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 Mechanical and Energy Engineering 

ABSTRACT 

Convolutional Neural Networks (CNN) have high performance in the fields of object recognition and 

classification. The strength of CNNs comes from the fact that they are able to extract information from 

raw-pixel content and learn features automatically. Feature extraction and classification algorithms can 

be either hand-crafted or Deep Learning (DL) based. DL detection approaches can be either two stages 

(region proposal approaches) detector or a single stage (non-region proposal approach) detector. Region 

proposal-based techniques include R-CNN, Fast RCNN, and Faster RCNN. Non-region proposal-based 

techniques include Single Shot Detector (SSD) and You Only Look Once (YOLO). We are going to 

compare the speed and accuracy of Faster RCNN, YOLO, and SSD for effective drone detection in 

various environments. We have found that both Faster RCNN and YOLO have high recognition ability 

compared to SSD; on the other hand, SSD has good detection ability. 
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 الطائرات المسيرة لكشف Faster RCNNو  YOLO ,SSDمقارنة عملية لدقة وسرعة خوارزميات 
 Dronesالصغيرة 

  
 

 الخلاصة
وخوارزميات تعتمد على التعليم  hand-craftedإلى خوارزميات يدوية التصميم  والتعرفيمكن تقسيم الخوارزميات المستخدمة للكشف  

. يمكن تقسيم أنظمة الكشف بالتعليم العميق إلى أنظمة كشف ثنائية المرحلة )طريقة المناطق المقترحة( Deep learning (DL)العميق 
وأنظمة كشف وحيدة المرحلة )بدون اقتراح مناطق(. تهدف الكواشف وحيدة المرحلة إلى إزالة الحاجة إلى استخراج المناطق المقترحة عن 

تتميز هذه الكواشف بسهولة التدريب وفعالية حسابية عالية. لعل ابرز الخوارزميات التي تعتمد  طريق القيام بهذه العملية في نفس الشبكة.
 Singleو You only look once (YOLO)ومن ابرز الخوارزميات التي تعتمد على مرحلة واحدة  Faster RCNNعلى مرحلتين 
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shot detector (SSD)لخوارزميات بهدف أيجاد الأفضل منها لكشف الطائرات الصغيرة . سنقوم في هذا البحث إلى بمقارنة أداء هذه ا
Drone .بشكل فعال في مختف البيئات 
 FASTER RCNN, YOLO, SSD ,عميق تعليم , DRONE طيار بدون صغيرة مروحية طائرات المفتاحية: الكلمات

I. INTRODUCTION 

Feature extraction and classification algorithms can be either hand-crafted or DL-based. Hand-crafted 

methods for feature extraction are based on manually designed models that work on low-level features to 

propose Regions of Interest (ROIs) (Sun, W., et al., 2018). Those models were based on techniques such 

as Background Subtraction (BS), the Histogram of Oriented Gradients (HOG) features ( Dalal, N. et al., 

2005) and (Chavez-Garcia, R. O., et al., 2016), Local Binary Pattern (LBP) or Canny edge detection 

(Hussain, B. and Hathal, M., 2020). Hand-crafted methods are not very strong since complex features 

are difficult to hand-craft. In DL techniques, the network extract features provide a higher level of 

abstraction. 

After that comes the classifier such as Support Vector Machine (SVM) (Sun, W., et al., 2018), decision 

tree (Sun, W, et al., 2018), hybrid neural networks (Al-Araji, A. and Al-Zangana, S., 2019) or deep 

network (Wang, X., et al., 2009) (Neagoe, V.E., et al., 2012) to determine the type of the object (e.g. 

person, airplane) in the image or video frames. The progress of DL techniques and their development and 

success in detection and recognition tasks made it the subject of this research. Convolutional Neural 

Networks (CNNs) techniques are used to recognize objects as faces, handwriting, and vehicles. Being 

able to extract information directly from raw-pixel content makes it a good choice for unstructured data 

(like images and voices). CNNs extract information by performing various operations, typically 

combining filtering, pooling, and non-linear activation. The main advantage of using CNNs for feature 

extraction compared to hand-crafted methods is that CNNs learn features from images directly without 

explicit programming (Tomè, D., et al., 2016). Detection and recognition DL approaches can be either 

two stages (region proposal approach) detectors or a single stage (non-region proposal approach) 

detectors. The single stage detectors are simpler to train with higher computational efficiency (Ren, J., 

et al., 2017). 

