mismatch active and reactive powers of load buses are 

presented. The total computation time with conventional RCGA method was more than 72 hours, 

while the total computation time for the proposed method was 519 seconds for the whole load flow 

solution of 362-bus ING with the same accuracy. A ranked-weighted roulette wheel and Tournament 

selection process were used for 14-bus IEEE and ING respectively. Figure1 shows the evaluation 

process of the genetic algorithm for bus 2 of 14-bus IEEE system, the dotted curve represents the 
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minimum cost of the solution (chromosome) which is converged with 15 generations and the solid 

curve represents the average value of the costs amongst generations versus the number of generations.    

 

7. CONCLUSIONS                                                                                                                                                                               

    The proposed method which had presented in this paper is very much faster than the simple real-

coded genetic algorithm, since the system is reduced to the size of that of the generator busbars which 

for any realistic system is small as we see for the 362-bus Iraqi National Grid, only 30 buses are 

generator busbars. We must take into consideration that the main drawback of the genetic algorithm is 

the large computation time. So, this contribution is especially for GA as an optimization technique. 

The objective function (cost function) for the generator buses is only the mismatch active power, so 

that multi-objective function techniques are not needed. Thus, it can be concluded that the proposed 

method is suitable for on-line implementation for small and medium-scale power systems and it can be 

used for planning study for large-scale systems. The proposed method has reliable convergence and 

high accuracy of solution. Whereas the traditional numerical techniques (Gauss-Seidel, Newton-

Raphson, Fast decoupled,…etc.) use the characteristics of the problem to determine the next sampling 

point (e.g. gradient, linearity and continuity), genetic algorithm makes no such assumptions. Instead, 

the next sampled point is determined based on stochastic sampling or decision rules rather than on a 

set of deterministic decision rules. Genetic algorithms with the method of system reduction and 

restoration have been used to solve difficult problems with objective functions that possess properties 

such as continuity, differentiability and so forth.   Also, whereas the traditional numerical techniques 

mentioned above use single point at a time to search the problem space, genetic algorithm uses a 

population of candidate solutions for solving the problem, thus reducing the possibility of ending at a 

local minima. 
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NOMENCLATURE 

N = number of busbars in the system.                                                                                                                                                      

m = number of generator busbar in the system.                                                                                                                                      

VG = M-dimensional vector of voltages of generator busbars.                                                                                                                  

IG = M-dimensional vector of currents of generator busbars.                                                                                                           

VL = (N-M) dimensional vector of voltages of load busbars.                                                                                                                                   

IL = (N-M) dimensional vector of currents of load busbars.                                                                      

Y= admittance matrix of order NxN.                              

Y11, Y12, Y21, Y22 = sub-matrices of Y of appropriate order.                                                                                                            

𝑉𝑘
∗ = conjugate of kth busbar voltage Vk.                                                                                                                                        

ek , fk = inphase and quadrature components of Vk.                                                                                                                      

ci , di = real and imaginary parts of ai.                                                                                                                                             

sp = specified value.      

cal = calculated.                                                                                                                                            

Gik, Bik = real and imaginary parts of the admittance Yik 

http://www.sps.utm/
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Figure1 Evaluation process for busbar (2), 14- bus IEEE test system 

 

Table 1 Power Flow Solution (14-Bus IEEE) Test System with accuracy (0.001p.u.), using RCGA  

              Without Reduction & Restoration 

     
 

                                           

 

 

 

 

 

 

                                                                                                                                                                                        
 

 

 

 

 

 

 

 

 

 

 

Bus 
Active 

power 

Reactive 

power 
Voltage Voltage No. of 

No mismatch mismatch 
Magnitude 

(p.u) 

Angle 

(deg) 
generations 

1 Slack Slack 1.06 0.00 ـــــ 

2 0.000329 PV 1.045 3.2117 17 

3 0.000131 PV 1.010 -4.3582 7 

4 0.000484 PV 1.070 -6.1436 21 

5 0.000890 PV 1.090 -12.423 47 

6 0.000798 0.000481 1.057131 6.30252 95 

7 0.000365 0.000060 1.0773818 -4.6541 107 

8 0.000222 0.000773 1.0565362 -1.7120 193 

9 0.000185 0.000682 1.0456395 1.44081 172 

10 0.000273 0.000322 1.045163 -9.0031 18 

11 0.000950 0.000223 1.057696 -5.4828 90 

12 0.000411 0.000535 1.061725 7.67754 43 

13 0.000770 0.000521 1.0482889 -11.028 29 

14 0.000209 0.000762 1.0588537 -3.3446 47 

 
Total Computational Time: 

 
7.156 sec. 



