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ABSTRACT 

 In the present work a theoretical analysis depending on the new higher order 

element in shear deformation theory for simply supported cross-ply laminated plate is 

developed. The new displacement field of the middle surface expanded as a 

combination of exponential and trigonometric function of thickness coordinate with 

the transverse displacement taken to be constant through the thickness. The governing 

equations are derived using Hamilton’s principle and solved using Navier solution 

method to obtain the deflection and stresses under uniform sinusoidal load. The effect 

of many design parameters such as number of laminates, aspect ratio and thickness 

ratio on static behavior of the laminated composite plate has been studied. The modal 

of the present work has been verified by comparing the results of shape functions with 

that were obtained by other workers. Result shows the good agreement with 3D 

elasticity solution and that published by other researchers. 

Key words: higher order shear deformation theory, composite laminated plate, and 

static analysis. 

 

بأستخذاو نظريت قص راث رتبت عانيت جذيذة  انمركبتنسكوني  نهصفيحت انتحهيم ا  
 

          د. أبتهال عباس صادق                                                                                    حيذر سامي عبذ الامير

يذسس                                                                                                     طانب ياصسخٍش                 

  كهٍت انهُذست   -كهٍت انهُذست                                                                                صايعت بغذاد-صايعت بغذاد

  ٍكٍتقسى انهُذست انًٍكاٍَكٍت                                                                                   قسى انهُذست انًٍكاَ

 

نخلاصتا  

ظشٌت قص صذٌذة راث سحبت عانٍت نهصفائظ انًشكبت راث ىٌش انغم انُظشي انزي ٌعخًذ عهى َفً هزا انبغذ حى حط

. يضال الاصاعت انضذٌذ نهسطظ الاوسط ٌخىسع نذيش انذانت الاسٍت و انًزهزٍت و حكىٌ الاصاعت الاسُاد انبسٍط 

و حى عهها  ( Hamilton’s principleبأسخخذاو  ) انًسخعشضت رابخت خلال انسًك. حى اشخقاق يعادلاث انغشكت

 نغًم انضٍبً انًُخظى.(  لأٌضاد الاَغشاف و الاصهاداث حغج حأرٍش اNavier solutionبأسخخذاو طشٌقت )

  حأرٍش عذة عىايم حصًًٍٍت يزم عذد انطبقاث،َسبت انطىل انى انعشضى َسبت انسًك حى دساسخها.

 بٍُج انُخائش يىافقت صٍذة يع انغم بأسخخذاو َظشٌت يشَت رلارٍت الابعاد و انبغىد انًُشىسة نباعزٍٍ اخشٌٍ.

              يع َخائش انذوال نهباعزٍٍ الاخشٌٍ. انًُىرس انشٌاضً نهعًم انغانً حى ارباحه بانًقاسَت

 . انخغهٍم انسكىًََظشٌت انقص راث انشحبت انعانٍت ، الانىاط انطبقٍت انًشكبت ،  انكهماث انرئيسيت:
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1. INTRODUCTION: 

Composite materials are so necessary in many engineering applications, as 

vehicles parts, aero structures and medical devices industries. With the wide use of 

composite plate in the modern industry, static and dynamic analysis of plate structure 

under different types of loads and different boundary conditions become a main part 

in design procedure. In the few past years, many researchers resorted to the 

development of many theories to clearly predict the response of laminated plate 

composite material. Many researchers had studied static and dynamic analysis of 

composite plate by using higher order shear deformation theory, and other researchers 

have studied the static deflection and stresses of composite plates subjected to 

different uniform loads.  

