Mechanical and Energy Engineering

Generation and Experimental Stress Analysis of Elliptical Gears with Combined Teeth

Mansoor Ali Ismail
College of Engineering – University of Baghdad
Baghdad, Iraq
e-mail: mansoor.ali9482@gmail.com

Prof. Dr. Mohammad Qasim Abdullah
College of Engineering – University of Baghdad
Baghdad, Iraq
e-mail: mohq1969@yahoo.com

ABSTRACT

In this study, generation of elliptical gears with different teeth profiles of crowned involute, double circular arc (DCA), and combined (crowned involute with DCA) has been developed. The resulting mathematical equations have been computerized and feed to CNC end mill machine to manufacture elliptical gear models with different profiles. These models are investigated in plane polariscope to show the resulting stresses under certain load. Comparison of photo-elastic stress results shows that combined elliptical gears with DCA side as a loaded side have a minimum resulting contact stress with a reduction percentage of 40% compare with contact stresses in counterpart elliptical gear of involute profile (which is commonly used in several applications). In this case, bending tooth stress reduction is 47.05% compare with involute elliptical gear. While the reduction in bending stresses of combined elliptical gear becomes higher (52.94% lower than involute gear) when crowned involute side is the loaded side, but the contact stress reduction in this case becomes lower (20% relative to involute gear). Maximum reduction in bending stress can be obtained when single profile of DCA type is used with a reduction of 64.7% relative to involute gear. Therefore; when the application requires a high contact stress resistance, combined gear with profile DCA can be used. While in the applications that require high bending stress resistance, DCA profile can be used.

Key words: elliptical gears, combined gear, gear generation, stress analysis in gears.
في السن هو 47.05 % بالمقارنة مع المسنن البيضوي الالتفافي. بينما الانخفاض في اجهاد اجهاد التاريخ بالمقارنة مع المسنن البيضوي الالتفافي. بينما انخفاض في اجهاد التاريخ للمسنن البيضوي الهجين كانت أعلى (أقل من المسنن الألتفافي بنسبة 52.94 %) عندما يكون الجانب المحمول هو الجانب ذو الألتفافية المخزنة، لكن انخفاض اجهاد التمس في هذه الحالة أصبح أقل (6 %) للمسنن الهجين. يمكن الحصول على أكبر انخفاض لأجهاد التاريخ باستخدام جليدية واحدة فقط في الجانبية ذات القوس الدائري المزدوج مع انخفاض مقداره 47.4 % نسبة للمسنن الالتفافي. لذلك عندما يتم تطبيق مقاومة عالية لأجهاد التاريخ، النوعية الهجينة يمكن استخدامها مع تحميل الجانبية ذات القوس الدائري المزدوج. بينما في التطبيقات التي تتطلب مقاومة عالية لأجهاد التاريخ، الجانبية ذات القوس الدائري المزدوج يمكن استخدامها.

الكلمات الرئيسية: المسننات البيضوية، المسنن الهجين، توليد المسنن، تحليل الأجهاد في المسننات.

