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ABSTRACT 

This paper investigates the performance evaluation of two state feedback controllers, Pole 

Placement (PP) and Linear Quadratic Regulator (LQR). The two controllers are designed for a 

Mass-Spring-Damper (MSD) system found in numerous applications to stabilize the MSD system 

performance and minimize the position tracking error of the system output. The state space model 

of the MSD system is first developed. Then, two meta-heuristic optimizations, Simulated 

Annealing (SA) optimization and Ant Colony (AC) optimization are utilized to optimize feedback 

gains matrix K of the PP and the weighting matrices Q and R of the LQR to make the MSD system 

reach stabilization and reduce the oscillation of the response. The Matlab software has been used 

for simulations and performance analysis. The results show the superiority of the state feedback 

based on the LQR controller in improving the system stability, reducing settling time, and reducing 

maximum overshoot. Furthermore, AC optimization shows significant advantages for optimizing 

the parameters of PP and LQR and reducing the fitness value in comparison with SA optimization. 
 

Keywords: State Feedback Controller, Pole Placement, Linear Quadratic Regulator Controller 

Mass-Spring-Damper System, Simulated Annealing Optimization, Ant Colony Optimization 
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ولضمان الحصول على  عند تسليط قوة للنظام. Mass وذلك لتقليل الخطأ الذي يحصل في التحكم في حركة الهندسية والصناعية

، تم استعمال LQRالمسؤولة عن اداء المسيطرة   Rو  Qوالمصفوفة   PPالمسؤولة عن اداء المسيطرة  Kافضل القيم للمصفوفة 

. اظهرت Ant Colony (AC) optimizationو  Simulated Annealing (SA) optimizationخوارزميتين وهما 

من حيث استقرارية النظام وسرعته. وايضا  PPعلى طريقة  state feedbackلتصميم مسيطر  LQRالنتائج تفوق طريقة 

 PPطريقة  في عملية البحث عن افضل القيم الخاصة بكل طريقة سواء SAعلى خوازمية  ACاظهر النتائج تفوق خوارزمية 

 .LQRاو طريقة 

 Simulated، خوارزمية Ant Colony Optimization، خوارزمية LQR، مسيطر ةنظام سيطر :الكلمات الرئيسية

Annealing. 

 
1. INTRODUCTION 

Mass-spring-damper (MSD) systems are found in various applications. Many authors use the MSD 

system to model a quarter-car suspension system (Salem and Aly, 2009; Alvarez-Sánchez, 2013, 

Rosli et al., 2021). Furthermore, robotic systems are often equipped with compliant components 

that can be modeled, such as an MSD model, to accomplish required operation tasks (Ge et al., 

2004). Besides, many MSD models have been utilized to study the impact of a collision on the 

human body during some activities (i.e., hopping, trotting, or running). The elements of the MSD 

system represent the properties of hard and soft tissues (Nikooyan and Zadpoor, 2011). For 

example, (Kim et al., 1994) developed a three MSD system to examine the shock absorption 

phenomena of the human body. (White et al., 2021) using a spring-mass model to evaluate human 

jumping loads. 

Mechanical systems such as the MSD system have a nature in their movement that drives 

them to oscillate (vibration problem) (Rosli et al., 2021). Therefore, several controllers have been 

proposed and design to stabilize and reduce the oscillation of the system. For instance, (Enríquez-

Zárate et al., 2000) applied a Sliding Model (SM) controller to achieve position tracking and 

disturbance attenuation. (Lian and Huang, 2001) proposed a Mixed Fuzzy (MF) controller for a 

two-level MSD system. (Di Cairano et al., 2006) introduced a Model Predictive Control (MPC) 

for an electromagnet MSD system. (Li and Yin, 2017) investigated the dynamic performance of 

time-varying coefficients of an MSD model. The Zhang Dynamic (ZD) is used to design the 

position tracking controller to the referenced target. (Valluru and Singh, 2017) developed a linear 

and nonlinear Proportional-Integral-Derivative (PID) controller for a nonlinear MSD system.  

