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ABSTRACT

In this study, the thermal buckling behavior of composite laminate plates cross-ply and angle-ply
all edged simply supported subjected to a uniform temperature field is investigated, using a simple
trigonometric shear deformation theory. Four unknown variables are involved in the theory, and
satisfied the zero traction boundary condition on the surface without using shear correction factors,
Hamilton's principle is used to derive equations of motion depending on a Simple Four Variable
Plate Theory for cross-ply and angle-ply, and then solved through Navier's double trigonometric
sequence, to obtain critical buckling temperature for laminated composite plates. Effect of
changing some design parameters such as, orthotropy ratio (E1/E2), aspect ratio (a/b), thickness
ratio (a/h), thermal expansion coefficient ratio (a2/al), are investigated, which have the same
behavior and good agreement when compared with previously published results with maximum
discrepancy (0.5%).

Keywords: Thermal buckling, shear deformation, cross-ply and angle-ply.
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1. INTRODUCTION

Thermal buckling research is critical for structural components used in high-speed aircraft, rockets,
and space vehicles, where thermal loads are caused by aerodynamic and solar radiation
heating, as well as for nuclear reactors and chemical planets, which are typically
subjected to an elevated temperature regime during their service lives, (Cetkovic, 2016),
(Shen, 2013), concerned thermal buckling and post-buckling behavior which presented for fiber-
reinforced laminated plates subjected to in-plane temperature variation and resting on an elastic
foundation, The governing equations are based on a higher order shear deformation plate theory
that includes plate—foundation interaction and the thermal effect (Mansouri and Shariyat, 2014).
The related differential equations governing the system are solved using a novel differential
quadrature process (DQM). Although the refined four parameters plate theory (RPT) needs less
displacement parameters and is usually more accurate than the pth order generalization of theory
of Reddy (GRT), both are less accurate than the third order five parameters of Reddy theory
(TOST). (Shaterzadeh, Abolghasemi and Rezaei, 2014) studied thermal buckling analysis of
symmetric and antisymmetric laminated composite plates with a cut-out, subjected to a uniform
temperature rise for different boundary conditions, The stiffness matrices and thermal force vector
are derived according to first-order shear deformation theory (FSDT). (Ounis, Tati and
Benchabane, 2014) focused on the classical plate theory, and investigated the thermal buckling
behavior of composite laminated plates under uniform temperature distribution. The present finite
element is a combination of a linear isoparametric membrane element and a high precision
rectangular Hermitian element. (Vosoughi and Nikoo, 2015) developed a hybrid method for
maximizing fundamental natural frequency and thermal buckling temperature of laminated
composite plates that is a new combination of the differential quadrature method (DQM) based
on the first-order shear deformation theory (FSDT) of plates and are discretized using the (DQM).
(Jin et al., 2015) used of the Digital Image Correlation (DIC) technique to investigate the thermal
buckling of a circular laminated composite plate subjected to a uniform distribution of temperature
load, the results of the buckling temperature from DIC were close to the theoretical buckling
temperature of the circular plate found using a simply supported boundary condition (Cetkovic,
2016). Thermal buckling of laminated composite plates was investigated using Reddy's Layerwise
theory and a new version of Reddy's Layer-wise Theory. The strong form is used to derive Navier's
analytical solution, while the weak form is discretized using the isoparametric finite element
approximation. (Hussein and Alasadi, 2018) used two methods to study the stress analysis of
composite plates subjected to the uniform temperature at various factors. The first method is an
experimental test by using a dial gauge, and the second method is based on a finite element solution
using a computer program resulted in the thermal strain increases with increasing temperature
difference (AT) and decreased with increasing the fiber volume fraction (Vf). (Xing and Wang,
2017) investigated the critical buckling temperature of functionally graded rectangular thin plates.