1. INTRODUCTION:
Noncircular gears have a number of applications such as that in artificial heart and the linkage mechanism used to specify velocity function or displacement function or produce a prescribed function, Litvin, and Fuentes, 2004. It is important to increase surface (pitting) and bending gear drive strength in order to avoid high stresses and increase capacity of load carrying and gear life. Many researchers have studied the generation and stress analysis of elliptical gears as well as the transmission efficiency of these gears. Miller, and Young, 1945, studied the kinematics analysis and CAD of elliptic centrod shape. While a variable-transmission motion using elliptic gears has been studied by Ollson, 1953, in order to get any specified motion. Rappaport, 1960, claims that the reasons of employing elliptic gears frequently, when compared with other noncircular gear types, are due to their ability to perform a continuous motion and their several applications in measuring devices. Kuczewski, 1988, presented a new approach helps to specify the centrod pitch curve in elliptic gears. Chang et al. 1996, developed a mathematical elliptical gear model with a backlash. This model is simulated by CAD to represent the generated gear models. Bair, 2003, proposed noncircular gear of elliptic type with nonstandard teeth to drive an oil pump. This pump has a larger flow rate and a smaller size compare with pumps of standard elliptic gear type. Figliolini and Angeles, 2003, proposed a new synthesis for elliptical gear using enveloping theory by a cutter of shaper. Chen and Tsay, 2004, presented a computerized generation and analyses of elliptic gears that have a teeth flanks of convex-concave circular arcs type. Effect of design parameters on contact stresses and undercut also investigated in this study. Litvin, et al., 2007, introduced three approaches for generation of helical elliptic gear by using shaper, hob and rack cutter in order to represent and generate elliptical gears with computer simulation. Bair, 2009, presented a modified elliptical gear with longitudinal crowning and without contact at edge when the misalignment in axial direction exists. Ji-qiang, et al., 2015, introduced a new approach for computing the contact stresses in noncircular gears using Hertzian contact theory by assuming equivalent circular gears instead of noncircular gears. Wu et al., 2017, presented a technique enables the cutting machines of elliptical gears to generate the complete profile of tooth continuously without any error. Zhang and Fan, 2017, introduced a new mathematical approach to design elliptical and other variable radius gear with low rotational inertia depending on the principle of calculus and kinematic. Zheng et al., 2017, proposed a method for manufacturing and quick measuring of shaped elliptical gear and variable-radius gears. Lin and Fangyan, 2018, made a comprehensive study on non-circular gear transmission technologies and researches in order to know the reasons of using theses gears in transmission function instead of other motion transmission drives such as connecting rods and servo motors. They deduced that these gears have a low cost, accurate gear ratio, and best dynamic characteristics.
In this paper, generation of elliptical gears of crowned involute, double circular arc (DCA) and combined (crowned involute with DCA) profiles will be covered and the experimental investigation of stresses in these gears will be achieved using photo-elastic technique. The results will be compared with elliptical involute gear (the most common noncircular gear type used in several applications) in order to know the effect of teeth profile change on the resulting load carrying capacity.

2. BASIC EQUATIONS OF ELLIPTICAL GEAR:
To generate and design external elliptical gear, the basic equations used are as the following (Litvin, et al., 2007):

- The polar form representation of the driving centrode \(\sigma_1 \) is:
 \[
 r_1(\theta_1), \quad \text{for} \quad 0 \leq \theta_1 \leq 2\pi n
 \] (1)
 Where \(\theta_1 \) is the angle of rotation of the pinion which is measured in opposite direction of angle \(\theta_1 \), and \(n \) represents number of pinion revolutions for one revolution of the driven centrode.

- The derivative equation \(m_{21}(\theta_1) \) is represented as:
 \[
 m_{21}(\theta_1) = \frac{dr_2(\theta_1)}{d\theta_1} = \frac{r_1(\theta_1)}{c-r_1(\theta_1)}
 \] (2)
 Where \(C = r_1(\theta_1) + r_2(\theta_1) \) is the center distance.

- To determine the center distance \(C \), it follows from Eq. (2) that:
 \[
 \phi_2(\phi_1) = \frac{2\pi}{n} = \int_{0}^{2\pi} m_{21}(\phi_1) d\phi_1 = \int_{0}^{2\pi} \frac{r_1(\phi_1)}{c-r_1(\phi_1)} d\phi_1
 \] (3)
 Where \(n \) represents number of driving centrode revolutions for one revolution of the driven centrode. Thus, the center distance \(C \) can be obtained analytically by Dwight integral.

- The polar form representation for driven centrode \(\sigma_2 \) is:
 \[
 r_2(\theta_1) = C - r_1(\theta_1), \quad \phi_2(\phi_1) = \int_{0}^{\phi_1} m_{21}(\phi_1) d\phi_1
 \] (4)
 Here, \(\phi_2(\phi_1) \) represents transmission function.