This paper examines the performance evaluation of two strategies to design state feedback 

controllers, Pole Placement (PP) and Linear Quadratic Regulator (LQR), for an MSD system to 

stabilize the mass position to the desired input. The system consists of two masses, two springs, 

and one damper. The objective is to control the position of the second mass when the first mass is 

subject to the input force. To overcome the drawbacks of the trial and error in the selection process 

of the controller tuning parameters, two meta-heuristic optimizations, Simulated Annealing (SA) 

optimization and Ant Colony (AC) optimization, are utilized to optimize the feedback gains matrix 

K of PP and the weighting matrices Q and R of the LQR to make the MSD system reach 

stabilization and reduce the oscillation of the response. The SA and AC algorithms have been 

adopted by many authors as a controller-tuning technique for the PID controller, for SA (Yachen 

and Yueming, 2008; GirirajKumar et al., 2010; Nemirsky and Turkoglu, 2017; Lahcene et 

al., 2017) and for AC (Hsiao et al., 2004; Duan et al., 2006; Nagaraj and Murugananth, 2010; 

Priyambodo et al., 2016; Kouassi et al., 2019). Exploring the ability of SA and AC algorithms 

to find the best value of feedback gains matrix K of the PP and the weighting matrices Q and R of 

the LQR can be considered another objective of this study. The software Matlab has been used for 

simulations and performance analysis.  
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The remainder of this paper is organized as follows: modeling of the MSD system is given 

in Section2. Section3 describes the design of the PP and LQR controllers. Section4 explains SA 

and AC optimizations. In Section5, the performance evaluation of the two controllers (PP and 

LQR) based on both optimizations (SA and AC) is presented via simulations. The conclusions 

summarize in Section6. 

2. SYSTEM MODELING 

The mechanical system shown in Fig. 1 is considered in this study. The system consists of two 

masses, two springs, and one damper. The system is two degrees of freedom. The first mass is 

attached to a fixed wall via a spring with a stiffness factor (k1) N/m and a damper with a damping 

factor (c) Ns/m. The two masses are coupled via a spring with a stiffness factor (k2) N/m. The 

input force (P) N is applied to the first mass. The model assumed that both the springs and the 

dampers are linear with negligible spring weight. The system moves linearly in the direction of 

springs and dampers axes. The variable states of the system are the position (x1 and x2) and 

velocity (ẋ1 and ẋ2) of each mass. The objective is to control the position of the second mass x2 

when the first mass is subject to the input step force P.  

 
Figure 1. Two masses two, springer and one damper system (Burns, 2001): 

 a.  System representation    b. Free body diagram . 

 

The equation of motion that is related to the first mass m1 is given by (Burns, 2001): 
∑𝐹 = 𝑚1�̈�1                                                                                     (1)  

𝑚1�̈�1 = 𝑃 + 𝑘2(𝑥2 − 𝑥1) − 𝑘1𝑥1 − 𝑐�̇�1                                                                             (2)  

Rearrange of Eq. (2) yields:  

�̈�1 =
1

𝑚1
𝑃 − (

𝑘1+𝑘2

𝑚1
) 𝑥1 −

𝑐

𝑚1
�̇�1 +

𝑘2

𝑚1
𝑥2                                                                             (3)  

The equation of motion that is related to the second mass m2 is given by (Burns, 2001): 
∑𝐹 = 𝑚2�̈�2                                                                                          (4)  

𝑚2�̈�2 = −𝑘2(𝑥2 − 𝑥1)                                                                                        (5)  

Rearrange of Eq. (5) yield:  

�̈�2 =
𝑘2

𝑚2
𝑥1 −

𝑘2

𝑚2
𝑥2                                                                                            (6)  

 

Based on Eq. (3) and Eq. (6), the open loop state space equations of the two masses two springs 

one damper system are given by (Burns, 2001): 
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[