closed form solutions for the critical thermal parameter are obtained for the plate with different
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boundary conditions under uniform, linear and nonlinear temperature fields using the separation-
of-variable method. (Vescovini et al., 2017) used Ritz-based variable kinematic formulation to
research thermal buckling of composite plates and sandwich panels. They represented arbitrary
groups of plies composing the panel. Critical temperatures obtained were for, with and without
accounting for the pre-buckling. (Tran, Wahab, and Kim, 2017) developed a six-variable quasi-
3D model with one additional variable in the transverse displacement of higher-order shear
deformation theory (HSDT), resulting in a temperature rise in a plate structure that produces non-
zero transverse normal strain. The governing equation is discretized by isogeometric analysis
(IGA). (Manickam et al., 2018) used a finite element approach based on first-order shear
deformation theory, investigated the thermal buckling behavior of variable stiffness laminated
composite plates subjected to thermal loads. The developed governing equations are solved using
an eigenvalue method, in accordance with the concept of minimizing total potential energy.
(Sadig and Majeed, 2019) using a higher-order displacement field, Mantari et al. determined the
critical buckling temperature of an angle-ply laminated plate. This displacement field is based on
a constant "m" chosen to generate results consistent with three-dimensional elasticity (3-D) theory.
The equations of motion for simply assisted laminated plates based on higher-order theory were
deduced and solved using Hamilton's principle. (Kiani, 2020) studied thermal buckling nature of
composite laminated skew plates reinforced by graphene platelets. The formulation is based on the
first-order shear deformation plate theory. It is presumed that each layer of the composite
laminated plate can have different volume fraction of graphene platelets leading to a through-the-
thickness piecewise functionally graded medium. The thermal buckling behavior of various
shapes of functionally graded carbon nanotube reinforced composite (FG-CNTRC) plates is
investigated by (Torabi, Ansari and Hassani, 2019) using higher-order shear deformation plate
theory. Using Hamilton's principle, discretized equations of motion are finally obtained. A wide
range of numerical results is also presented to analyze the thermal buckling behavior of various
shapes of FG-CNTRC plates. (Do and Lee, 2019) used a mesh-free approach to describe the
buckling behavior of multilayered composite plates in thermal environments, including a
functionally graded material (FGM) layer. Thermal buckling of a composite plate laminated with
an FGM layer is modeled using an improved Moving Kriging (MK) meshless approach based on
n"-order shear deformation theory. (Tocci Monaco et al., 2020) used second-order strain gradient
theory, and investigated the vibrations and buckling of thin laminated composite nanoplates in a
humid-thermal setting. Hamilton's theorem is used to solve equations of motion. To amass
analytical data the Navier displacement area was considered for both cross-ply and angle-ply
laminates, and the findings revealed a wide range of angle-ply cases that are not often encountered
in the published literature. (Yang et al., 2020) examined the effect of geometrical nonlinearities
associated with pressure loads on the thermal buckling and dynamic properties of composite plates.
Thermal buckling and modal analysis was performed on a four-sided simply supported rectangular
composite plate subjected to a variety of pressure fields. The numerical results indicate that as the
pressure increases, both the mode frequencies and critical buckling temperature of the plate
increase. The thermal buckling behavior of a composite plate structure with a number of nano
fractions was investigated by (Al-Waily, Al-Shammari and Jweeg, 2020) using analytical and
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numerical methods. The general motion equation for thermal buckling load was derived and the
results were compared to the numerical results. (Alabas and Majid, 2020) and based on classical
laminated plate theory, used the improved Rayleigh-Ritz method and Fourier series to evaluate the
thermal buckling behavior of laminated composite thin plates with a general elastic boundary
condition applied to an in-plane uniform temperature distribution (CLPT).

In the present work, the efficiency of a four-variable refined trigonometric shear deformation
theory for thermal buckling analysis of cross-ply and angle-ply laminated composite plates is
investigated. The theory does not require a problem-dependent shear correction factor. Finally, the
numerical results obtained using the present theory are compared to those obtained using other
theories and show a high degree of agreement.

2. DISPLACEMENT FIELD AND STRAIN
2.1Displacement field

The displacement field associated with present theory is, (Sayyad, Shinde and Ghugal, 2016) :

owy (x,y,t h . mz\ows(x,y,t
U(X,y,z,t)=u0(x,y,t)—ZM_( .n_)&

dx n h dx

owp (x,y,t) ( h . nz) owg(x,y,t)
—————(z—=sin— | —— 1
ox S h ax ( )

v(x,y,zt) =vo(x,y,t) —z
W(x:y’ t) = Wb(x:y’ t) + Ws(x:y» t)
Where (ug, vy, Wy, wg) are the Four unknown displacements

2.2The linear strain-displacement relation is (Reddy, 2003):-

Jdu v ow Ju Jv
gx:a; gy:@; SZZE; nyzzgxy:@'i'a
a d
szzzgxz:a_z-l'% (2)
_ _6v+aw
Yvz = %82 = 5,7 By

Substituting Egs (1) in Egs (2):

Ex £r &x £x 1% Yy
o= {e iz d bl gt o ()= a0 3) ®
Vxy )’g?y y)?y )/xsy xz
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2 2
() [ Zn L vy v
Ex gx aax azx2 62x2
v Vo ad Wp a°w
oy ay dy? dy?
Vo) ow ov] (9w, 0w 02w, 0w,
oy = Ox oy 0x dxdy 0x0y
dv = ow owg
Vyz 9z 5 nZ ) 0y
{sz} =ou  ow(= ST Yow. (* &2 0, 4)
0z dx x

Where f(z) = z — %sin% and g(z) = cos%
3. VIRTUAL WORK PRINCIPLE
0= [ (8U +6V)dt (5)

Where (6U) is Virtual strain energy and (8V) is Virtual external work done are given, (Reddy,
2003), the Virtual strain energy (8U) is:

h
b 2
8U = [ [" [Zilox &y + 0y 8y + 0xy 8Yay + 0y 8Yy, + Oy OYay]dzdxdy (6)

Where 8 = 6% + z8? + f(z)8<S in general

Ny n(Ox M}C) n(Ox
NY = 11g=1 fhz{ay}dz ’ Mslz = Zg:l fhz{ay}ZdZ:
Nyy 2 (Txy Mfc’y 2 (Tyy
M; h O-X Q h T
> > XZ
A Y RLATIOY R bl B BN R Mg PIGYE U
s 2 (T Qy 7 Y2
My, xy
Substituting Egs (7) in Eqgs (6):
__ b ra 8ug 4 p 028wy 5 078w vy 4 p 028wy g 028w asug
6U—f0 fo [Nx ox M dx2 M dx2 N, dy My dy? My dy? t ny( dy +
d6vg _ b 25wy _ S 02%8wg 6wy Swg
ox ) Mxy 0xdy ZMxy oxdy + Qx ox + Qy dy ]dXdy (8)