 
 

13 
 

Table 2 Power Flow Solution (14-Bus IEEE) Test System with accuracy (0.001p.u.), using RCGA  

              With Reduction & Restoration 
 

 

 

 

 

 

 

 

 

 

 

 

*Table 3 Power Flow Solution  For  "IRAQI NATIONAL GRID" with accuracy (0.001p.u.),  

                    using RCGA with the method of Reduction and Restoration (Only the Generator Busbars) 
 

                                         

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

*Total computing time (Genetic Algorithm without the method of Reduction and Restoration): more than 72     

  hours.                                                                  

*Total computing time (Genetic Algorithm with the method of Reduction and Restoration): 519 sec., this time is for the  

  total load flow solution of 362-bus ING system.  

 

Bus Active power Reactive power Voltage Voltage No. of 

No. mismatch mismatch magnitude(p.u) angle(deg.) Generations 

1 Slack Slack 1.06 0.00 ــ 

2 0.000373 PV 1.045 3.2117 15 

3 0.000130 PV 1.010 -3.35826 5 

4 0.000374 PV 1.070 -6.10062 21 

5 0.000890 PV 1.090 -11.0235 40 

6 0.000678 0.000444 1.0476131 6.30252 - 

7 0.000360 0.0006 1.0573888 -4.6999 - 

8 0.000223 0.000788 1.065092 -2.71203 - 

9 0.000109 0.0005 1.0558895 1.63081 - 

10 0.000223 0.000321 1.0551690 -9.03316 - 

11 0.000850 0.000221 1.0476990 -4.08283 - 

12 0.000407 0.000546 1.0762725 6.60054 - 

13 0.000660 0.000512 1.0482889 -11.0208 - 

14 0.000205 0.000769 1.0688837 -3.34469 - 

Total Computational Time: 
  

0.18 sec. 

Bus Active power 
 Reactive 

power 
Voltage Voltage No. of 

 No. mismatch (p.u) 
mismatch 

(p.u) 

magnitude 

(p.u) 
Angle(deg)  Generations 

1 Slack Slack 1.04 0 ـــــ 

2 0.0005 PV 1 18.3805 262 

3 0.00021334 PV 1 2.8233 57 

4 0.0008081 PV 1 -9.5400 319 

5 0.00011245 PV 1 13.6445 521 

6 0.00043106 PV 1 -11.8520 34 

7 0.0018487 PV 1 4.1875 500 

8 0.00066843 PV 1 7.5529 244 

9 0.00023882 PV 1 12.3150 30 

10 0.00016648 PV 1 4.0006 134 

11 0.0003391 PV 1 -19.7704 88 

12 0.00045458 PV 1 -6.3530 266 

13 0.00013682 PV 1 4.5221 424 

14 0.00058912 PV 1 -6.9794 76 

15 0.00054176 PV 1 -8.1968 353 

16 0.00021063 PV 1 13.5898 42 

17 0.00078201 PV 1 4.5766 39 

18 2.4477*10-6 PV 1 11.1094 41 

19 0.00090163 PV 1 7.0672 47 

20 0.00089409 PV 1 -7.0275 9 

21 0.00037127 PV 1 -3.2876 159 

22 0.00014522 PV 1 -10.7986 24 

23 0.00093387 PV 1 2.0421 216 

24 0.00084462 PV 1 9.0268 47 

25 0.00038532 PV 1 2.9669 17 

26 0.00023586 PV 1 3.8338 52 

27 7.2047*10-6 PV 1 -6.8666 88 

28 0.00011686 PV 1 0.0252 50 

29 0.00026843 PV  1 7.3612 333 

30 0.0005791 PV 1 9.1833 134 
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Table 4 Power Flow Solution For "IRAQI NATIONAL GRID" (Load Buses) After System    

              Restoration 
                  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Bus Active power 
 Reactive 

power 
Voltage Voltage 

 No. mismatch (p.u) 
mismatch 

(p.u) 
magnitude (p.u) Angle(deg.)  