Drones detection is considered a great challenge. Drones come in different shapes and sizes. It also moves 

at different velocities, and there is always the possibility of complicated backgrounds. Drones are not 

included in common images datasets which required collecting special datasets to estimate the 

performance of DL detection and recognition algorithms. 

 

This paper contains: 

1. Briefing Faster RCNN, SSD, and YOLO and comparing previous studies results on common 

datasets to identify the most effective training parameters on the performance of the algorithm. 

2. Comparing Faster RCNN, SSD, and YOLO performance for drone detection using evaluation data 

from our environment. 

The rest of this paper is organized as follows: discussing common datasets and comparing parameters 

on section II. Section III briefs Faster RCNN, YOLO, and SSD. Section IV studies previous researches 

results to find the most effective training parameters. The training parameters and the practical algorithms 

results are used in section V then the conclusion was given by summing up the results. 

II. DATASETS AND COMPARING PARAMETERS: 

Datasets are groups of annotated images. Annotated means with object position and class. Each dataset 

contains a specific number of classes. Class images are divided into testing and training images groups. 

Table 1. shows the most common images datasets. 
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Table 1.  Most common images datasets. 

 

 

Annotated Train/Val Classes Ref Dataset 

24,640 9,963 20 (Mark E., et al., 2009)  VOC 2007 

27,450 11,530 20 (Mark E., et al., 2012)  VOC 2012 

200,000 330,000 80 (Tsung-Yi L., et al., 2015)  COCO  

1,034,908 14,197,122 27 (Olga R., et al., 2015)  ImageNet  

 

VOC (Mark E., et al., 2009)  represents Pascal Visible Objects Classes dataset, and COCO represents 

Microsoft Common Objects in Context dataset. The class column shows the number of classes. Train/Val 

column contains the number of images in the database. Those images are grouped into train sets and 

evaluation sets. Annotated column contains the number of annotated images in the database. Some 

databases like COCO and ImageNet contain some unannotated images which can be used for testing. It 

is also possible for any image to contain more than one class. Usually, mean average precession (mAP) 

is used to compare algorithms accuracy. The mAP represents the average area under the Precession/Recall 

curve. Precession can be calculated from: (Mark E., et al., 2009)  

precision =  
True Positive

True Positive + False Positive
                                                                                                (1) 

 

True Positive is the number of correct class detections for the algorithm in the test set, while False Positive 

is the number of incorrect class detections for the algorithm in the test set. 

Precession represents the algorithm recognition capability. It takes maximum value when there aren't any 

incorrect detections (False Positive = 0) 

Recall can be calculated from (Mark E., et al., 2009)  

recall =  
True positive

True positive + False negative
                                                                                                      (2) 

 

False Negative is the number of missing class detections for the algorithm in the test set. 

The recall represents the algorithm detection capability. It takes its maximum value when there aren't any 

missing targets (False Negative = 0) 

We can combine both precession and recall in "F1 score", F1 score is the harmonic mean of precision and 

recall. F1 score can be calculated by 

F1 =  2 ∗
precesion ∗ recall

precision + recall
                                                                                                                           (3) 

Algorithms speed is estimated using a number of processed frames per second (fps) or the required time 

to process one frame  

 

fps =  
1

frame processing time in seconds
                                                                                                   (4) 