Now using integration by parts, the form for Virtual strain energy (6U) is found:
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b ra[(—0N, 0Ny, —0N, 0N, —92ML  9*M2  20%Mp,
6U_J;) J;) K ax  dy >6u0+< dy  ox >6v0+< dx2  dy?  0xdy >6Wb
—02M; 0*M3 20°M, 0 0
- Y _ X Qx— < Swq| dxdy
dx? dy? dxdy dx  dy
oM: oMb 26M”>
6Wb

+ f l(Nx + Ny)ouy + (Ny + Ny, )0v, + < ot ayy _ axxy

OMS OMS 20M5, , aaw,,
+<6x+6y+ 5 Tt 6Ws+(—My—2My)
a6 a6 a6
+ (- MS—ZM,iy) Ws _ o 2% s 2% 4 9)
dx d0x
While the Virtual external work done by thermal applied load (6V) is :
b a 2 2
5V = —lff NTS <a_W) +NTS <a_W) +NLS <a_wa_w> dxd (10)
) * 7 \ox Y7 \oy = \ox dy 4
00

b
s 1ffa[2NT ow dow ow dsw <aw oW ow 06W>]d . ,
2 x \ox dy  dy ox ey 1D
00

Where w =w, +wg (assumption)

When integrating by parts Eq (11) and using divergence theory:

sv=— [ [+ (N i Mot | NT Plwotws) | oNT, M) (6w, + Swy)dxdy —

dy? axd
§(NF Zeted 4 N7 a(wg—;WSH NT, a(wg—;w) x + NI, 20 1) (S, + 6ws) ds (12)
where
T
N’,} n[Qu1 Q12 CQie
Ny 0 =3K-1J25[Q1z Q2 Q26[{%yiATcrdz (13)
NTy 21016 Q26 Wes
h
[4y] = Bl fagldz i) = (1.26) (14)

Now substituting for §U and 8V, from Eqgs (9),(12) in Eq (5):

f f 6Nx _ any) Sug + ( aNy, azvxy) Svy + -92 Mx _?mp  20°mp, Swr + (—62M§ _atmy
ay? dxdy b ax2 ay?

a2 a
20%Mxy _6&_&) Sw, — (NT a2 (V;b:Ws) + NT a2 (V(\;];‘Z"Ws) + ZNT a2 (SVba’rWs)

9xdy ax dy ) (Swy, + Swy) +] dA +
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b b b
¢ [((Nx + Ny)auo + (Ny + ny)avo + <a(;\’:(x + % - %) 6Wb + (aMx + % + zaMxY + Qx + Qy) (SWS

(_Mb ZMb ) 65Wb + (_Ms ZM;y) aGWs _ M}C) aZwb M; 62215> (NT a(WS:WS) + NT a(w;;—ws) +
N;y 6(wz;ws) nx + Ngy %ny) (dwy, + SWS)] ds} dt (15)

4. EQUATIONS OF MOTION

The Euler-Lagrange equations are obtained by setting coefficients (6u0,6v0,8wb,6ws) over
Area of Eq (15) to zero as follows (Reddy, 2003):

ONy 6ny

duy: o ay 0 (16)

ONyy . ON,,

1t —— = 17
ovy ox 3y 0 (17)

(92mE | a%mb  202ME, ( T 9%(wp+ws) T 9%(wp+ws) T 02 (wb+ws)) _
5Wb'(6x2 + 377 + o9y + { Ny e, + Ny 3y + 2Ny ox 0y =0 (18)

92My | 0°M5 | 20°M5, | 9Qy , 9Q %( s) 0? s) 92 s)
aWS' (6)1; 6y2y+ 6x6yy+aix+6_yy) (NT V:;b':w NT (V;b:w + ZNT (;:(b;yw )_ 0 (19)
The stress - strain relations are(Reddy, 2003):-
Ox Qu Q12 Q6] (x = =

e X Ty _ [Qaa Qs (¥
{ay} =02 Q2 Q6 {fy} jand {7} = o @45] o (20)
Py Qs Q26 Qosl V¥ o e
_. h
let {A;j, Bij, ASij, Dij} = ¥h=1 QF [2{1, 2, f(2),2°}dz (i =) =126) (21)
2
N h
. (2 o
{BSU,ASSU} = Z Ql?‘]. -f_h f(2){z, f(2)}dz (i=j=126)
k=1 2

And {ACCy;} = ¥}-1 QF f2 lg(2)]? (i=j=4,5) (22)
Where {AU, Bij, AS;j, Dij, BS;j, ASS;j, ACCU} are the laminate stiffness coefficients

Substituting Eq (20) in Eqgs (7) then Substituting Eqs (21)-(22) in the result equations obtain
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N (€9
N; (A1 A1z Aie Bin Biz Big  ASin ASi;p; ASie ] 83
N. A12 AZZ A26 BlZ BZZ BZ6 ASIZ ASZZ ASZ6 VO
1\;2} A16 A26 A66 Bl6 BZ6 B66 A516 A526 AS66 y;y
’2 Bis Biz Big D1y D1z Dig BS11 BSi;;  BSig || &
My t=|Bi; By Bys Diz Dy Dy BS;z BS;z  BSye |4 &b
M2, Big Bzs Bes Dis Dzs Des BSis BSze  BSes b
M AS11 ASi, ASis BS11 BSi; BSi¢ ASS11 ASSi; ASSig ’;y
M| [ASi ASw ASy BSip BSy BS; ASS;; ASSy ASSy|
ws,) 451 ASi ASes BSis BSi BSss ASSi ASSys ASSesl| &
X,
Yy kyny
{Qy}z ACCyy ACC45]{VyZ} 23)
0.) = laccs  Accss) v,
Where {Ny; Ny; Ny, } are the in-plane forces, while {M2; MP; M2 } are the moments, and {Q,; Q,}

are the transverse shear force but {Ms; M$; M5, } are the moment resultants related with the
transverse shear deformation (Sayyad, Shinde and Ghugal, 2016), which are substituted from
Egs. (23) in terms of displacement variables in Egs (21) — (24) , the governing equations of
equilibrium will be:-