31 0.0003 0.0002 1.02247 12.3782 

32 0.000310 0.00013264 1.03356 -12.5347 

33 0.000761 0.00088425 0.955482 -18.8922 

34 0.00048 0.000007 0.981021 -3.14901 

35 0.00082 0.00019414 0.969731 -7.5778 

36 0.0007 0.0004 0.999866 0.40992 

37 0.00094 0.00059979 0.99142 -0.108361 

38 0.00072 0.0000028 1.02766 2.41241 

39 0.00010 0.000031 0.951085 8.90456 

40 0000073 0.000082 0.978972 7.68687 

41 0.000003 0.00014068 0.954069 -2.09315 

42 0.00056231 0.00034232 0.951974 10.2677 

43 0.00015186 0.00084486 0.956778 9.06423 

44 0.00093275 0.00060546 0.955108 -13.2829 

45 0.00085845 0.0000039 1.00216 -8.97243 

46 0.000025 0.00022034 0.955224 -7.08481 

47 0.0005849 0.00025364 0.96548 -8.2154 

48 0.0006 0.0009 0.96959 0.0359168 

49 0.00046407 0.00068482 1.01733 8.11071 

50 0.00064014 0.00040881 0.96882 16.9887 

51 0.00081139 0.00073374 1.01725 12.1607 

52 0.00063582 0.00036833 0.999238 0.015595 

53 0.00064585 0.00073222 0.95709 7.0377 

54 0.00039461 0.00031144 1.02049 4.97693 

55 0.00050197 0.00051873 0.95678 18.5084 

56 0.0006757 0.00066047 1.02961 13.4216 

57 0.00048624 0.00046999 1.01989 13.0202 

58 0.00026657 0.00078447 1.03154 -4.56727 

59 0.00020212 0.00087574 0.998382 -0.133244 

60 0.00099704 0.00040061 0.969316 -9.13924 

61 0.0002 0.0005 1.09633 -3.3891 

62 0.00062866 0.00048481 1.01166 3.0274 

63 0.000034 0.00050729 1.00118 11.0695 
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64 0.00052304 0.0006 0.956323 0.126932 