III. DETECTION ALGORITHMS: 

Detection and recognition systems are considered to be of the most important image processing and 

computer vision systems. Their applications vary from smart supervision systems to people detection and 

recognition systems. Among many detection and recognition systems mentioned in the literals, those 

depending on DNN (deep neural networks) proved their superiority. SSD (Wei Liu, et al., 2016), YOLO 

(Joseph R., et al., 2016)  and Faster RCNN (Shaoqing R., et al., 2015)  are considered the most important 

algorithms for detection and recognition. They use DNN and work in the real time (YOLO and SSD) or 

close to real time (Faster RCNN). We will go through each with some details.  
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A. Faster RCNN 

Faster RCNN was an enhanced version of Fast RCNN (Girshick, R., et al., 2015)  which was built on R-

CNN. R-CNN uses selective search (Uijlings, J.R., et al., 2013)  (a region proposal technique) to generate 

2000 region proposals. These proposals are fed into a CNN for feature extraction and then SVM for 

classification. But classifying the 2000 region takes a long time, about 47s per image. To overcome the 

time issue, Ross Girshick (the author who proposed R-CNN) introduced Fast R-CNN. He suggested 

changing the process order to calculate features map first, then make proposals based on it. This was 

faster than the R-CNN technique as the convolution is computed once per image rather than for 2000 

region proposals. Fast R-CNN was found to be approximately 9 times faster than R-CNN. 

Experimental results showed that Fast R-CNN had 66.9% mAP while R-CNN of 66.0% on the 

PASCAL VOC2007 dataset. Training time dropped to 9.5 hours as compared to R-CNN with 84h. Fast 

RCNN with truncated SVD (0.32s) was 213x faster than R-CNN (47s). Used Nvidia k40 GPU on those 

experiments, which demonstrated that Fast RCNN did accolated object detection process 

Studies showed that selective search was the bottleneck of the classification process. Therefore, Faster 

RCNN replaced selective search with RPN (Region Proposal Network). Similar to Fast RCNN, images 

are fed into a CNN to generate feature maps. But instead of using selective search, this sub-network learns 

region proposals using DL algorithms. As a result, RPN has an mAP of 75.9%, which is approximately 

10.2% better than selective search results on the VOC (Visible Objects Classes) 2012 dataset. 

    RPN is a CNN functioning by predicting object bounds (region proposal) and scores for those bounds 

simultaneously. This design works at near real-time frame rates improving the quality and accuracy for 

general DL-based object detection. 

B. YOLO 

YOLO used a single neural network for both detection and position estimation. It uses features from 

the entire image to predict objects' positions. YOLO also predicts all bounding boxes for all classes 

simultaneously. The used network reasons globally about all objects in the image. Its design enables end-

to-end training, real time speed, and high average precision. Fig 1 shows the YOLO detection model. 

 

YOLO authors proposed special networks structures to get the best of their proposed algorithm. YOLO 

suffers from poor multi-target detection; its model has difficulty with small objects that appear in groups, 

such as flocks of birds. It also suffers poor generalization performance for objects in new or unusual 

aspect ratios or configurations. 

YOLO network runs at 45 frames per second with no batch processing on a Titan x GPU as compared to 

Fast RCNN at 0.5fps and Faster RCNN at 7FPS 

Training and testing on PASCAL VOC dataset. YOLO archived 63.4% mAP with 45 fps as compared to 

Fast RCNN (70.0%, 0.5 fps) while faster RCNN (73.2%, 7fps). 

YOLO Authors took few design decisions to improve the original YOLO v1 calling it YOLO v2 (Joseph 

R., et al., 2016). The changes are summed up here. 