0%u 0%u 0%u 0%y 9%v 92,
duy A11 — ZAlsﬁ —Age > 2y > A16 — — (A12 + Age) o a; Aze >+ 311
By, + 2B B a b 1 AS AS,, + 24S 0%ws
(Byz + 66)662 16azay+ 26 + 1163+( 12+ 66)662 16%"’
3wy _
ASye 5y =0 (24)
0%u 6 u 0%u 0%v 0%v 0%v
Svg A16 > — (A + A66) . 26 5, >~ A66 > — 2456 ﬁ — Ay, 6_20 + B
33 33 33 33 33 33
3By - ;” L+ (Biy + 2Bgg) 552 ~+ By2 "+ AS16 52 + 348265 awsz + (AS1y + 24566) 5 Z‘f;
23w
33 a3 33 3 a3 a3
dwy: — By a;o — 3By5 ﬁ — (B12 + 2Bgs) aa_uoz — By ?uso — bBie; vg,o (By2 *+ 2Bge) z?y
33 a3 a* % a* a*wy
Byo =% — Byy —2 + Dy 2 + 2(Dy, + 2066) o+ 41)26 ==b 4 D,y b 4 BS) 4(Dy +
dxdy? ay dx ay 0xdy ay
a s *ws 0*ws 0? s 92 s
BS16) g+ 2(BSi + 2BSee) 55055 + 4BSse 5 + BS;, % g = NJ T Ny (“;‘;jw )
ZNT 92 (;Vb;yws) (26)
03u 93u 93u 93u 93y,
Bwg: = ASyy 552 = 34816550 — (AS1z + 2AS66) S = ASy g — AS16 5 —
a3y, a3y, 6 w 9*w
(As12 + 2A5‘66) o2 oy 526 Sxay? ~ AS225s +BSu —L+ 2(3512 +2BSs6) 53 a”z +
24w
4BS16 yos + 4BSs gss b 1 BS,, < o+ ASS1 % S+ 2(,45512 + 245566) 52257
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0*wg
0x3dy

0*wg
0xdy3

Ws

4,45516 + 4,45526 + 4SSy, T2 - — ACCyy 22t s

ZACC456 o —AcCZ .

ox° ay? xdy

5. NAVIER SOLUTION

The Navier solution is used to analyze laminated composite plates for bending, buckling, and free
vibration. cross and angle ply simply supported at all four edgings satisfactorily for the following
boundary conditions (Sayyad, Shinde, and Ghugal, 2016)

5.1- Navier Solution For cross-ply laminates (SS-1)

Boundary conditions for cross-ply laminate (SS-1) are (Reddy, 2003)

atx=0andx=a: vo=w,=ws=M2 =M =0 (28)
aty=0andy=a: ug=wp, =ws =My =M; =0 (29)
up(x,y,t) = Xpz1 Xm=1Umn cosax sinfy (30)
vo(X,y,t) = Xinzq Xn=1Vimn sinax cos By (31)
wp (X, y,t) = Xnz1 Xm=1 Wpmn sinax siny (32)
ws(x,y,t) = Xyz1 Xin=1 Wsmn sinax sinfy (33)

5.2- Navier Solution For Angle-ply laminates (SS-2)

Boundary conditions for angle-ply laminate (SS-2) are (Reddy, 2003)

atx=0andx=a: ug=wp,=ws=M2=M$ =0 (34)
aty=0andy=a: vo=wp,=w; =My =M; =0 (35)
uo(x,y,t) = Xyz1 Xim=1 Umn sinax cos By (36)
vo(X,y,t) = Xinzq Xm=1Vimn COs ax sin By (37)
wp (X, y,t) = Xintq Xm=1Wpmn sinax sin By (38)
ws(x, y,t) = Xnt1 Xm=1Wsmn sinax sin By (39)

Where a =mmn/a and pL=nn/b and (Unn Vi Womn Wemn) are coefficients to be
determined

6. THERMAL BUCKLING ANALYSIS

After substituting Navier s series EQs (30)-(33) in equations of motion, Eqs (24)-(27), also when
substituting Egs (36)-(39) in Eqgs (24)-(27), The values of compressive forces in-plane are taken from
Egs. (13) and (14), the following Eigenvalue problem for cross-ply and angle ply, is obtained:

9
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K13 K14 \ Umn 0

K3 Kos Vinn _ 0 (40)
Ks3 — (kya? + ko, f2)AT Kz — (kya® + ko B2)AT () Whmn 0
K34_ - (klaz + kzﬁZ)AT K44 - (k1a2 + szZ)AT M/:smn 0

Afterward, for nontrivial solutions, the coefficient matrix's determinant in Eq. (40) must be zero.