65 0.00039148 0.00027503 0.959269 -3.93418 

66 0.0003338 0.00048038 0.959048 5.45821 

67 0.00045369 0.00074015 1.03691 8.05995 

68 0.00077681 0.00053799 0.962027 -0.556099 

69 0.00027057 0.00061177 1.0712 5.11859 

70 0.00040663 0.00054506 0.959477 -13.4194 

71 0.00015602 0.00084029 1.0151 4.6136 

72 0.00085314 0.0000044 0.9505 -9.4481 

73 0.00082757 0.00056498 0.9587 14.8084 

74 0.0000066 0.00028761 1.0205 -0.5232 

75 0.00045213 0.00089712 0.9606 16.254 

76 0.00026312 0.00099152 1.0235 -0.4562 

77 0.0003 0.0002 0.9989 -15.9269 

78 0.00060173 0.00081968 0.9569 9.3835 

79 0.00097288 0.00093161 0.9615 -9.6373 

80 0.00030775 0.00026214 1.0172 -11.3539 

81 0.00028197 0.0003666 0.9567 10.958 

82 0.0001 0.0007 0.9709 -9.6128 

83 0.00017501 0.00031678 0.9538 0.5662 

84 0.00060463 0.00055344 0.9689 12.4227 

85 0.00049479 0.00025939 0.9917 -17.9393 

86 0.00074739 0.000061 0.9976 11.2733 

87 0.00073692 0.00062359 1.0459 3.6541 

88 0.0002 0 0.9665 7.1323 

89 0.000081 0.00089968 1.0154 -0.9266 

90 0.00051316 0.00093613 1.0007 -15.3443 

91 0.000031 0.00072166 1.0017 18.7953 

92 0.00062835 0.00047428 0.9977 12.0889 

93 0.0000047 0.00047299 1.0034 11.0409 

94 0.00031952 0.00085516 0.9855 1.9537 

95 0.00028333 0.00050642 1.0368 18.9362 

96 0.0008504 0.00096063 1.0821 -15.1242 

97 0.00038635 0.00026579 1.0445 -5.8019 

98 0.00069584 0.00012365 0.9702 -8.2354 

99 0.0007 0.0009 0.9562 16.788 

100 0.00010717 0.0000085 0.9727 -10.4169 

101 0.0006727 0.00077553 0.9557 8.5754 

102 0.00053227 0.00015283 1.0827 -10.9894 

103 0.00044692 0.00081571 0.9729 0.6583 

104 0.00016048 0.000073 1.0319 0.9266 

 105 0.000025 0.00047994 0.9625 -2.6931 

106 0.000048 0.00079433 0.9284 -10.2436 

107 0.00084716 0.00015576 0.9641 4.4674 

108 0.00068356 0.000055 1.0552 1.2291 

109 0.00026455 0.00064387 1.0413 11.6445 

110 0.00058321 0.00015476 1.02897 9.3654 

111 0.00071167 0.00048416 1.089 16.4406 

112 0.00094005 0.00097359 0.9736 12.9073 

113 0.00084364 0.00061624 1.0071 19.928 

114 0.00021032 0.00017141 0.9618 3.9724 
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115 0.00084827 0.00097626 0.9523 0.8467 

116 0.00083 0.000547 0.9523 4.5623 

117 0.00047 0.0007656 1.0258 -15.256 

118 0.000455 0.00072 0.96136 16.2351 

 119 0.00092 0.0009962 0.992564 -9.2541 

120 0.00012 0.0004547 1.03654 0.06541 

 121 0.001 0.0008 0.9618 2.2392 

122 0.00013234 0.00093924 0.9884 11.3193 

123 0.00096448 0.0005687 0.9523 -7.3612 

124 0.00081065 0.0000031 1.0828 -6.4949 

125 0.00030709 0.000083 0.9998 -11.0119 

126 0.000048 0.00071905 0.9618 3.1288 

127 0.00096313 0.00098343 0.9757 -4.9987 

128 0.00093397 0.00077209 1.0843 -0.3262 

129 0.00062329 0.00064654 1.0182 12.9015 

130 0.00094189 0.00037681 0.9539 -8.8013 

131 0.00014215 0.00057406 0.9571 1.6474 

132 0.00041524 0.0005684 0.9583 10.7085 

133 0.00020296 0.00046611 0.9638 6.3202 

134 0.00037946 0.00062747 0.9987 9.103 

135 0.00095745 0.00082409 0.9785 -1.7189 

136 0.00027374 0.00046965 0.9706 1.4742 

137 0.00020975 0.00085845 0.971 7.2577 

138 0.00039402 0.00048299 1.0127 7.7591 

139 0.00035319 0.00036285 0.9632 5.5677 

140 0.0006075 0.0009984 0.95154 6.3214 

141 0.0008155 0.0002237 0.95214 -14.2365 

142 0.00011 0.0009845 1.0564 0.98745 

143 0.0002734 0.0002717 0.9654 3.2145 

144 0.0001812 0.000567 0.9628 -17.149 

145 0.0004911 0.0006331 0.9752 -4.2187 

146 0.0005208 0.000486 0.9962 0.05871 

147 0.0005119 0.000886 1.0547 2.0154 

148 0.0002753 0.0004816 0.9614 13.2974 

149 0.0004286 0.0004054 1.0893 1.5647 

150 0.0002753 0.0001582 0.9512 6.2354 

151 0.0007 0 0.9544 3.5375 

152 0.00013698 0.00027886 1.007 -0.8344 

153 0.00020208 0.00023032 0.9965 -0.5292 

154 0.00040253 0.00020923 0.9701 5.2631 

155 0.00046085 0.00096044 0.9731 5.815 

156 0.00029987 0.000035 0.9753 4.4393 

157 0.00080446 0.00053457 0.9485 -8.8882 

158 0.00035469 0.00015957 0.9687 13.5985 

159 0.0003943 0.000029 0.9585 -1.0752 

160 0.00073661 0.00017162 0.9279 13.6502 

161 0.00065884 0.00028923 0.9548 -6.1351 

162 0.00035578 0.00029898 0.9587 -2.3739 

163 0.00075604 0.00092751 0.9521 2.898 

164 0.000035 0.00038695 1.0067 8.9077 

165 0.00099806 0.00071947 1.0691 -10.2774 

166 0.00012425 0.000052 0.955 -8.262 
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167 0.00092219 0.00019175 0.9984 13.4656 