The elliptical gear drive is formed by assembly two elliptical gear centrodes as shown in Fig 1. Fig. 2 shows an elliptical centrode that is rotate about center \(O_1 (O_1 \) represents the lower focus of ellipse). It should be remember that instantaneous center of rotation \(I \) of tangency of centrodes \(\sigma_1 \) and \(\sigma_2 \) (centrode \(\sigma_2 \) not shown) represents a point moves along center distance \(O_1O_2 \) during motion process as shown in Fig. 2. The center distance is \(C = 2a \). The equation represent centrodes \(\sigma_1 \) is:

\[
 r_1(\theta_1) = \frac{p}{1-e \cos \theta_1} = \frac{a(1-e^2)}{1-e \cos \theta_1}
 \] (5)

Thus, transmission function may be written as:
Finally, by using Dwight integral, Dwight, 1961, transmission function $\varphi_2(\varphi_1)$ may be obtained as:

$$\varphi_2(\varphi_1) = \int_0^{\varphi_1} \frac{d\varphi_2}{(1/m_{21}(\varphi_1))} = (1 - e^2) \int_0^{\varphi_1} \frac{d\varphi_1}{1 + e^2 - 2e \cos \varphi_1} \quad (6)$$

$$\tan \frac{\varphi_2}{2} = \frac{1+e}{1-e} \tan \frac{\varphi_1}{2} \quad (7)$$

This is function is applicable for the centrodes assembly shown in Fig. (1). Centrode σ_2 is represented by:

$$r_2(\varphi_1) = C - r_1(\varphi_1) = 2a - \frac{a(1-e^2)}{1-e \cos \varphi_1} \quad (8)$$

and the transmission function is the same as Eq. (6).

Figure 1. Elliptical gear drive formed by two elliptical gear centrodes.

Figure 2. Deriving the function of transmission $\varphi_2(\varphi_1)$ in elliptic gear.
3. GENERATION OF NONCIRCULAR GEAR BY SHAPER:

The procedure of derivation of noncircular gear surface Σ_1 from shaper depends upon the process illustrated below as shown in Fig. 3, (Litvin, et al., 2007):

1- Consider the systems of coordinate S_1 and S_s that are attached rigidly with both gear and shaper surfaces, respectively.

2- Consider a tooth surface $r_s(u_s, \theta_s)$ of involute type with radius ρ_s is taken for a shaper.

3- Coordinate system S_1 performs rotation and translation motion while coordinate system S_s is rotated. The motion is defined as following (Fig. 3):

$$V_I^{(s)} = V_I^{(1)} = V_{I,\text{rot}}^{(1)} + V_{I,\text{tr}1}^{(1)} + V_{I,\text{tr}2}^{(1)}$$ \(9\)

The translational motion is in two dimensions $V_{I,\text{tr}1}^{(1)}$ and $V_{I,\text{tr}2}^{(1)}$ as shown in Fig. 3.

Figure 3. Generation of noncircular gear through using a shaper: (a) primary location. (b) Present location.

4- Consider the rotation of coordinate system S_s is at an angle ψ_s such that:

$$\psi_s = \frac{s \theta}{\rho_s}$$ \(10\)

5- Coordinate system S_1 is rotated at a magnitude of ψ_1, while system S_n is translated by $x_f^{(O_1)}$ and $y_f^{(O_1)}$ with system S_1 such that:

$$\psi_1 = \theta + \mu - \frac{\pi}{2}$$ \(11\)
\[x_f^{(O_1)} = -r(\theta) \cos \mu \]
\[y_f^{(O_1)} = r(\theta) \sin \mu \]

6- Gear tooth surface \(\Sigma_1 \) can be represented in coordinate system \(S_1 \) by the vector position:

\[r_1(u_s, \theta_s, \theta) = M_{1S}(\theta) r_s(u_s, \theta_s) \]

Where \(M_{1S}(\theta) \) is the matrix of coordinate transformation as illustrated in Litvin, et al., 2007.