7. NUMERICAL RESULTS AND DISCUSSION

Trigonometric displacement function is used in the present work to analyze the critical temperature
of the simply supported laminate plate both cross-ply and angle-ply for the first time. In this
portion, the effect of changing some design parameters such as orthotropy ratio (E1/E2), aspect
ratio (a/b), thickness ratio (a/h), thermal expansion coefficient ratio (a2/al), are investigated,
which have the same behavior and good agreement when compared with previously published
results.

7.1 Verification of Results

To verify the derived equations and program built using Matlab, present work results are verified
by comparison with the numerical results obtained with different theories used by researchers and
give good agreement as shown in the following tables, the discrepancy and the results are very
close between the present work with Refined Plate Theory (RPT) that used a different
displacement field.

Material 1:
E1/E»=25,G1,=G13=0.5E,, G23=0.2E,, vio= 0.25, oay/ 01=3, E>=1 Gpa 061:10_6 ct
Material 2:

El/Eo=30, Ez/Eozl, 612=G13=0.65E0, Gz3=0.639E0, V2= 0.21, 062/ ao=]6, 0(1/ ao=-0.21, Eo=1OGPa,
oo =10

Material 3:
El/Eo:15, Ez/Eo:]., 612:G13=0.5E0, 62320.3356E0, V12= 0.3, 0!2/ (Xo:1, (11/(1020.015, EQZIGPG , ao=10_6

Table 1 shows the normalized critical buckling temperature of the symmetric different cross-ply
laminated composite square plate with the thickness ratio (a/h) ranging from (4 to 1000) and The
dimensionless of critical temperatures was ( Tcr = T xa?*h/m? = D22 ) with material
properties using (Material 1) (Mansouri and Shariyat, 2014), Observed that the critical buckling
temperature increases (the result listed is inversely since it divided by D22) when a number of
layers increases for all thickness ratio due to stiffness increases, The results of present work are
compared with other theories and give good agreement.

Table 2 and Fig. (1) (a) show a good agreement between present theory results and other theories
that study the influence of the thermal expansion coefficients ratio (a2/ a1) on critical temperature
for the antisymmetric angle-ply (45/—45)s laminated plates with the dimensionless (Tcr =10%*

10
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T*ap), thickness ratio (a/h=10) and material properties using (Material 2) (Mansouri and
Shariyat, 2014), from which the normalized critical temperature decreases when increasing
thermal expansion coefficient ratio due to softening the plates. Also, in Table 3 and Fig.(1)(b)
effects of different modulus ratio (E1/E2) ranging from (2 to 50) on critical buckling temperature
for (6) layers of antisymmetric angle-ply (45/—45)3 plates with thickness ratio (a/h = 10), with the
dimensionless (Tcr =10%* T*ap) and the material properties using (Material 2) (Mansouri and
Shariyat, 2014) is investigated and noted that when increasing modulus ratio, the normalized
critical temperature increase because stiffness increase. Table 4 displays another comparison with
the results of previous theories, the effect of changing in thickness ratio (a/h ) ranging from (10/3
to 100) on critical buckling temperatures for antisymmetric (10 layer) angle-ply (£0)s laminated
plates all edges simply-supported with material properties using (Material 3) (Mansouri and
Shariyat, 2014) and dimensionless (Tcr =T*ao), observed that the maximum critical buckling
temperature is obtained for the plate with 45° angle, the results are close to results of previous
theories.

7.2 Effect of Design Parameters

The behavior of critical temperature with changing some design parameters is investigated. The
critical temperature is decreasing when the thickness ratio (a/h) and Coefficient of Thermal
Expansion (CTE) ratio increased and it increases when the number of plies and orthotropy ratio
is increased for angle ply laminated plates while maximum thermal buckling temperature is
obtained for the plate with 45° angle, as shown in the following tables below this behavior is
caused by stiffness differences.

7.2.1 Antisymmetric and Symmetric Cross-ply of the simply supported various composite
laminate thick and thin plate

For this type, the dimensionless (Tcr = T*a?*h/z* * Dy, ) and material properties using (Materiall)
(the results listed of (a/h) ratio is inversely since it divided by D22).

Table 5 displays the influence of changing of thickness ratio (a/h) and aspect ratio (a/b) on critical
buckling temperatures of laminate plate [(0/90)s,(0/90)3]. The results show that critical buckling
temperatures increase when the aspect ratio (a/b) increases along with the thickness ratio (a/h).
Table 6 shows the effect of thermal expansion coefficient ratio (02/al) on critical buckling
temperature for different thickness ratio (a/h) of laminate plate [(0/90)s,(0/90)3] as expected, the
critical buckling temperature decrease when (a2/ a1) increase along (a/h) ratio, there is inversely
proportional between the critical buckling temperature parameter and (02/al) due to thermal
buckling strength decrease of the plate when increasing o2. Effect of changing orthotropy ratio
(EL/E2) on critical buckling temperature for antisymmetric [(0/90),(0/90)2, (0/90)4] plates are
listed in Table 7 with varied thickness ratio (a/h), the results are clear that the nondimensionalized
buckling load decreases for antisymmetric laminates as the modulus ratio (E1/E2) increases.
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7.2.2 Antisymmetric angle-ply of the simply supported various composite laminate plate
For this type, the dimensionless (Tcr = T* ao) and material properties given by (Material 3).