 

Figure 1.  YOLO detection model. 
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a) Batch Normalization (BN): They added BN layer ahead of each convolutional layer which 

accelerated the network to get convergence and helped regularize the model. This increased 

the mAP by 2%. 

b) High Resolution Classifier: They added a fine-tuning to the classification network at 448x448 

for 10 epochs on ImageNet. This enhanced the mAP by 4% 

c) Convolutional with anchor boxes: They used anchor boxes In V2 (similar to Faster RCNN) 

and predicted the class and object for each anchor box. This enhanced the recall value by 7%, 
while mAP was decreased by 0.3%. 

d) Predicting the size and aspect ratio of anchor boxes using dimension clusters: They used K-

means clustering on the training set bounding boxes. Using dimension clusters improves 

bounding box center prediction by almost 5% over the above version with anchor boxes. 

e) Fine-Grained Features: V2 used both higher-resolution features and low-resolution features 

by stacking adjacent features from different channels, which improved the performance by 
1%. 

f) Multi-Scale Training. To improve network performance on different images sizes, the 

network changes images dimensions from {320, 352, …, 608} every 10 batches. This 

enhanced the network's ability to predict detections at different resolutions.  

The authors also proposed a new classification network called Darknet 19. Using their new network at 

high resolution detection, YOLO V2 achieves 78.6% mAP and 40fps as compared to YOLO V1 with 

63.4 mAP and 45fps on VOC 2007. 

Authors further improved V2 to YOLO V3 (Redmon and Farhadi, 2018). They used multi-label 

classification in V3 to match more complex datasets containing many overlapping labels (for example, 

the same object can be labeled 'Lamborghini' and 'car'). It also uses three feature maps with different 

scales to predict the bounding box (similar to SDD). The last convolutional layer predicts a 3d tensor 

encoding class predictions, objects, and bounding box. The authors also propose a new features extraction 

network called Darknet 53, inspired by ResNet. V3 achieved 57.9% mAP compared to V2 with 48.1 mAP 

on the COCO dataset. 

C. SSD 

The SSD is based on a feed-forward convolutional network (FFCN). It generates a fixed-size collection 

of bounding boxes and scores for the presence of object class in those boxes. Then it passes the boxes to 

a non-maximum suppression step to get the final detection. The first few layers in the network are based 

on a high-quality image classification architecture. We are going to call this 'base network'. The auxiliary 

structure is added to the network to generate detection with the following key features: 

a) Multi-scale feature maps for detection, adding convolutional feature layers with progressively 

decrease in size to the end of the based network allowed predictions of detection at multiple 
scales. This generated multiple features maps with different scales 

b) Convolutional predictors for detection. The added feature layers can predict a fixed number 

of detection (bounding boxes) using a group of convolutional filters. The bounding boxes 

offset output values are relative to the default box position, and the box position is relative to 
its feature map location. 

c) Default boxes and aspect ratios set a default group of bounding boxes for each feature map 

cell for all different sized feature maps. Each box has a fixed position relative to its corresponding 
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cell. Each feature map cell predicts the offsets relative to the default box shapes in the cell and the 
per-class scores that indicated the presence of a class instance in each of those boxes. 

It is hard for SSD to classify small objects, especially if trained on a small dataset such as PASCAL 

VOC. To overcome this, they used a data augmentation strategy. It includes random crops (zoom 

in and zoom out) and image flipping. This operation increased the dataset size, which required 

doubling the training iterations. 

IV. RELATED WORK 

Table 2. represents previous studies' results for the three algorithms: Faster RCNN, YOLO, and SSD. 

The first column contains the algorithm name; the second column contains the reference number. The 

detection model is the used network structure. Train data and Test data are the used train set and test set. 

FPS is the number of processed frames per second; mAP is the mean average precession mentioned in 

section 2. The (-) was used for values that were not mentioned in the reference. VOC07 and VOC12 are 

Pascal VOC 2007 and Pascal VOC 2012. VOC07++12 means using both train and evaluation sets in 

Pascal VOC 2007 with the train set of Pascal VOC 2012 for training. The number after algorithm name 

(300, 512) represents the dimensions of network input, (*) after algorithm name mean using data 

augmentation (generating more data from the original by applying some image transformations like 

rotating, scaling, adding noise, and other methods) for training data, the increase in training data usually 

requires more training steps too. 