The equation of meshing is:

\[f(u_s, \theta_s, \theta) = \left(\frac{\partial r_1}{\partial u_s} \times \frac{\partial r_1}{\partial \theta_s} \right) \cdot \frac{\partial r_1}{\partial \theta} = 0 \]

Eq.(14) can be expressed in cartesian coordinates as:

\[\rho_1(u_s, \theta_s, \theta) = L_{1n} L_{n_f} L_{f_s} \rho_s(u_s, \theta_s) + R \]

\[= \begin{bmatrix} \cos \psi_1 & \sin \psi_1 & 0 \\ -\sin \psi_1 & \cos \psi_1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos \psi_s & \sin \psi_s & 0 \\ -\sin \psi_s & \cos \psi_s & 0 \\ 0 & 0 & 1 \end{bmatrix} \rho_s(u_s, \theta_s) + R \]

Where

\[R = \begin{bmatrix} -x_f^{(O_1)} \cos \psi_1 - y_f^{(O_1)} \sin \psi_1 - \rho_s \sin \psi_1 \\ x_f^{(O_1)} \sin \psi_1 - y_f^{(O_1)} \cos \psi_1 + \rho_s \cos \psi_1 \\ 0 \end{bmatrix} \]

The relative velocity \(V_1^{(s1)} \) is:

\[V_1^{(s1)} = \dot{\rho}_1 = (\dot{L}_{1n} L_{n_f} L_{f_s} + L_{1n} L_{n_f} \dot{L}_{f_s}) \rho_s + \dot{R} \]

\(\dot{L}_{1n}, \dot{L}_{f_s}, \dot{R} \) are as mentioned in Litvin, et al., 2007.

Thus, meshing equation may be written as:

\[f_1^{(s1)} = n_1 \cdot V_1^{(s1)} = L_{1s} n_s \cdot \dot{\rho}_1 = 0 \]

Or

\[f_s^{(1s)} = n_s \cdot V_s^{(1s)} = n_s \cdot (-L_{s1} \dot{\rho}_1) = 0 \]
4. CROWNED INVOLUTE TOOTH PROFILE:
In this type of tooth profile, the rack cutter has the section shape depicted in Fig. 4. Cutter tooth profile is symmetric about \(y_{cp} \)-axis. The normal section of the rack cutter tooth can be represented in coordinate system \(S_b \) by the following equation, Litvin, et al., 1997:

\[
\begin{bmatrix}
x_b \\ y_b \\ z_b \end{bmatrix}
= \begin{bmatrix}
x_{cp} \\ y_{cp} \\ z_{cp} \\ 1 \end{bmatrix} = M_{cpb} r_b(u_c) = \begin{bmatrix}
u_c \\ -u_c \alpha_c \sqrt{u_c^2 + a_0^2} \\ -u_c \alpha_c \sqrt{u_c^2 + a_0^2} \sin \alpha_c \\ 0 \end{bmatrix}
\] (21)

Using coordinate transformation from \(S_b \) to \(S_{cp} \) systems, vector position \(r_{cp} \) of the tooth surface can be obtained in \(S_{cp} \) system:

\[
\begin{bmatrix}
x_c \\ y_c \\ z_c \end{bmatrix}
= M_{cpb} \begin{bmatrix}
x_b \\ y_b \\ z_b \end{bmatrix}
\] (22)

Where \(\alpha_c \) is the parabolic coefficient, \(a_0 = 0.25 \pi m_o \), \(m_o \) is the tooth module of the rack cutter and \(M_{cpb} \) is the matrix of coordinate transformation from \(S_b \) to \(S_{cp} \) system:

\[
M_{cpb} = \begin{bmatrix}
\cos \alpha_c & \sin \alpha_c & 0 & 0 \\
-\sin \alpha_c & \cos \alpha_c & 0 & -a_0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\] (23)

Eq. (22) represents the position vector of rack cutter tooth of crowned involute type that can be used for generation of any noncircular gear by using generation processes described in previous sections.