The effect of changing of thickness ratio (a/h) and aspect ratio (a/b) on critical buckling
temperatures of antisymmetric [(45/-45)2,(45/-45)3] laminate plate is listed in Table 8. The results
show that critical buckling temperatures increase when aspect ratio (a/b) increase. Table 9 shows
the effect of thermal expansion coefficient ratio (o2/ a1) on critical buckling temperature for
different thickness ratio (a/h) of antisymmetric [(45/-45)2,(45/-45)3] laminate plate the critical
buckling temperature decreases when both (a2/a1) and (a/h) increase, There is an inverse
relationship between the critical buckling temperature parameter and (02/al) due to the plate's
thermal buckling strength decreasing as a2 increasing. Finally, Table 10 illustrates the effect of
changing moduli ratio (E1/E2) on critical buckling temperature of antisymmetric [(45/-45)2,(45/-
45)4] for different thickness ratios (a/h) observed when (E1/E>) increase the critical buckling
temperatures increasing, but it decrease when (a/h) increase. Different critical thermal buckling
modes for plates with different aspect ratios for cross and angle square plates are shown in Fig.2.

Table 1.Normalized critical temperature for different thickness ratios (a/h ) square plate with
symmetrical cross-ply

Lay-up a/h TOST RPT Present work Discrepancy %
4 0.0575 0.07115 0.07155 0.5%
(0/90)s 10 0.1522 0.17492 0.1750 0.05%
100 0.2435 0.24405 0.2440 0.02%
1000 0.2450 0.24510 0.2450 0.04%
4 0.0315 0.03348 0.03367 0.5%
(0/90)3s 10 0.0797 0.08231 0.08237 0.07%
100 0.1148 0.11485 0.11484 8.7*10°%
1000 0.1153 0.11530 0.1153 0
4 0.0247 0.02541 0.02555 0.55%
10 0.0621 0.06247 0.06251 0.064%
(0/90)ss 100 0.0872 0.08716 0.08716 0
1000 0.0875 0.08759 0.08750 0.15

Table 2. Normalized critical temperature for the simply supported antisymmetric (+x45)3 angle-
ply square plates.

Preset Discrepancy DQ results
w2/ al | LWT TOST RPT work | % CRT (9x9)
P=3(TOT) P=5 P=7

1 9.3134 10.3868 10.3854 10.3877 0.02% 10.3867 10.4707 10.5638
5 8.0703 9.0003 8.9991 9.0011 0.02% 9.0003 9.0730 9.1537
10 6.9163 7.7134 7.7123 7.7140 0.02% 7.7133 7.7757 7.8448
20 5.3782 5.9980 5.9972 5.9985 0.02% 5.9980 6.0465 6.1002
30 4.3998 4.9068 4.9062 4.9072 0.02% 4.9068 4.9464 4.9904
40 3.7225 4.1515 4.1510 4.1519 0.019% 4.1515 4.1851 4.2223
50 3.2260 3.5978 3.5973 3.5980 0.019% 3.5977 3.6268 3.6591

12
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Table 3. Normalized (ATcy) for different orthotropy ratios (E1/E2) for antisymmetric (£45)3
square plates.

DQ results

EVE2 | LWT | TOST (SEL) ijreit OD'Screpa“Cy GRT (9x9)
P=3 (TOST) | P=5 p=7
2 24672 | 24721 24721 | 24722 4*10-3% 24721 | 2.4744 | 24771
5 4.6703 | 4.7728 47728 | 47730 | 4.1*10-3% 4.7728 | 4.7823 | 4.7928
10 | 8.1229 |8.5390 85386 | 85391 | 5.810-3% 85390 | 8.5697 | 8.6029

15 11.5069 | 12.3517 12.3509 12.3518 7.2*10-3% 12.3517 12.413 | 12.4799
20 14.9536 | 16.3091 16.3079 16.3094 9.1*10-3% 16.3090 16.409 | 16.5195

30 22.4823 | 25.0733 25.0700 25.0756 0.022% 25.0733 25.2756 | 25.5007
40 31.7113 | 35.9042 35.8980 35.9117 0.038% 35.9041 36.2438 | 36.6308
50 44.2904 | 50.6840 50.6737 50.7028 0.057% 50.6840 51.2138 | 51.8351

angle-ply plates angle-ply plates

1 60
— & —-TOoT
10 - @ = RPT 2
Present s0r
XN — % —LWT L
OF—x B A
X 40 e
7
8r \K 8 — ’
ey \ 3] '3
Q \ = L
F‘ s % i 30 -
< ik
<] o
6 S a 20 SW
-
o £ . K

5F T 3 5 o — 8 —-TOT

T 0 o ® = RPT

e 3 - Present
4r ~ 4
= 7 — % —LWT
- “* 0 L L L L L L L T T
3 . 3 L : L S . 5 3 0 5 10 15 20 25 30 35 40 45 50
0 5 10 15 20 25 30 35 40 45 50 E 1 /E2

a2lal
Figure 1. Effect of (a) (¢2/ al) and (b) (E1/E2) ratio of angle-ply (45/-45) plate on critical buckling

temperature AT,,

Table 4. Normalized critical temperature for the simply supported antisymmetric (x6)s angle-ply
square plates.