Fan and Lin, 1998, used an analytical solution of rectangular laminated plates by 

higher order theory. On the basis of the Reddy's higher-order theory of composites, 

this paper introduces a displacement function and transforms its three differential 

equations for symmetric cross-ply composites into only one order differential 

equation generated by the displacement-function. Which property is chosen, both 

solutions are obtained, namely, Navier-type solution of simply supported rectangular 

laminated plates and the Levy-type solution with the boundary condition, where two 

opposite edges are simply supported and remains are arbitrary. The numerical 

examples show that the results coincide well with the existing results in the 

references, thus validating that the method is reliable. The higher Order theory of 

Reddy is simpler in calculation but has higher precision than the first order shear 

deformation theory because the former has fewer unknowns than the latter and 

requires no shear coefficients. Pervez, Al-Zebdeh and Farooq, 2010, studied the 

effects of bboundary conditions in laminated composite plates using higher order 

shear deformation theory. The applicability of a modified higher order shear 

deformation theory to accurately determine the in-plane and transverse shear stress 

distributions in an orthotropic laminated composite plate subjected to different 

boundary conditions has been extended. A simpler, two-dimensional, shear 

deformable, plate theory accompanied with an appropriate set of through-thickness 

variations, is used to accurately predict transverse shear stresses. Finite element code 

was developed based on a higher order shear deformation theory to study the effects 

of boundary conditions on the behavior of thin-to-thick anisotropic laminated 

composite plates. The code was verified against three dimensional elasticity results. 

The study also compared the stresses and deformation results of higher order theory 

with those obtained using commercial software such as LUSAS, ANSYS and 

ALGOR.  Mantari, 2012, used a new higher order shear deformation theory for 

sandwich and composite laminated plates. The proposed displacement field, which is 

‘‘m’’ parameter dependent, is assessed by performing several computations of the 

plate governing equations. Therefore, it has been found that the results obtained are 

accurate and relatively close to 3D elasticity bending solutions. Plate governing 

equations and boundary conditions are derived by employing the principle of virtual 

work. The Navier-type exact solutions for static bending analysis are presented for 
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sinusoidal and uniformly distributed loads. Mantari and Soares, 2012, studied 

bending analysis of thick exponentially graded plates using a new trigonometric 

higher order shear deformation theory. An analytical solution of the static governing 

equations of exponentially graded plates obtained by using a recently developed 

higher order shear deformation theory (HSDT) is presented. The mechanical 

properties of the plates are assumed to vary exponentially in the thickness direction. 

The governing equations of exponentially graded plates and boundary conditions are 

derived by employing the principle of virtual work. A Navier-type analytical solution 

is obtained for such plates subjected to transverse bi-sinusoidal loads for simply 

supported boundary conditions. Results are provided for thick to thin plates and for 

different values of the parameter n, which dictates the material variation profile 

through the plate thickness. The accuracy of the present code is verified by comparing 

it with 3D elasticity solution and with other well-known trigonometric shear 

deformation theory.  Lan and Feng, 2012, presented an analysis of deflections and 

stresses for laminated composite plates based on a new higher-order shear 

deformation theory. Based on the new simple third-order shear deformation theory, 

the deflections and stresses of the simply supported symmetrical laminated composite 

plates are obtained by using the principle of virtual work .The solutions are compared 

with the solutions of three-dimensional elasticity theory, the first-order shear 

deformation theory and the Reddy’s higher order shear deformation theory. Results 

show that the presented new theory is more reliable, accurate, and cost-effective in 

computation than the first-order shear deformation theories and other simple higher-

order shear deformation theories. 

 Taher. etal. 2012, presented a theoretical formulation; Navier’s solutions of 

rectangular plates based on a new higher order shear deformation model for the static 

response of functionally graded plates. The mechanical properties of the plate are 

assumed to vary continuously in the thickness direction by a simple power-law 

distribution in terms of the volume fractions of the constituents. Parametric studies are 

performed for varying ceramic volume fraction, volume fractions profiles, aspect 

ratios, and length to thickness ratios. It has been concluded that the proposed theory is 

accurate and simple in solving the static bending behavior of functionally graded 

plates. Huu and Seung, 2013, developed a simple higher-order shear deformation 

theory for bending and free vibration analysis of functionally graded plates. This 

theory has only four unknowns, but it accounts for a parabolic variation of transverse 

shear strains through the thickness of the plate. Equations of motion are derived from 

