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ABSTRACT

Asphalt Hot Mix (HMA) is mainly applied in highway construction in Iraq because of its

economic advantage and easy maintenance. Various factors impact the performance of HMA
in the field. It is one of the significant impacts on aggregate gradation. The Universal
Specification for Roads and Bridges in Irag (SCRB) limits the different types of asphalt layers
and allows for designed tolerance aggregate gradation. It is quite hard for contractors in the
present asphalt industries to achieve the required job mix because of sieves' control problems.
This study focuses on the effects on the required specification performance of aggregate
deviations by using original and modified asphalt binder with AC(40-50) and 4% SBS,
respectively. A mid gradation of the base asphalt mixture was selected as a reference mix, and
more than 24 deviated mixtures were then prepared. Typical Marshall routine studies on
prepared compounds were performed to assess the properties of the mixture. Bailey's theory
(CA, Fac ratios) was also employed for understanding the impact of these deviations on the
arrangement of particles and blending performance. Results show that the mixture performance
is not affected greatly by minor aggregate deviations. However, a significant deviation in coarse
aggregates leads to a decrease in Marshall properties. Results showed that a good tool for
understanding mixing performance is the Bailey performance assessment method. This paper
aims to study the effects of using 4% Styrene Butadiene Styrene (SBS) and eliminating the
effect of aggregate gradation deviations on the mixture performance.
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1. INTRODUCTION

Hot asphalt (HMA) mixtures are complex materials consisting of asphalt, minerals, and air voids.
(Zaumanis, et al., 2018). As well known, the performance of the asphalt is determined by the type
of aggregate gradation (de Souza, 2009 and Lee, et al., 2000). Any changes in aggregate gradient
change many factors, such as directions and contact points, which affect the performance of asphalt
mixtures (Plati, et al., 2014 and Al-Mosawe, et al., 2015). By the aggregate gradation,
(Golalipour, et al., 2012) studied the effect on rutting performance in asphalt pavements.
According to the Asphalt Institute, they have selected aggregated degrees with a nominal size of
19 mm and have used three different gradations, maximum, minimum, and middle limit. The
results of the Marshall test show that the maximum gradient limit is the highest stability and the
minimum gradient limit is the lowest. While the coarser combats permanent deformation better
than, the finer aggregates have been demonstrated by (Ahmed, et al., 2013) with four different
types of aggregate gradation and wheel tracking tests. According to the Egyptian requirements,
the combinations are known as coarse gradations, fine gradation, open gradation, and dense
gradation. Since it was founded, a great deal has been done to validate the concept, and in recent
years Bill Pine, the Heritage Research Group, promoted his approach (Vavrik, et al., 2002). The
'‘Bailey gradation method' is mainly a tool in which laboratory and field gradations can be
developed and analyzed. It gives designers and contractors a better grasp of the packaging and
influences its compatibility and volume (Ghuzlan, et al., 2020, M. K., 2014 and, Lee, J.-S. et al.,
2015). The Bailey approach focuses on aggregate packaging. To better understand the aggregate
packing, the particles from the coarse structure and fit in the voids within this structure. The
properties of the packaging are based on different factors: the aggregate shape, strength, and
textures, mixing gradations, and the type of stress and quantity (Daniel, J.S. and Rivera, F., 2009,
Feng, X., et al., 2013 and Stimilli, et al., 2017)
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Cubic particles, for instance, are denser than extended flat particles. Smooth particles slide more
easily than crude surface texture (Aurangzeb, et al., 2012 and Wang, et al., 2019). The gradation,
the mix between different sizes, also affects how the mix fills the voids of large particles. Similarly,
compact aggregates of different strengths differ depending on how compacted they are
(Sefidmazgi, et al., 2012). The strength of the fine aggregate, for example, plays a much more
important role than a coarse mix (Abed, et al., 2021).