�̇�1

�̈�1

�̇�2

�̈�2

] =
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𝑚1
)  −

𝑐

𝑚1
   

𝑘2

𝑚1
      0   

         0          0             0       1

         
𝑘2

𝑚2
         0       −

𝑘2

𝑚2
     0 ]

 
 
 
 

[

𝑥1

�̇�1

𝑥2

�̇�2

] +

[
 
 
 
0
1

𝑚1

0
0 ]

 
 
 

𝑃                                        (7)    

𝑦 = [0 0 1 0] [

𝑥1

�̇�1

𝑥2

�̇�2

]                                                          ( 8 ) 

 

3. STATE FEEDBACK CONTROLLER DESIGN 

Consider open loop system dynamics represent by the following single-input-single-output 

continuous linear time-invariant state-space equations: 

�̇�(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡)                                                          ( 9 ) 

𝑦(𝑡) = 𝐶𝑥(𝑡) + 𝐷𝑢(𝑡)                                                                  (10) 

where x(t) is n vector represents the state of the system, n is the number of states in the system, 

u(t) is a scalar refers to the control action to the system. The output of the system y(t) is a scalar, 

A is n × n matrix defines the dynamics between the derivative states ẋ of the system and the 

state x, B is n × 1 vector that defines the dynamics between the derivative states ẋ and the input u, 

C is m × n matrix defines the dynamics between the output y and the state x. D is m × 1 matrix 

defines the dynamics between the output y and the input u (AL-Khazraji et al. 2017).  

 
Figure 2. State feedback controller configuration (Brogan, 1991). 

 

State feedback controller is commonly used to improve the performance of the system. Often, the 

system matrices {A,B,C,D} cannot be changed by the designer to improve system performance. 

Therefore, a manipulation outside of the given open loop system needs to be added. In this study, 

two state feedback controllers based on pole placement (PP) and the linear quadratic regulator 

(LQR) are presented to stabilize the MSD system performance and minimize the position tracking 

error of the system output. State feedback controllers compute the control actions based on the 

states of the system. The assumption to design state feedback controllers is that the system 

completely states controllable (able to influence the system). Both controllers have the same 

structure, as shown in Fig. 2, where the control action is selected in the form of: 

𝑢(𝑡) = 𝐹𝑟(𝑡) − 𝐾𝑥(𝑡)                                                                                                                (11) 

combining Eq. (9) with Eq. (11) gives:  
�̇�(𝑡) = 𝐴𝑥(𝑡) + 𝐵(𝐹𝑟(𝑡) − 𝐾𝑥(𝑡)) = [𝐴 − 𝐵𝑘]𝑥(𝑡) − 𝐵𝐹𝑟(𝑡)                                               (12) 

and combining Eq. (9) with Eq. (10) gives:  
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𝑦(𝑡) = 𝐶𝑥(𝑡) + 𝐷(𝐹𝑟(𝑡) − 𝐾𝑥(𝑡)) = [𝐶 − 𝐷𝑘]𝑥(𝑡) − 𝐷𝐹𝑟(𝑡)                                               (13) 

where r(t) is a vector of desired state. K is the state feedback gain matrix. F is the forward gain 

matrix used to scale the reference input r(t) (Brogan, 1991). However, the determination of the 

gains matrix K is different in both approaches.  