Hamilton’s principle. Analytical solutions for the bending and free vibration analysis 

are obtained for simply supported plates. The obtained results are compared with 3D 

and quasi-3D solutions and those predicted by other plate theories. Results show that 

the results obtained are the same accuracy of the existing higher-order shear 

deformation theories which have more number of unknowns, but its accuracy is not 

comparable with those of 3D and quasi-3D models which include the thickness 

stretching effect. 

http://www.sciencedirect.com/science/article/pii/S026382231200013X
file:///C:/Users/HAIDER/Downloads/S0263822312003911.htm
file:///C:/Users/HAIDER/Downloads/S0263822312003911.htm
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Mantari, et al. 2014 developed a new tangential-exponential higher order shear 

deformation theory for advanced composite plates. This paper presents the static 

response of advanced composite plates by using a new non-polynomial higher order 

shear deformation theory (HSDT). The accounts for non-linear in plane displacement 

and constant transverse displacement through the plate thickness, complies with plate 

surface boundary conditions, and in this manner a shear correction factor is not 

required. Navier closed-form solution is obtained for functionally grade plates (FGPS) 

subjected to transverse loads for simply supported boundary conditions. The 

optimization of the shear strain function and bi-sinusoidal load is adopted in this 

publication. The accuracy of the HSDT is discussed by comparing the results with an 

existing quasi-3D exact solution and several HSDTs results. It is concluded that the 

present non-polynomial HSDT, is more effective than the well-known trigonometric 

HSDT for well-known example problems available in literature.  

In the present work, a new higher order displacement field in which the displacement 

of the middle surface expanded as a combination of exponential and trigonometric 

functions of the thickness coordinate and the transverse displacement taken to be 

constant through the thickness, is proposed. Necessary equilibrium equations and 

boundary conditions are derived by employing the principle of virtual work. The 

theory accounts for adequate distribution of the transverse shear strains through the 

plate thickness and the tangential stress-free boundary conditions on the plate 

boundary surface, therefore a shear correction factor is not required. Exact solutions 

for deflections and stresses of simply supported plates are presented. 

2. THEORETICAL ANALYSIS: 

2.1. Displacement Field: 

In the present work, a new higher order displacement field in which the 

displacement of the middle surface expanded as a combination of exponential 

trigonometric function of the thickness coordinate with the transverse displacement 

taken to be constant through the thickness was developed. The displacement field of 

the new higher order theory of laminated composite plate is: Mantari, 2012 

 (     )   (   )     (
  

  
)    ( )  (   ) 

 (     )   (   )     (
  

  
)    ( )  (   ) 

 (     )   (   )                                                                                            (1a-c) 

Where: 

 (   )  (   )  (   )   (   )   (   ) are the five unknown functions of middle 

surface of the plate as shown in the Fig1. While  ( ) represents shape functions 

determining the distribution of the transverse shear strains and stresses along the 

thickness.  

http://www.sciencedirect.com/science/article/pii/S1359836813007026
http://www.sciencedirect.com/science/article/pii/S1359836813007026
http://www.sciencedirect.com/science/article/pii/S1359836813007026


Journal of Engineering Volume   23  February  2017 Number 2 
 

 

14 

 

The shape function derived by different researchers are given in Table (1), 

actually the present modeling is a combination of exponential functions and 

polynomial as shown in Fig2.  

With the same Reddy and Liu and generalized procedure developed by 

Sadatos and free boundary conditions at the top and bottom surfaces of the plate. The 

new displacement field in this paper is: 
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where the new function used in present work is: 
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For small strains, the strain-displacement relations take the form: 
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The strain associated with the displacement field by substituting Eq (2a-c) into Eq. 