GRT

ah | © 3D TOST | GHOT RPT Present D'Scre'oa“f,)g ooy
0 | 7.463*10° | 7.470%10% | 7.463*10° | 7.470%10° | 7.469*10% | 0.013% 7.466%10°
100 |15 [ L.115¥10% [ 1.116*10° | 1115%10° | 1.116*10° | 11150*107 | 89*10% | 1.115*107
30 | 1.502%10° | 1.502*10° | 1.502*10° | 1.502*10° | 1.502*10°7 0 1.502*107

45 | 1.674*10° | 1.675%10° | 1.675*10° | 1.675%10° | 1.675*107 0 1.675*107

o0 |0 | 1.789%107 - 1.739%107 | 1.772*102 | 1.773*102 |  0.056% 1.757*102
15 | 2.528*107 - 2.531*107 | 2.501%107 | 2.590%102 |  0.038% 2.562*107

30 | 3.446*107 - 3.456*107 | 3.477%102 | 3.477*102 0 3.484*107
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45 | 3.810*1072 - 3.826*102% | 3.844*102 | 3.844*1072 0 3.859*102
0 | 5.782*10% | 5.778*102 | 5.782*10 | 6.125*102 | 6.127*10% 0.032% 5.963*10
10 15 | 7.904*102 | 7.920*102 | 7.933*102 | 8.478*102 | 8.481*10% 0.035% 8.211*10
30 0.1100 0.1108 0.1110 0.1130 0.1130 0 0.1137
45 0.1194 0.1208 0.1209 0.1225 0.1225 0 0.1240
0 0.1029 - 0.1029 0.1124 0.1125 0.088% 0.1081
20 | 15 0.1322 - 0.1330 0.1466 0.1468 0.13% 0.1399
30 0.1859 - 0.1888 0.1940 0.1942 0.1% 0.1958
45 0.1981 - 0.2023 0.2062 0.2065 0.14% 0.2101
0 0.1436 0.1417 0.1436 0.1591 0.1593 0.125% 0.1524
5 15 0.1753 0.1746 0.1765 0.1975 0.1979 0.2% 0.1874
30 0.2377 0.2421 0.2432 0.2597 0.2604 0.26% 0.2575
45 - 0.2651 0.2656 0.2720 0.2728 0.29% 0.2777
0 0.1777 - 0.1777 0.1974 0.1980 0.3% 0.1893
4 15 0.2087 - 0.2103 0.2360 0.2370 0.42% 0.2239
30 - - 0.2754 0.3091 0.3105 0.45% 0.2922
45 - - 0.3114 0.3204 0.32211 0.5% 0.3266
0 0.2057 - 0.2057 0.2277 0.2287 0.43% 0.2190
10 15 0.2347 - 0.2367 0.2651 0.2668 1% 0.2518
3 |30 - - 0.2988 0.3376 0.3413 1% 0.3170
45 - - 0.3443 0.3564 0.3592 0. 49% 0.3614

Table 5. Normalized critical temperature for various aspect ratios (a/b) for symmetric and
antisymmetric.

AT,
layup a/b a/h
4 5 10 20 100

1 0.07155 0.09528 0.1750 0.2226 0.2440

(0/90) 2 0.07620 0.1039 0.2118 0.2894 0.3282
s 3 0.08593 0.1218 0.3027 0.4965 0.6267

4 0.09459 0.1357 0.3808 0.7430 1.077

1 0.02117 0.02810 0.0509 0.0642 0.0701

(0/90) 2 0.02834 0.04022 0.10244 0.1738 0.2248
s 3 0.03416 0.0482 0.1404 0.3106 0.5205

4 0.04066 0.05555 0.1634 0.4230 0.9287

Table 6. Normalized critical temperature for different (a2/ a1) for symmetric and antisymmetric

Ter
layup 02/ al alh
4 5 10 20 100
4 0.0686 0.09134 0.16781 0.2134 0.2339
(0/90)s 6 0.06336 0.08437 0.1550 0.1971 0.2161
8 0.05887 0.07838 0.1440 0.1831 0.2007
10 0.05497 0.07319 0.1344 0.1710 0.1874
4 0.0203 0.02694 0.04884 0.06159 0.06724
(0/90)s 6 0.01875 0.02489 0.04511 0.05689 0.06211
8 0.01742 0.02312 0.04191 0.05286 0.05770
10 0.01626 0.02159 0.03913 0.04935 0.05388
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Table 7. Normalized critical temperature for different (E1/E2) antisymmetric square plates .

Ter
layup a/h E1/E2
10 15 25 30 40

4 0.06117 0.03462 0.01644 0.01254 | 0.008146
(0/90) 10 0.09025 0.05294 0.02680 0.02103 0.01439
20 0.09693 0.05736 0.02952 0.02336 0.01623
100 0.09929 0.05894 0.03052 0.02422 0.01693
4 0.07456 0.04307 0.0202 0.01517 | 0.009518
(0/90), 10 0.1321 0.08543 0.0473 0.03785 0.02625
20 0.1488 0.09971 0.05891 0.04855 0.03555
100 0.1551 0.1053 0.06395 0.05341 0.04013
4 0.07865 0.04573 0.02153 0.01618 0.01016
(0/90)s 10 0.1426 0.09344 0.05222 0.04183 0.02902
20 0.1618 0.1102 0.06611 0.05469 0.04021
100 0.1690 0.1169 0.07230 0.0607 0.04592

Table 8. Normalized (ATcr) for different aspect ratio (a/b) antisymmetric (45/-45) angle-

ply plates.
Ter
layup a/b alh
4 10 20 100

1 0.3004 01101 | 003396 | 0.001468
2 03727 01830 | 006653 | 0.003119
(45/-45)2 3 0.4205 0.2438 0.1037 0.005372
4 0.4622 0.2932 0.1435 0.008374
1 0.3144 01183 | 003692 | 0.001605
4545 2 02447 | 007181 | 002042 | 0.000854
3 3 02146 | 005726 | 001584 | 0.000656
4 02004 | 005126 | 001402 | 0.000578