For the Pole Placement (PP) strategy, the feedback gain matrix 𝐾 is selected in order to locate 

the closed loop poles of the system at “desired locations”.  On the other side, the concept of LQR 

is to find the optimal control action u∗(t) that makes the system, given in Eq. (9) reach the steady-

state and guarantee the performance index J takes a minimum value; the index J is given by (Burns, 

2001; Mohammed and Wasmi, 2018): 

𝐽 = ∫ (𝑋𝑇𝑄𝑋 + 𝑢𝑇𝑅𝑢)𝑑𝑡
∞

0
                                                                                                         (14) 

The matrices  Q and R are positive semi-definite and positive definite symmetric constant matrices, 

respectively. There are several approaches for finding u∗(t), among of them u∗ = −R−1BTPx =
−Kx, and P is the solution of the algebraic equation PA + ATP + Q − PBR−1BTP = 0 of the matrix 

Riccati (Prasad et al., 2014). Increasing the matrix Q value, the adjustment time of the system is 

reduced. Conversely, consumption of energy will be increased. The increase of the matrix R makes 

the energy consumed by the system less, but the adjustment time of the system increases (Fang, 

2014).  

4. META-HEURISTIC OPTIMIZATIONS  

The design key of SF and LQR controllers is to find the right value of the adjusted parameters 

within each controller. Often, the selection of these parameters is based on trial and error. To 

overcome the drawbacks of using trial and error in the selection process, the tuning process in this 

study is formulated as an optimization problem. Then, two meta-heuristic optimizations, Simulated 

Annealing (SA) optimization, and Ant Colony (AC) optimization, are utilized to solve the 

problem.  

4.1 Simulated Annealing Optimization 

The Simulated Annealing (SA) algorithm is an optimization technique that mimics the physical 

process of thermal annealing. It was developed in 1983 by Kirkpatrick et al. The annealing 

process of material can be performed by introducing heat to the material and then cooling it slowly. 

The controlling of temperature reduction is based on the concept of Boltzmann’s probability 

distribution. This concept states that the energy (E) of a given system in thermal equilibrium at 

temperature T distributes based on the following equation: 

𝑃(𝐸) = 𝑒−𝐸/𝑘𝑇                                                              ( 1 5 ) 

where P(E) denotes the probability of obtaining the energy to the level E, K is the Boltzmann’s 

constant. Eq. (15) shows that controlling the temperature T leads to controlling the simulated 

annealing process. In order to formulate this process into a minimization problem, let consider the 

current design to be gi with the corresponding value of the objective function f(gi).  

Based on the Metropolis method, the probability of the next design point gi+1 depends on the 

difference between the function values at the two design points, which is given by 

∆𝑓 = 𝑓(𝑔𝑖+1) − 𝑓(𝑔𝑖)                                                      ( 1 6 )   

If the value of the function is reduced, ∆f < 0, then the new design has a lower function and is 

accepted as a point for the next step. However, if ∆f > 0, unlike most optimization algorithms, the 

point gi+1cannot be accepted as the next point in the iterative process. In the SA algorithm, the 

move may still happen; here, the probability of jumping to higher energy depends on the current 

temperature T and the difference between the two functions value −∆f. The probability of 

accepting the point gi+1 is given by: 
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𝑃(∆𝑓) = 𝑒−∆𝑓/𝑘𝑇                                                           ( 1 7 ) 

If the probability P(f) is greater than the random number between 0 and 1 (selected by the user), 

then the move is accepted. Otherwise it is rejected. The annealing process should be simulated 

effectively by lowering the temperature and repeating the same steps (Rao, 2009). The flow chart 

of the SA optimization procedure is given in Fig. 3. 

 

 
Figure 3. Flow chart of SA optimization. 

 

4.2 Ant Colony Optimization 

The Ant Colony (AC) algorithm is an optimization technique that mimics real ant colonies' 

interaction and cooperation. It was developed by Dorigo et al. in 1996. The AC optimization 

constructs a solution for a given problem by exploiting pheromone information adapted based on 

the ants’ search experience (Dorigo and Stützle, 2010; AL-MulaHumadi et al., 2018). The AC 

optimization consists of the following steps:  for each iteration, ants explore each candidate 

solution of the problem and deposit a specific amount of pheromone. In the next exploration of 

ants (next iteration), the candidate with a higher density of pheromones, there is a higher 

probability that the ants select this solution.  The probability of select a solution among a set of 

candidate solutions is given by: 
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𝑝𝑗
𝑘 =