(4a-e) to give:   
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Where: 
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2.2. Hamilton’s principles: 

The equation of motion of the new higher order theory will be derived using 

the dynamic version of the principle of virtual displacements: Reddy, 2003. 
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                                                                                                (7) 

  The virtual strain energy U is:  
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The virtual strains are known in terms of virtual displacement in Eq.(5) and then 

substituting the virtual strain into Eq.(9) and in integrating by parts to relative the 

virtual displacement (δu , δv , δw) in range of any differentiation, then we get: 

   ∫,
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The virtual work done by applied forces    is: 

 

    ∫                                                                                                        (11)

    

 

 

2.3. Equation of motion: 

The Euler-Lagrange is obtained by substituting Eq.(8 – 11) into Eq.(7) and 

then setting the coefficient of (δu , δv, δw , δѲ1 , δѲ2 ) over Ω0 of Eq.(7) to zero 

separately, this give five equations of motion as follows: 
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The result forces are given by: 
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The plane stress reduced stiffness     is: 
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From the constitutive relation of the lamina, the transformed stress-strain relation of 

an orthotropic lamina in a plane state of stress is: 
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The force results are related to the strains by the relations: 
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Where: 
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2.4. Navier's Solution 

In Navier's method the generalized displacements are expanded in a double 

trigonometric series in terms of unknown parameters. The choice of the function in 

the series is restricted to those which satisfy the boundary conditions of the problem 

as shown in Fig 3. Substitution of the displacement expansion into the governing 

equations should give a set of algebraic equation among the parameter of the 

expansion. 

Simply supported boundary conditions are satisfied by assuming the following 

form of displacements: Reddy, 2003 
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Where: 
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α  
  

 
    

  

 
,(                      ) are arbitrary constants . 

 The Navier solution exists if the following stiffnesses are zero,         

                                                

      

The equation of motion in Eq. (12) can be expressed in terms of displacements 

by substituting the force and moment resultants from Eqs.(16 and 17) and substituting 

Eq. (18a-e) into Eq. (12a-e), the following equations are obtained: 
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Where     are the coefficients in the double Fourier expansion of the transverse 

load. 
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The main computer program has been built to carry out the analysis required for 

solving the equations of motion and determine the deflection and stresses of 

composite laminated simply supported plate using new higher order shear 

deformation plate theory. A computer code written in (Matlab 13). The flow chart of 

computer programming shown in Fig 4. 

 

3-RESULT AND CONCULATION 

3-1-Result 

The stresses and deflection of composite laminated plate under uniform 

sinsundiol load with different design parameters for simply supported boundary 

condition, are analyzed and solved using Matlab 13 programming. To examine the 

validly of the derived equation and performance of computer programming for 

bending and stress analysis of composite laminated simply supported plate, a 

comparison[ 3D elasticity &J.Raddy & J.L.Mantari ] for square plate [h=1 and a=b] 

for two, three and four layers cross ply laminated simply supported on all edge, while 

the mechanical properties of each layers are (E1=175 Gpa, E2=E3=7Gpa, 

v12=v13=0.25, v23=0, G12=G13=3.5Gpa, G23=1.5Gpa). 

Table 2 shows the non-dimensional maximum deflections and stresses for 

symmetric and unsymmetric laminated plate in four layers (0/90/90/0) (a=b). The 

results of the present theory and other theaories such as (Reddy and Mantari) are 

compared with the three dimentional elasticity results (3D) for simply supported 

symmetric cross ply laminated plate which shows that the present results are in good 

agreement with 3D elasticity solution in deflection and normal stresses, However 
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there is a considerable difference with 3D elasticity solution for (γyz) srtress for both 

thick and thin plate. 

To examine the comparion between symmetric and unsymmetric four layer laminated 

square plate, Fig 5 showes the non dimensional central deflection versus side-to-

thickness (a/h) for (0/90/90/0) and (0/90/0/90) for the same mechanical properties 

under sinsoidal load. 

Table 3 shows the non-dimensional maximum deflections and stresses in three 

layers (0/90/0) for the same square plate and mechanical properties .The performance 

of the present theory is evaluated by calculating the error compared 3D exact solution. 