5. DOUBLE CIRCULAR ARC TOOTH PROFILE:
The rack cutter has a normal section as shown in Fig. 5. The rack cutter tooth profile is symmetric about \(y_{bp} \)-axis. The tooth of the rack cutter consists of three circular arcs in each side and can be represented in coordinate system \(S_{bp} \) by the following equation, Litvin, and Lu, 1997:
$$r_b^{(p)} = \begin{bmatrix} x_b^{(p)} \\ y_b^{(p)} \\ z_b^{(p)} \end{bmatrix} = \begin{bmatrix} \rho_p \cos \theta_p + x_{op} \\ \rho_p \sin \theta_p + y_{op} \\ 0 \end{bmatrix}$$ (24)

Where \((x_{op}, y_{op})\) are the coordinate of arcs centers, \(\rho_p\) is the arcs radius, \(\theta_p\) is the angle (variable parameter) and the subscribed \(p = a, f, g\). Knowing that the working surface of the tooth is generated by \(\rho_a\) and \(\rho_f\), while \(\rho_g\) generates the fillet.

![Diagram](image)

Figure 5. Normal section of rack-cutter for double circular arc tooth profile.

6. GENERATED SAMPLES:

Equations of Generation in elliptical gears have been programmed in SOLIDWORK 2016 to represent these types of non-circular gears in 3D space with teeth of two different profiles (combined elliptical gears). **Fig. 6** depicts some of the generated elliptical gear samples.
PHOTO-ELASTIC STRESSES:
Stress results from photo-elastic analysis represent actual values under any load condition. Therefore, it is important to use this technique and compare its results with analytical and FE results. In the present work, photo-elastic stress analysis is achieved using plane polariscope. Knowing that the general equation of Photo-elastic Stress is:

\[\sigma_1 - \sigma_2 = \frac{\bar{f}}{t} \ast \bar{N} \] \hspace{1cm} (25)

Where \(\sigma_1, \sigma_2 \) are the principal stresses, \(\bar{f} \) is the fringe constant, \(\bar{N} \) represents the fringes number, and \(t \) is the gear thickness (face width).

It is important to evaluate fringe constant value (\(\bar{f} \)) of the used birefringence material (polycarbonate) by using bending load test in simply supported polycarbonate beam. The result of calibration test shows that fringe constant value (\(\bar{f} \)) is 7.2 Mpa.mm/fringe.

Elliptical polycarbonate gear test specimens have been manufactured using CNC end mill machine by recall the geometry file from Solidwork program. This file is feed to CNC end mill machine as G-
code file. Dimensions of end mill cutters used are shown in Fig. 7 and table (1). The parameters of elliptical gear specimens are illustrated in table (2). The fillet in DCA gear is circular arc with radius \(\rho_g\) as shown in Fig.5, while fillet radius of involute and crowned involute gears is \((0.25 \times \pi \times m_0)\). Center distance between meshed gears is 90 mm. Fig. 8 shows the manufactured elliptical gear specimens.

![Figure 7. End mill cutter: (a) Cutter picture. (b) Cutter dimensions.](image)

Table 1. Dimensions of end mill cutters.