𝜏𝑗

∑ 𝜏𝑖
𝑁
𝑖=1

                                                               ( 1 8 ) 

where pj
k is the probability of selection the solution j for the ant k. τj is the amount of pheromone 

in the solution j. ∑ τi
N
i=1  is the summation of pheromones of all candidate solutions. N is the total 

number of candidate solutions (population size). After all, ants constructed their solution, an 

evaluation process of the solution of each ant is applied. The pheromone of each candidate that 

has the best solution reinforce according to the following relations: 

𝜏𝑗 
𝑛𝑒𝑤 = 𝜏𝑗

𝑜𝑙𝑑 + ∑ ∆𝜏𝑗
𝑘

𝑘                                                            (19 ) 

where ∑ ∆τbest
k

k  indicates that the reinforcement is based on the number of ants with the best 

solution in the given iteration. The reinforcement factor is given by: 

∆𝜏 = 𝜉
𝑓𝑏𝑒𝑠𝑡

𝑓𝑤𝑜𝑟𝑠𝑡
                                                                    (20) 

where ξ is the scaling parameter. fbest is the best objective found by the ants. fworst is the worst 

objective found by the ants. The pheromone of other ants evaporates according to the following 

equation: 

𝜏𝑗 
𝑛𝑒𝑤 = (1 − 𝜌)𝜏𝑗

𝑜𝑙𝑑                                                                 (21) 

 where ρ is the evaporate rate. This process is repeated until the maximum of iterations is reached 

(Rao, 2009). The flow chart of the AC optimization procedure is given in Fig. 4. 

 

5. SIMULATION RESULTS 

This section illustrates how the simulation was conducted. The Matlab software is used to perform 

simulations and evaluate the performance. The system parameters are selected as given in Table 

1 (Salem and Aly, 2009). The objective is to control the position of second mass  x2 when the first 

mass subject to step input force P.  

Initially, the system performance was tested to the initial condition (the position of first 

mass x2 was set to 0.5m) and to step input (the first mass of the system is subjected to unit step 

input). The two tests investigate the open loop dynamic performance of the MSD system. Fig. 5 

and Fig. 6 indicate that the system has an oscillation frequency response (unstable). Therefore, 

two controllers (PP and LQR) are implemented to improve the dynamics of the system. Besides, 

two meta-heuristic optimizations (SA and AC) are utilized to find the best gains matrix K of the 

PP and Q matrix and R matrix of the LQR. The two controller configurations PP and LQR based 

on SA and AC optimization (PP controller based on SA optimization (PPSA), LQR controller 

based on SA optimization (LQRSA), PP controller based on AC optimization (PPAC), and LQR 

controller based on AC optimization (LQRAC)) are shown in Fig. 7. 



Journal  of  Engineering Volume  27   November   2021 Number  11 
 

 
 

22 

 

 
Figure 4. Flow chart of AC optimization. 

 

Table 1. Physical parameters. 

𝐏𝐚𝐫𝐚𝐦𝐞𝐭𝐞𝐫𝐬 𝐒𝐲𝐦𝐛𝐨𝐥 𝐕𝐚𝐥𝐮𝐞𝐬 𝐔𝐧𝐢𝐭𝐬 

Mass1 m1 250 Kg 

Mass2 m2 50 Kg 

Stiffness of spring1 k1 16 N/m 

Stiffness of spring2 k2 160 N/m 

Damping factor of damper C 1.5 Ns/m 
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Figure 5. System response to the initial condition. 

 

 

Figure 6. System response to the unit step input. 