The most significant training parameters based on table 2 are: 

1. Training set: by comparing rows 9 and 10, the effect of the training set on the algorithm performance 

can be noticed. Using larger training set improved Faster RCNN performance by 10%. 

2. Test set: by comparing rows 12 and 14, the effect of the test set on algorithms results can be noticed. 

Changing the test set affected YOLO performance by 5%. 

3. Network structure: by comparing rows 12 and 13, the effect of network structure on algorithms results 

can be noticed. Using VGG16 improved YOLO performance by 3%. Also, the effect of network 

structure on algorithm processing time can be noticed by comparing rows 3 and 4. Faster RCNN speed 

increased by 11 frames per second when using ZF compared to its speed when using VGG16. 

4. Network input dimensions: by comparing rows 18 and 22, the effect of network input dimensions on 

network performance can be noticed. Increasing SSD input dimensions from 300x300 to 512x512 

affected mAP by 2%. The effect of network input dimensions on processing time can be seen by 

comparing rows 20 and 24. The number of processed frames per second decreased by 27 frames when 

increasing SSD input dimensions from 300x300 to 512x512 

5. Number of training steps: by comparing rows 18 and 21 and checking their reference, increasing train 

set size using data augmentation required doubling the number of training steps can be noticed. SSD 

gained 3% on using data augmentation and doubling training steps. 
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TABLE 2. RELATED WORK RESULTS. 