<table>
<thead>
<tr>
<th>Cutting diameter, mm</th>
<th>Shank diameter, mm</th>
<th>Length of cut, mm</th>
<th>Overall Length mm</th>
<th>No of flutes</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.18</td>
<td>3.18</td>
<td>6.35</td>
<td>38.1</td>
<td>2</td>
</tr>
</tbody>
</table>

![Figure 8. Elliptical Polycarbonate Gear Specimens Manufactured by CNC Machine.](image)
8. Results and Discussions:

It is important to choose a suitable torque value in this analysis to produce clear fringes with appropriate numbers. This torque value is chosen as 2650 N.mm applied at pinion. Fig. 9 shows photo-elastic pictures of elliptical gear models when tested and viewed in the polariscope. Therefore; contact and bending stresses in elliptical gear of combined teeth, with DCA side as a contact side, can be found as following:

At contact point
\[\sigma_c = \overline{\sigma}_1 - \overline{\sigma}_2 = \frac{f}{t} \frac{N}{12.5} = \frac{7.2}{12.5} \times 4.5 = 2.592 \text{ Mpa} \]

At tooth root
\[\sigma_b = \overline{\sigma}_1 - \overline{\sigma}_2 = \frac{f}{t} \frac{N}{12.5} = \frac{7.2}{12.5} \times 2.25 = 1.296 \text{ Mpa} \]

In the same way for the remaining profiles, contact and bending stresses can be found. Table (3) shows the results of contact and bending stresses with percentage of enhancement compare with involute elliptical gear.

The comparison shows that:

- DCA produces a high contact stress reduction (33.34 %) in contact stresses and (64.7 %) in bending stresses relative to involute gear as a result of new mesh stiffness formulation, very large contact area and higher moment of inertia at tooth root.
Figure 9a,b. Isochromatic fringe pattern distribution of principal stress difference in elliptical gear with contact in involute and crowned involute profiles.
Figure 9c,d. Isochromatic fringe pattern distribution of principal stress difference in elliptical gear of DCA profile and Combined profile with contact in crowned side.
In combined profile with DCA side as a loaded side, the enhancement raised to (40 %) in contact stresses and (47.05 %) in bending stresses compare with involute gear for the same reason mentioned above, but mesh stiffness formulation becomes better.

In combined profile with crowned side as a loaded side, the reduction becomes (20 %) in contact stresses and (52.94 %) bending stresses as a result of larger tooth root area and moment of inertia. Mesh stiffness in this side becomes bad and cause a reduction in contact stress.

Therefore, experimental results verify that contact stress in elliptical non-circular gears can be reduced significantly when the teeth flank is combined from DCA and crowned involute with DCA side as a loaded side. But bending stresses enhanced by 47.05 % compare with involute counterpart gear. Enhancement percentage can be increased to 52.94 % when the crowned side becomes the contact side, but the contact stress reduces to 20 % for the reasons mentioned above. Maximum bending stress can be obtained when single profile of DCA type is used.

9. CONCLUSIONS:

Elliptical gear with different profiles (crowned involute, DCA, and combined flanks) has been generated and simulated in computer to represent this type of noncircular gear mathematically and to investigate the resulting stresses in the studied models. From this work, the following conclusions can be drawn:

Figure 9e. Isochromatic fringe pattern distribution of principal stress difference in elliptical gear of combined profile with contact in DCA side.
Computerized generation of elliptical gear and method of coupling the resulted mathematical models directly to CNC end mill machine has been achieved to generate and manufacture elliptical gear specimens.

Manufactured elliptical gear models of polycarbonate are tested in plane polariscope to compare the resulting stresses. The comparison of contact stresses shows that combined elliptical gear of crowned involute and DCA profiles has a smaller contact stress result with a percentage of reduction as high as 40% relative to the elliptical gear of involute type when the loaded side is DCA side. While the percentage of reduction becomes 20% when the contact is in crowned involute side. Elliptical gear of single DCA profile has a reduction percentage of 33.34%.

Results of root (bending) tooth stresses show that combined elliptical gear has a minimum bending stresses with an enhancement percentage of 52.94 % compare with involute elliptical gear when crowned involute side is the loaded side, while the enhancement percentage becomes 47.05 % when DCA side is the loaded side. But the maximum reduction in tooth bending stress is achieved when single profile of DCA type is used in elliptical gear. In this case, the percentage of enhancement is 64.7 %.