 

The cost function used to measure and improve the performance of the two controllers was built 

based on error criteria. A number of error criteria are available. In this paper controller’s 

performance is evaluated in terms of Time Integral of Absolute Errors (TIAE) criterion which is 

given by: 

𝑇𝐼𝐴𝐸 = ∫ 𝑡|𝑒(𝑡)|𝑑𝑡
𝑡

0
                                                                                 (22) 

where t refers to the time period and e is the error. The error measures the deviation of the actual 

position of second mass x2  from the desired input r. The TIAE criterion is a fit index to evaluate 

the system performance to eliminate steady-state error and improve settling time (Nemirsky and 

Turkoglu, 2017). The performance of the two controllers is compared in terms of settling time, 

maximum overshoot, steady-state error, and TIAE. 
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Figure 7. Block diagram of PP/LQR based on SA/AC algorithms. 

 

In the case of SA optimization, the SA optimization parameters are given in Table 2. The values 

of the SA optimization are obtained experimentally. The experiments are performed repeatedly 

until the solution quality is improved. The simulations are carried out for PPSA and LQRSA, as 

shown in Fig. 8. The performance measured is summarized in Table 3.  

Table 2. SA algorithm parameters. 

𝐏𝐚𝐫𝐚𝐦𝐞𝐭𝐞𝐫𝐬 𝐕𝐚𝐥𝐮𝐞𝐬 

Initial temperature (T) 380 

Reduction factor (c) 0.5 

The probability of acceptance (p) 0.9 

Boltzmann's constant (k) 1 

Number of iteration 1000 

 

Fig. 8 and Table 3 show that the system response with the PPSA controller has a higher settling 

time and a higher peak value compared to the system response with the LQRSA controller. In 

addition, the response with the LQRSA controller achieves zero steady-state compared to the 

response with the PPSA controller, where the system's response with the PPSA controller has a 

low oscillation frequency. As a result, the TIAE of the system with the PPSA controller is higher 

in comparison with the TIAE of the system with the LQRSA controller, as shown in Fig. 9. The 

set of the controller's parameters for the SFSA and the LQRSA are given in Table 4. 
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Figure 8. System response to unit step input with PP and LQR controllers with SA optimization. 

 

Table 3. Comparison of obtained values between PPSA and LQRSA for the position response of 

m2. 

𝐏𝐞𝐫𝐟𝐨𝐫𝐦𝐚𝐧𝐜𝐞 𝐄𝐯𝐚𝐥𝐮𝐚𝐭𝐢𝐨𝐧 𝐏𝐏𝐒𝐀 𝐋𝐐𝐑𝐒𝐀 

𝐒𝐞𝐭𝐭𝐥𝐢𝐧𝐠 𝐓𝐢𝐦𝐞 (𝐬) 36 13 

𝐌𝐚𝐱𝐢𝐦𝐮𝐦 𝐎𝐯𝐞𝐫𝐬𝐡𝐨𝐨𝐭 % 25% 9.7% 

𝐒𝐭𝐞𝐚𝐝𝐲 𝐒𝐭𝐚𝐭𝐞 𝐄𝐫𝐫𝐨𝐫 0.001 Zero 

𝐓𝐈𝐀𝐄 5911 1542 

 

 

Figure 9. Convergence of SA with PP and LQR controllers. 
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Table 4. Set of controller's parameters for PPSA and LQRSA. 

 

 

 

 

 

 

 

 

 

In the case of AC optimization, the AC optimization parameters are given in Table 5. In the same 

way of selecting SA parameters, the values of the AC optimization are obtained experimentally. 

The experiments are performed repeatedly until the solution quality is improved. The simulations 

are carried out for LQRAC and PPAC, as shown in Fig. 10. The performance measured is 

summarized in Table 6. 

Table 5. AC algorithm parameters. 

𝐏𝐚𝐫𝐚𝐦𝐞𝐭𝐞𝐫𝐬 𝐕𝐚𝐥𝐮𝐞𝐬 

Number of population N 1000 

Number of ant K 50 

Pheromone decay  factor ρ 0.6 

Scaling Parameter ξ  2 

Number of iteration  1000 

 

 

Fig. 10 and Table 6 show that the system response with the PPAC controller has a higher settling 

time and a higher peak value in comparison with the system response with the LQRAC controller. 