168 0.00076628 0.00081641 0.9775 17.2191 

169 0.00092571 0.000057 0.973 0.6329 

170 0.00054766 0.00069843 0.9653 0.4959 

171 0.00099334 0.00079967 0.9611 10.6166 

172 0.00049608 0.00022697 0.9946 -1.0459 

173 0.00055849 0.00042155 0.9421 -4.9939 

174 0.00048618 0.000055 1.0338 3.6292 

175 0.00014611 0.00072444 0.9827 10.898 

176 0.00051741 0.00064903 0.9628 6.5469 

177 0.00071172 0.00036796 0.9539 -1.5042 

178 0.00019378 0.000039 0.9512 6.5171 

179 0.00060168 0.0008397 1.0102 -7.9275 

180 0.00059232 0.00022898 0.9634 6.5271 

181 0.0001 0.0002 1.0054 4.2552 

182 0.00044569 0.000618 1.0125 -6.0294 

183 0.00055934 0.00041766 0.9865 3.0486 

184 0.00020306 0.00096151 0.9548 7.0504 

185 0.00088243 0.00045767 0.9413 -0.5076 

186 0.00069729 0.00070518 0.9528 9.3272 

187 0.000044 0.000333 0.9537 4.4252 

188 0.000013 0.00044238 0.9582 2.137 

189 0.00050756 0.00076265 0.9543 4.8151 

190 0.00066192 0.00075837 0.9592 19.2249 

191 0.0002513 0.00044497 0.9583 0.8323 

192 0.00020302 0.00080563 0.9555 2.266 

193 0.00030057 0.00094464 1.0024 -17.265 

194 0.00046703 0.00042967 0.9994 11.0973 

195 0 0 0.9507 18.5179 

196 0.00093542 0.000085 0.9738 10.7321 

197 0.00051919 0.00062756 0.9848 1.4284 

198 0.00013828 0.00084404 1.067 6.9025 

199 0.00052945 0.0002323 1.027 -17.4657 

200 0.00054335 0.00038057 0.9445 -15.5822 

201 0.00061187 0.00075132 0.9957 -18.0073 

202 0.00096005 0.00091358 0.9778 -2.2563 

203 0.00079194 0.00022214 0.9552 -3.3525 

204 0.00026439 0.00095589 0.9802 0.5317 

205 0.00056456 0.00087312 0.9946 18.2447 

206 0.00054948 0.00055895 0.9555 8.0271 

207 0.00077144 0.001 0.9546 3.8581 

208 0.00075889 0.00027959 1.0049 8.4842 

209 0.00056002 0.00040952 1.0468 -13.798 

210 0.0006285 0.00057178 0.9503 -5.8999 

211 0.00019025 0.00095178 0.9528 -5.8964 

212 0.00059117 0.00056099 0.9572 -0.4872 

213 0.00037677 0.00016316 0.9714 17.869 

214 0.00088221 0.00063269 0.9555 -11.1881 

215 0.00065945 0.00093676 0.9865 -2.8314 

216 0.00087711 0.00089287 0.988 -0.0197 

217 0.00093717 0.00011334 0.9586 -9.8487 
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218 0.00048357 0.0005098 1.0667 16.3454 