It can be concluded that when the application of elliptical gear requires a high contact stress, then combined profile can be used with DCA side as a loaded side. In other hand, when the application requires high bending stress then DCA profile can be used in all teeth.

<table>
<thead>
<tr>
<th>Profile Type</th>
<th>contact stress (Mpa)</th>
<th>bending stress (Mpa)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Max. contact stress (Mpa)</td>
<td>Max. bending stress (Mpa)</td>
</tr>
<tr>
<td>Involute</td>
<td>4.32</td>
<td>2.448</td>
</tr>
<tr>
<td>Crowned involute</td>
<td>4.032</td>
<td>6.66 %</td>
</tr>
<tr>
<td>DCA</td>
<td>2.88</td>
<td>33.34 %</td>
</tr>
<tr>
<td>Combined, contact in DCA side</td>
<td>2.592</td>
<td>40 %</td>
</tr>
<tr>
<td>Combined, contact in crowned side</td>
<td>3.456</td>
<td>20 %</td>
</tr>
</tbody>
</table>

Table 3. Maximum experimental gear stresses and percentage enhancement compare with involute profile.
1. REFERENCES:

• Zhang, X. and Fan, S., 2017, Study on the pitch curve with minimal rotary inertia for the noncircular gears, journal of Mechanical Engineering Science 0(0), pp. 1-8.

• Zheng, F., Hua, L., Han, X, and Li, B., 2017, Non-uniform flank rolling measurement for shaped noncircular gears, Official journal of International Measurement Confederation, ISSN 0263-2241.

NOMENCLATURES:

- \(a\) Radius of major axis in noncircular gear, m.
- \(a_c\) Parabolic coefficient, dimensionless.
- \(a_0\) Quarter of circular pitch, m.
- \(C\) center distance between gear and pinion, m.
- \(e\) ellipse eccentricity, dimensionless.
- \(f\) Equation of meshing between gear and cutter.
- \(\bar{f}\) Fringe constant of birefringence material, Mpa. mm/fringe.
- \(I\) Instantaneous center of rotation.
- \(L_{ij}\) Matrix of transformation of position vector from cutter to gear being generated.
- \(M_{ij}\) Matrix of coordinate transformation from i to j coordinate systems.
- \(m_{21}\) The derivative equation.
- \(m_o\) Teeth module, m.
- \(n\) number of driving centrode revolutions for one revolution of the driven centrode.
- \(O_i\) Focus of ellipse \(i = 1\) for first focus, and \(i = 2\) for second focus.
- \(r_i\) Position vector in coordinate system \(i = b, cp, s\), \(^{(p)}\), m.
- \(r_1\) Pinion pitch curve radius, m.
- \(r_2\) Gear pitch curve radius, m.
- \(S_i\) Coordinate system \((i = 1, 2, s, n, b, cp)\).
Arc length of shaper cutter surface during rotation, m.

Gear thickness (face width), m.

Parameters of shaper cutter surface.

Velocity of contacting points \((i = 1 \text{ for gear and } S \text{ for shaper cutter})\), m/sec.

Horizontal Coordinate of fixed system, m.

Vertical Coordinate of fixed system, m.

Pinion rotational angle, degree.

Gear rotational angle, degree.

The transmission function, degree.

Auxiliary angles of coordinate transformation, degree.

Angle of rotation of shaper cutter coordinate, degree.

Radius of shaper cutter \((i=s)\) or gear \((i=1)\), m.

Radius of circular arcs in double circular arc teeth \((p = a, f, g)\), m.

Relative velocity of contacting points for cutter and gear being generated, m/sec.

Tooth surface of gear \((1)\) and pinion \((2)\)

Driving centrode, dimensionless.

Driven centrode, dimensionless.

Contact stress, Pa.

Bending stress, Pa.

1st principal stress, Pa.

2nd principal stress, Pa.

Angle of profile in circular arc teeth, degree.