Despite that both controllers archive zero steady-state, the TIAE of the system with the PPAC 

controller is still higher in comparison with the TIAE of the system with the LQRAC controller, 

as shown in Fig. 11. It can be noticed that LQRAC converges very fast. The set of the controller's 

parameters for PPAC and LQRAC controllers are given in Table 7. 

 

Controller's Parameters 𝐏𝐏𝐒𝐀 𝐋𝐐𝐑𝐒𝐀 

Gains matrix K 15.97 

92.04 

11.10 

7.25 

- 

Weighting matrix Q - 

[

55.8  0 0 0
0 14.4 0 0 
0 0 36.82 0
0 0 0 20.12

] 

Weighting matrix R - 0.018 
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Figure 10. System response to unit step input with PP and LQR controllers with AC 

optimization. 

Table 6. Comparison of obtained values between SFAC and LQRAC for the position response 

of m2. 

 

 

 

Figure 11. Convergence of AC with PP and LQR controllers. 
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𝐏𝐞𝐫𝐟𝐨𝐫𝐦𝐚𝐧𝐜𝐞 𝐄𝐯𝐚𝐥𝐮𝐚𝐭𝐢𝐨𝐧 𝐏𝐏𝐀𝐂 𝐋𝐐𝐑𝐀𝐂 

𝐒𝐞𝐭𝐭𝐥𝐢𝐧𝐠 𝐓𝐢𝐦𝐞 (𝐬) 28 10 

𝐌𝐚𝐱𝐢𝐦𝐮𝐦 𝐎𝐯𝐞𝐫𝐬𝐡𝐨𝐨𝐭 % 15.5% 6.1% 

𝐒𝐭𝐞𝐚𝐝𝐲 𝐒𝐭𝐚𝐭𝐞 𝐄𝐫𝐫𝐨𝐫 Zero Zero 

𝐓𝐈𝐀𝐄 4031 651.6 
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Table 7. Set of controller's parameters for PPAC and LQRAC. 

Controller's Parameters 𝐏𝐏𝐀𝐂 𝐋𝐐𝐑𝐀𝐂 

Gains matrix K 5.2 

96.7 

7.3 

0.3 

 

- 

Weighting matrix Q - 

[

89.7  0  0  0
0 97.7 0 0 
0 0 97.4 0
0 0 0 94.7

] 

Weighting matrix R - 0.012 

 

6. CONCLUSIONS 

In this paper, the problem of position control of a mass-spring-damper (MSD) system is 

considered. Two state feedback controllers (Pole Placement (PP) and Linear Quadratic Regulator 

(LQR)) were designed to improve the performance of the MSD system. The tuning process of the 

gains matrix K of the PP and the weighting matrices Q and R of the LQR was formulated as an 

optimization problem considering the Time Integral of Absolute Errors (TIAE) criterion as a 

performance index for the cost function. Moreover, two meta-heuristic (Simulated Annealing (SA) 

optimization and Ant Colony (AC) optimization) are developed to find the optimal solution that 

makes the MSD reach stabilization and reduce the oscillation in response to the input step. The 

simulation results show that the LQR reduced the settling time, maximum overshoot, and TIAE 

compared with the PP by 63.89%, 61.2%, and 73.91%, respectively, when the SA optimization 

handles the tuning process. 

Furthermore, the LQR reduced the settling time, maximum overshoot, and TIAE compared with 

the PP by 64.3%, 60.6%, and 83.8%, respectively, when the AC optimization handles the tuning 

process. These results prove the superiority of the LQR over the PP. Finally, the results obtained 

from adopting AC optimization as a tuning technique for both controllers are more promising than 

SA optimization results.  For future work, the nonlinearity in the spring and damper of the model 

could be considered. Furthermore, the research could be extended by utilizing another optimization 

technique to handle tuning the controller's parameters.     
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