219 0.000074 0.00050823 0.9713 8.419 

220 0.00023902 0.00097386 0.9738 8.5508 

221 0.00020321 0.00085756 1.0454 15.2306 

222 0.00011518 0.00095031 1.0223 6.236 

223 0.0009373 0.00031901 0.9452 1.1682 

224 0.00063283 0.00047536 0.99 -4.223 

225 0.00019285 0.000067 0.9426 -12.6611 

226 0.000078 0.00023635 0.9599 -3.5077 

227 0.00054555 0.000043 0.963 5.5577 

228 0.0007854 0.000023 0.9515 2.3654 

229 0.00021656 0.00064519 1.0196 -10.1812 

230 0.00045404 0.00078516 1.0707 -17.4119 

231 0.00026644 0.00016696 0.9708 -3.5614 

232 0.00032806 0.0001135 1.0165 -17.2337 

233 0.0008132 0.00026348 1.0561 0.7447 

234 0.00049081 0.00047598 0.9979 6.2127 

235 0.00042958 0.00037536 0.9598 3.4219 

236 0.00099515 0.00014891 1.0225 6.0696 

237 0.00084 0.00054738 0.9921 -3.3138 

238 0.00019869 0.0005315 1.0221 5.5529 

239 0.00069827 0.00070673 0.9505 -0.6187 

240 0.00073886 0.0006194 0.9452 14.327 

241 0.000012 0.00047631 1.0173 -11.6858 

242 0.00052499 0.000039 0.945 -2.4259 

243 0.00044988 0.00058049 0.9533 16.2874 

244 0.00033758 0.00014153 0.9937 6.6786 

245 0.00068628 0.00084693 0.9597 -4.9778 

246 0.0004596 0.00037358 0.9885 9.4525 

247 0.00051515 0.00045483 0.9546 4.6063 

248 0.00032144 0.00068358 1.0714 7.7469 

249 0.00043791 0.00041416 0.9966 -0.7901 

250 0.00028647 0.00022116 0.9556 -2.497 

251 0.0007 0.0003 0.95315 1.1601 

252 0.000095 0.00054734 0.95733 -8.8202 

253 0.00079549 0.00077536 0.98058 -5.4324 

254 0.00032922 0.00065235 1.0836 -17.168 

255 0.000085 0.00037146 0.959 8.3101 

256 0.00094778 0.000036 0.98041 -19.965 

257 0.00078819 0.00080088 0.95607 -13.439 

258 0.0001091 0.00023452 1.0162 -4.7631 

259 0.0008952 0.00047521 0.9842 1.5236 

260 0.0009 0.0003 0.9574 -2.2963 

261 0.0004 0.0008 1.0025 -3.0548 

262 0.00066294 0.000013 0.9891 -1.1725 

263 0.00048644 0.0001791 0.94889 8.6261 

264 0.00015727 0.00054346 0.95678 -18.469 

265 0.00033058 0.00075487 0.9502 8.8319 

266 0.00060066 0.00054603 1.0306 6.2556 

267 0.00052942 0.00042094 1.0529 14.874 
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268 0.00088617 0.00069782 1.0911 -0.47424 