Table 9. Normalized critical temperature for simply supported

square plate for

different (o2/ 1)
Ter
layup 02/ al a/h
4 10 20 100
4 0.02241 0.008216 0.002533 0.000109
(45/-45) 6 0.01989 0.007291 0.002248 0.0000972
2 8 0.01787 0.006553 0.002021 0.0000874
10 0.01623 0.005951 0.001835 0.0000793
4 0.02346 0.008828 0.002755 0.0001197
(45-45) 6 0.02081 0.007835 0.002444 0.0001062
3 8 0.01871 0.007042 0.002197 0.0000955
10 0.01699 0.006395 0.001995 0.0000867
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Table 10. Normalized critical temperature for antisymmetric angle-ply square plates for

different (E1/E2)
Ter
layup a/h E1/E2
10 15 25 30 40
4 0.2767 0.3004 0.3142 0.3139 0.3077
(45/-45) 10 0.08794 0.1101 0.1389 0.1481 0.1598
2 20 0.02567 0.03396 0.0471 0.05231 0.06066
100 0.00108 0.001468 0.00212 0.00241 0.00291
4 0.2933 0.3196 0.3351 0.3350 0.3288
(45/-45) 10 0.09598 0.1212 0.1533 0.1633 0.1757
4 20 0.02831 0.0379 0.05317 0.0591 0.0686
100 0.00120 0.00165 0.00243 0.1633 0.00335
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Mode Hight

Width of plate 0 o Legth of plate

Width of plate 0 o Legth of plate

(@) mode (m=4,n=1), No. of layers=4, a/h=10 (b) mode (m=2,n=1), No. of layers=8, a/h=100
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(c) mode (m=3,n=2), No. of layers=4, a/h=100 , b=a/3 (d) mode (m=1,n=1), No. of layers=4, a/h=30 , a=h/2

Figure 2. Normalized Thermal Buckling mode for antisymmetric angle-ply and cross-ply plate.
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8. CONCLUSIONS

The thermal buckling behaviors of laminate plates have been described and discussed in this
work by using a simple trigonometric shear deformation theory. The most significant
characteristic of this theory is that it contains only four unknowns, as opposed to five in first-
order shear deformation theory and other higher-order theories. Following the above discussions,
the preliminary results are summarized as follows:

1- Design parameters as (modulus ratio, aspect ratio, thickness ratio, (a«2/al) ratio), in addition
to the number of layers, have the same behavior that obtained by other different plate theories.

2- The angle ply gives higher critical temperature buckling than cross-ply for the same materials
because of stiffness differences

3- Results obtained from present work agree well with other RPT that use different displacement
fields for both thick and thin plates also with HSDPT for thin plate,s while discrepancy increased
for thick plates.

4- The critical thermal buckling is increased for symmetric and antisymmetric laminates angle-
ply when the modulus ratio increases while it decreases for antisymmetric laminates cross-ply.
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APPENDIX

Where the matrix elements of the stiffness.K;; in cross-ply laminate are:

Ki1 = (A110® + AgeB?) , Kip = (Arp + Agg)aB

Kis = —=(B110® + (By + 2Bgg)aB?) , Kig = —(ASy;1a® + (AS;; + 2ASg6)af?)

Koz = (Aee0® + A2B%) ,  Kpz = —(B22B° + (Byz + 2Bgg)a®p)

Koa = —(ASy,B° + (AS;, + 2ASe6)aB)

K33 = (D110* + 2(Dy5 + 2Dgg)a®B? + Dy %)

K3s = (BS;1a* + 2(BS;, + 2BSge)a*B* + BS;,,B%)

K4 = (ASS;ia* + 2(ASS;, + 2ASSge)a?B? + ASS,,B* + ACCgsa? + ACC44B?)

A6 = Aze = Big = Byg = D1g = Dy = AS16 = ASys = BS16 = BSy6 = ASS16 = ASSye
=ACCy5 =0

And the element of the stiffness matrix Kj; in angle-ply laminate are:

Ki1 = (A110® + AgeB?) , Kip = (Arz + Agg)aP

Ki3 = —=(3B160®B + ByB®) , Kis = —(3AS160°B + ASy6B°)

Koz = (Ase0® + AzB%) . Ky = —(Byga® + 3By af?)

Ky, = —(AS 603 + 3AS,4 aff?)

K33 = (Dy1a* + 2(Dyz + 2Dge)a®B? + Dy %)

K3, = (BS; 0% + 2(BS;, + 2BSge) B2 + BS,,B%)

K4 = (ASS;1a* + 2(ASS;, + 2ASSge)a?B? + ASS,,B* + ACCgsa? + ACCy4B?)

A1s = Aze = Byg = Bip = By = Bgg = D1 = Dpg = AS11 = ASy; = AS;y; = AS¢e = BSy6
= BS,¢ = ASS16 = ASS, = ACCys5 =0

The plane stress reduced stiffness Q;; (Reddy, 2003) is:

Eq vi2E, E,
Qu=7——""""—", Qu=7""""" ,Qu=7—""—"",Q¢ =Gy

1—vyvy 1—vyvy 1—vipvy

Q44 = G253, Qs5 = Gy3
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