The results of the present method give better results for shear stresses than in normal 

stresses for thick plate (a/h=4). Additionally, for a/h>=10, the proposed theory 

performs best in terms normal and shear stresses and the error decreases with increase 

of (a/h) ratio. 

Table 4 shows the maximum central deflection and stresses in three layers 

(0/90/0) for the same mechanical properties of rectangular simply supported 

composite laminated plates (b=3a) under sinusoidal load similar conclusion compared 

with the square plate can be inferred. 

Fig 6. Shows the non dimentional deflection versus side-to-thickness ratio 

(a/h) for cross –ply (0/90) laminated plate compared with Mantari 2012 and Reddy 

2003. And Fig 7 shows the nondimentional deflection versus modules ratio (     ) 

for cross –ply (0/90) compared with, the present work shows closed results with that 

published with the above theories. 

 

3.2. Conclusions 

A new higher order shear deformation theory of simply supported composite 

laminated plate is developed. The displacement of the middle surface is expanded as 

combination of exponential and trigonometric functions of the thickness coordinate 

and the transverse displacement taken to be constant through the thickness, the theory 

accounts for adequate distribution of the transverse shear strains though the plate 

thickness and tangential stress-free boundary conditions on the plate boundary 

surface, therefore a shear correction factor is not required. 

The results obtained from present theory give an accurate results for thick, and 

moderately thick and thin plate when comparing it with that published from other 

research. 

Nomenclature 

 

Symbol Discretion Units 

A Plate dimension in x-direction m 

    ,               

          

Extension, bending extension coupling, 

bending and additional stiffness 

- 

B Plate dimension in y-direction m 

            Elastic modulus components GPa 

               Shear modulus components GPa 

H Plate thickness m 
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        Transverse shear force  result(HSDT) N 

            Moment result per unit length N.m/m 

            In-plane force result N/m 

N Total number of plate layers - 

            Result force per unit length N/m 

        Transverse shear force result N 

x,y,z Cartesian coordinate system M 

          Upper and lower lamia surface coordinates 

along z-direction 

M 

               Strain components m/m 

          Transverse shear strain m/m 

    Poisson’s ratio components - 

    ,               

      

Stress components GPa 

θ Fiber orientation angle degree 

    ,            
 
  

 

  
    

 

Arbitrary constant - 

 (   ) Flexural displacement 

 

- 

 (   ) Flexural displacement 

 

- 

 (   ) Flexural displacement 

 

- 

Α   

 
 

- 

β   

 
 

- 

     Stiffness matrix - 

1,2,3 Principal material coordinate system - 

W Deflection M 

Z Distance from neutral axis M 
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Figure 1. Laminate geometry with positive set of lamina/laminate reference axes, 

displacement components and fiber orientation. 

 
                      Figure 2. Shape strain functions of different shear deformation theories. 
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Figure 3. Boundary condition for simply supported plate. 
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Figure 4. The flow chart of computer programming. 
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Figure 5. Nondimentionalized deflection versus side-to-thickness ratio (a/h) for 

symmetrical cross-ply (0/90/90/0) and unsymmetrical cross-ply (0/90/0/90) laminate 

under sinusoidal load  

 
 

Figure 6. Nondimentionalized deflection versus side-to-thickness ratio (a/h) for cross 

–ply (0/90) for different modals  
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Figure 7. Nondimentionalized deflection versus modules ratio (     ) for cross –ply 

(0/90) for 3Delastisity comparison with present work  
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Table 2. Non-dimensional deflections and stresses in four layers (0/90/90/0) square 

plate (a=b) under sinusoidal load,  
      .
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Table 3. Non-dimensional maximum deflections and stresses in three layers (0/90/0) 

square plate (a=b) under sinusoidal load,     
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Table 4. Non-dimensional maximum deflections and stresses in three layers (0/90/0) 

square plate (a=b) under sinusoidal load (b=3a),  
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