269 0.0004741 0.00045141 1.0366 5.3008 

270 0.00034368 0.00003 1.0076 -13.849 

271 0.001 0.0005 1.052 5.453 

272 0.00012802 0.00052728 1.0162 -0.30575 

273 0.00092958 0.00022451 0.9701 -1.8693 

274 0.000074 0.00096697 0.99916 -0.018933 

275 0.00072001 0.00030789 0.99985 14.765 

276 0.00063061 0.00031637 1.0273 3.0481 

277 0.00095612 0.000019 1.0046 -7.9187 

278 0.00068346 0.00018341 0.95131 3.5014 

279 0.0004 0.0007 0.9827 -15.4074 

280 0.000053 0.00026706 1.0474 -14.6568 

281 0.00035039 0.00018333 1.0241 -4.0515 

282 0.0004435 0.00023507 0.964 7.934 

283 0.000093 0.00028498 0.9423 -3.4764 

284 0.00049599 0.000075 1.0241 9.6195 

285 0.001 0.0002 0.9153 14.1537 

286 0.00087371 0.00037862 0.912 -7.0177 

287 0.00036547 0.00042879 0.9512 -5.2367 

288 0.0008 0.0009 1.0031 -2.86 

289 0.00076513 0.00057713 0.9934 1.0543 

290 0.0003 0 0.9345 1.6056 

291 0.00072 0.00029 0.9136 -6.1 

292 0.0001864 0.00039723 0.9789 -10.8992 

293 0.00012961 0.00028 0.976 -9.4627 

294 0.00082929 0.00050417 1.0373 13.1924 

295 0.00021605 0.00030426 0.935 7.205 

296 0.00087376 0.00048 0.9006 -16.6558 

297 0.00044415 0.00067544 0.9385 11.6025 

298 0.001 0.0006 0.962 17.4074 

299 0.0002 0.0007 0.9108 4.4968 

300 0.0006 0.00023838 0.9914 -7.3521 

301 0.00021 0.00077513 0.9295 -3.7163 

302 0.00060162 0.00080401 0.9947 11.3228 

303 0.00083567 0.00077209 1.0395 5.0055 

304 0.00031004 0.00057108 1.0016 9.8521 

305 0.00034026 0.00077 0.9113 -19.9432 

306 0.0005 0.0001 0.9574 9.9693 

307 0.00082069 0.00072388 0.9175 -13.1628 

308 0.00078933 0.00012857 0.9248 -2.9038 

309 0.00047276 0.00056897 0.915 3.2155 

310 0.00051363 0.00048865 0.9966 1.6473 

311 0.0005 0.0005 0.9932 5.0575 

312 0.00045 0.000501 0.9141 10.7649 

313 0.0009075 0.00069747 0.9307 -9.4417 

314 0.00059802 0.00083978 0.9472 -2.4195 

315 0.00090878 0.00080899 0.9357 -11.4126 

316 0.0004 0.0002 1.0021 12.7353 

317 0.00079075 0.00051686 0.9498 14.4289 

318 0.00061 0.00095154 0.9573 9.1572 
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 319 0.00033893 0.00020428 0.9459 18.9635 

320 0.00073845 0.00032157 0.9683 -11.3016 

321 0.0008 0.0009 0.911 4.4709 

322 0.00089603 0.00069157 0.9326 1.409 

323 0.00062809 0.00088 1.0397 15.4222 

324 0.00075763 0.00013265 1.0234 7.1817 

325 0.00034566 0.00027051 0.9664 -8.6569 

326 0.00068725 0.00094826 1.0478 -0.6129 

327 0.00098619 0.00011221 0.9242 10.1916 

328 0.00078934 0.00017901 0.9116 -14.6921 

329 0.00053819 0.00015669 1.0548 16.6016 

330 0.00078625 0.00091999 1.0757 12.2295 

331 0.0004 0.0002 0.9059 -8.4352 

332 0.00068151 0.00040504 0.9118 -6.1132 

333 0.00030002 0.00088672 0.9854 -18.1334 

334 0.00031717 0.00071215 1.0076 -10.6794 

335 0.00078608 0.00072425 0.9117 5.1871 

336 0.00057 0.00029 0.9127 -3.4872 

337 0.00035894 0.00064906 0.9453 0.4137 

338 0.00054271 0.00040283 0.9783 19.1633 

339 0.0004782 0.00019485 0.9615 7.4683 

340 0.00019572 0.00018078 1.0245 8.2345 

341 0.0002 0.0001 0.9202 15.3665 

342 0.00071403 0.00057652 0.9462 5.148 

343 0.00041883 0.00016 0.9531 8.1265 

344 0.00050634 0.00018 1.0171 -5.4776 

345 0.00083654 0.00070874 0.9417 3.9911 

346 0.00045 0.00046 1.0612 4.6101 

347 0.00068 0.0005833 0.954 4.7473 

348 0.00070461 0.00033 1.0019 14.4764 

349 0.00015384 0.00074427 0.9648 6.3369 

350 0.00057962 0.00013103 0.9975 4.7811 

351 0.0009 0.0005 0.9572 17.3267 

352 0.00071164 0.00015677 0.9489 -7.1507 

353 0.0007123 0.00071494 0.9817 -10.7106 

354 0.00074257 0.00035 0.9236 -3.1823 

355 0.00083908 0.00066149 0.9129 -2.6764 

356 0.00084867 0.00028569 1.019 -3.3266 

357 0.00030526 0.00062 0.9299 -12.2346 

358 0.00073194 0.00088 0.9218 -12.8536 

359 0.00013875 0.00012092 0.9438 -9.7586 

360 0.00048704 0.00048171 0.9875 1.5297 

361 0.00062871 0.00068218 1.023 -5.9336 

362 0.00059909 0.00069565 0.9912 -1.5367 