# Algorithm Ref Detection 

Model 

Train data Test Data FPS mAP % 

1 Faster RCNN (Shaoqing R., et al., 

2015)  
VGG16 VOC 07++12 + 

COCO 

VOC12 - 75.9 

2 Faster RCNN (Shaoqing R., et al., 
2015)  

VGG16 VOC 07 +12 + 
COCO 

VOC07 - 78.8 

3 Faster RCNN (Joseph R., et al., 2016)  VGG16 VOC 07+12 VOC07 7 73.2 

4 Faster RCNN (Joseph R., et al., 2016)  ZF VOC 07+12 VOC07 18 62.1 

5 Faster RCNN (Wei Liu, et al., 2016)  - VOC 07++12 VOC12 - 70.4 

6 Faster RCNN (Wei Liu, et al., 2016)  - VOC 07++12 + 

COCO 

VOC12 - 75.9 

7 Faster RCNN (Dai, J., et al., 2016)  Resnet101 VOC 07+12 VOC12 2 76.4 

8 Faster RCNN (Dai, J., et al., 2016)  Resnet101 VOC 07+12 + 
COCO 

VOC12 0.3 85.6 

9 Faster RCNN (Dai, J., et al., 2016)  Resnet101 VOC 07++12 VOC12 2 73.8 

10 Faster RCNN (Dai, J., et al., 2016)  Resnet101 VOC 07++12 + 

COCO 

VOC12 0.3 83.8 

11 Faster RCNN (Jonathan, H.., et al., 

2017)  
Resnet101 ImageNet ImageNet - 32 

12 YOLO1 (Joseph R., et al., 2016)  YOLO VOC 07+12 VOC07 45 63.4 

13 YOLO1 (Joseph R., et al., 2016)  VGG16 VOC 07+12 VOC07 21 66.4 

14 YOLO1 (Joseph R., et al., 2016)  YOLO VOC 07+12 VOC12 - 57.9 

15 YOLO2 (Joseph R., et al., 2016)  Darknet19 VOC 07+12 VOC07 40 78.6 

16 YOLO2 (Joseph R., et al., 2016)  Darknet19 VOC 07++12 VOC12 - 73.4 

17 YOLO3 (Redmon and Farhadi, 

2018)  
Darknet53 COCO COCO 19 57.9 

18 SSD300 (Wei Liu, et al., 2016)  VGG16 VOC 07++12 VOC12 - 72.4 

19 SSD300 (Wei Liu, et al., 2016)  VGG16 VOC 07++12 + 

COCO 

VOC12 - 77.5 

20 SSD300 (Wei Liu, et al., 2016)  VGG16 VOC 07+12 VOC07 46 74.3 

21 SSD300* (Wei Liu, et al., 2016)  VGG16 VOC 07++12 VOC12 - 75.8 

22 SSD512 (Wei Liu, et al., 2016)  VGG16 VOC 07++12 VOC12 - 74.9 

23 SSD512 (Wei Liu, et al., 2016)  VGG16 VOC 07++12 + 

COCO 

VOC12 - 80 

24 SSD512 (Wei Liu, et al., 2016)  VGG16 VOC 07+12 VOC07 19 76.8 

25 SSD512* (Wei Liu, et al., 2016)  VGG16 VOC 07++12 VOC12 - 78.5 

26 SSD (Jonathan, H., et al., 

2017)  
Inception 

V2 

ImageNet ImageNet - 22 
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V. COMPARING ALGORITHMS RESULTS 

Fig. 2. represents the working model. In order to find the best algorithm among YOLO, SSD, and Faster 

RCNN for drone detection and recognition, an accurate comparison between them was made. Based on 

section 4 results, the training parameters were choosen as mentioned in Table 3. 
 

 
Figure. 2. Training model. 

 
                                                    TABLE 3.  TRAINING PARAMETERS 

2664 Train set 

6032 Test Set 

VGG16, Darknet53 Detection Model 

12000 Training steps 

 

 

 

2664 images of different drones models were gathered for training. The transfer learning from the VOC 

model was used. VOC initial weights speeded up the training process. Those initial weights were extracted 

from the network trained on VOC07+12; this allowed the network to recognize VOC dataset classes in 

addition to drones. Each of the algorithms was trained for 12000 steps (Training steps in Table III).   

      

      

 

 
 

   

   

       Figure. 3.  Few images from the training dataset. 

 

Fig. 3 shows few images of the used training set. Training the algorithms for different drones' models 

increase its generalization ability to detect and recognize any drone model. To estimate the algorithm 

performance, videos with a total frames count of 6032 were used (Test set in Table 3), 4752 frames 

containing drones. Those videos were taken in our environment with many different backgrounds such as 

clear sky, cloudy sky, trees, and mountains. 

• 2664 
Images

Gathering 
Data

•YOLO (Darknet53)

•SSD (VGG16)

•Faster RCNN 
(VGG16)

Training 
(12000 steps)

• 6032 
Frame

Validation
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YOLO v3 paper recommended using their network structure, DarkNet53 (Redmon and Farhadi, 2018), 

which Resnet101 inspired. Faster RCNN and SSD papers didn't have recommendations, so the author of 

this paper chose VGG16 network architecture (Detection model in Table 4). According to section 4 

results, the network architecture effect is less than the training and testing dataset effect in general. We 

used a PC with those specifications for training and testing: 

• Processor: Intel® Core™i7-7700 CPU @3.60GHz 

• Ram: 8GB 

• VGA: NVIDIA GeForce GTX 1060 6GB 

All testing frames are 1280x720. Each frame has a slightly different processing time; therefore, the 

average processing time for all frames was calculated. The three algorithms with multiple input 

dimensions were tested. Fig.4 shows some of the detection algorithms results on the test set, while Table 

4. details them. 

 

 

 

 

 

 

 

 

 

 

 

 

               TABLE 4. EXPERIMENTAL RESULTS. 

mAP% FPS Method 

6.05 7.69 Faster 1000 

1.78 16.10 Faster 544 

0.78 27.18 Faster 300 

0.84 27.93 SSD 300 

1.74 45.10 YOLO 832 

0.71 208.48 YOLO 312 

1.13 72.67 YOLO 632 

1.19 87.22 YOLO 544 

 

Comparing Faster RCNN, YOLOv3 and SSD for 

drone detection 
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Figure.4 Detection algorithms results, red boxes for Faster RCNN, green boxes for YOLO, and 

orange boxes for SSD. 

 

  

  

  

The number after the algorithm name represents the network input dimensions. Input images are scaled 

to fit network input dimensions. The increase in speed can be noticed when using networks with small 

input dimensions. Practical results are showing significant improvement in mAP when using network 

input dimensions close to the image dimensions. Rows 1 and 5 prove Faster RCNN and YOLO superiority 

with large input dimensions compared to small input dimensions. Other tests show the impracticality of 

using networks with large input dimensions when process small images (image dimensions are smaller 

than network input dimensions). 

To get a better idea about the detection and recognition, data on Table 5. was checked. TP (True Positive) 

represents the number of true positive cases, FP (False Positive) represents the number of false positive 

cases, FN (False Negative) represents the number of false negative cases, and F1 represents "F1 score". 

 

                                      TABLE 5. EXPERIMENTAL RESULTS RAW DATA 

F1 FN FP TP Method # 

0.54 2973 0 1779 Faster 1000 1 

0.19 4250 0 502 Faster 544 2 

0.03 4664 0 88 Faster 300 3 

0.217 4090 677 662 SSD 300 4 

0.211 4190 0 562 YOLO 832 5 

0.05 4615 0 137 YOLO 312 6 

0.07 4463 0 289 YOLO 632 7 

0.08 4549 0 203 YOLO 544 8 
 

 

Equation 1 in section 2 shows that FP directly affects algorithm recognition performance. According to 

Table 4, both Faster RCNN and YOLO have high target recognition ability (FP=0). On the other hand, 

SSD suffers a higher number of false detections, which means low recognition performance. 

Equation 2 in section 2 shows that FN directly affects algorithm detection performance. According to 

Table 4, SSD300 has good detection performance compared to YOLO312 and Faster RCNN 300 
 

FN(SSD)<FN(YOLO)<FN(Faster) 
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VI. CONCLUSION 

Choosing the 'best algorithm' depends on the used application and system requirement. Detecting 

drones requires high accuracy, long range, and low false positives. According to Tables 3 and 4, Faster 

RCNN is the best algorithm for drone detection, but the long frame processing time prevents using it in 

real time applications without any improvements. On the other hand, YOLO is capable of working directly 

in real time. But SSD suffers a high false positive ratio making it not suitable for this application. 

Drone detection is a great challenge due to its different shapes and complex backgrounds; this study 

showed that Faster RCNN still has an edge on accuracy and detection ability over other algorithms but 

suffers slow speed. We can increase the speed by using a smaller network input size, but this will affect 

the accuracy.  
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ABBREVIATIONS AND SYMBOLS 

DL Deep Learning 

CNN Convolutional Neural Networks 

SSD Single Shot Detector 

YOLO You Only Look Once 

ROI Region of Interest 

BS Background Subtraction 

LBP Local Binary Pattern 

SVM Support Vector Machine 

VOC Visible Objects Classes 

COCO Common Objects in Context 

mAP Mean Average Precision  

FPS Frames Per Second 

DNN Deep Neural Network 

RPN Regional Proposal Network 

BN Batch Normalization 

TP True Positive 

FP False Positive 

FN False Negative 

HOG Histogram of Oriented Gradients 
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Drones dataset link: (YOLO style annotations) 

https://drive.google.com/file/d/1ppvIMu1R25Mvrpl14HJxAIclcADjDQ-N/view?usp=sharing 

 

XML style annotations: (for Faster RCNN and SSD training) 

https://drive.google.com/file/d/1-h8usgcd_Q2aKZg9SiDDyHhQfK_SJDUJ/view?usp=sharing 

 

Test Videos 

https://drive.google.com/drive/folders/15DDR4IkUfh9EtQ5md6RcnwtmMFCS2nLx?usp=sharing 

 

Results Videos 

https://drive.google.com/drive/folders/1obTBCSBkTNL8MTBduDoV3cmsFnD51XWh?usp=sharing 
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