Finally, the designer selects a skeleton using the Bailey method, which can stand the deformation
of the VMA and modifies the packing for coarse and fine add-ons to provide the mixture with a
suitable asphalted binder (Graziani, et al., 2012, Komba, et al 2019). Perhaps this has caused
some concerns in lIraq. Field Compaction stressed the necessity of designing mixtures with
sufficient VMA, which improved the need to understand the overall design of mixtures better.

1.1 Aim and Objectives

This study aims to assess the effect of aggregate gradation deviations on the base asphaltic mixture
because most Baghdad Governorate projects use the base layer in the rural roads with low traffic
volumes. The research will be conducted by selecting the mid gradation of specification limits as
a control mixture and then manufacture 24 mixtures with different aggregate deviations. The
samples will then be tested and evaluated according to the SCRB requirements, which follow
Marshall properties. The mixtures will then be evaluated by using different packing ratios. The
main objective of this research is to study the effects of using 4% SBS polymer modifiers and
aggregate gradation on asphalt mixture performance with PG(64-16) for ordinary binder and
PG(76-16) for modified asphalt binder.

1.2 The Baily Method Principles

One of the methods is found with a detailed background and basic Bailey principles (Vavrik et
al., 2002). As a primary control sieve (PCS) for the 12,5-mm NMAS admixture, (Vavrik et al.
2002) recommended the size No. 8. For plant 1 and 2 materials, the sieve size No. 8 (P8) proportion
was maintained constantly at 32% and 29%, respectively. The VMA values shown in bold,
however, do not meet the minimum demand of 15%. The OAC and VMA values of Plant 2 are
higher than that of Plant 1. (Garcia et al., 2020) concluded in his study that for two typical
Superpave mix designs of nominal 12.5 mm maximum size, the mixture of design information and
paving materials was collected. Most of the volumetric properties of mixtures in mineral
aggregates were evaluated concerning the voids. The rutting potential and the strength of the
combinations were evaluated with the Hamburg wheel tracking and indirect tension testing. The
Bailey method was originally designed to design and adjust aggregate proportions according to
the packaging and its effect on the performance of HMA blends. The procedure can also be used
to evaluate the properties of the aggregate packaging. The Bailey method is based on a grading
curve that determines the ratio of total packaging efficiency with certain control strands. The first
control sieve is the Nominal Maximum Particle Size (NMPS), which is usually defined as a sieve
greater than the sieve, which retains more than 10% of the total (Asphalt Institute, 1996). From
the NMPS, another control sieve can be estimated. These control sieves include the half sieve
(HS), which is the sieve closest to the half of the NMPS, the Principal Control Sieve (PCS), which
is defined as the sieve closet of 22% of the NMPS, the Secondary Control Sieve (SCS), which is
defined as the sieve armchair at 22% of the PCS and the Tertiary Control Sieve (TCS), which is
defined as the sieve closet of 22% of the SCS. With the Bailey method, there are four key
principles, as in Fig 1:
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e Determination of which aggregate structures are controlled (i.e. the coarse aggregate) creates
and fills the voids in the second point.
e Coarse fraction packaging has an impact on packaging with fine fractions.

e The fine, coarse aggregate fraction concerns the packing of the total fine fraction in
combination.
The fine aggregate fraction is related to the fine gradation of the mixture.

100 % Passing -:;'_._.-- >
‘0
80 o
.’.
60 L
50 -
10 "

30
20 4
10 -
0 ____;._!;-_'-. Coarse _
K ] I H L) F E D Lo B A
Sieve Size (mumn) raised to 0.45 Power

Figure 1. The four Bailey method principles.

The two Bailey ratios CA and FAc can be calculated from the following Equations:

__ %Passing HS—%Passing PCS

CA : 1)
100—-%Passing HS

%Passing SCS
FAc = 2259 °%> 2)
%Passing PCS

The CA ratio is the coarse aggregate's description and void structure, while the FAc represents the
interlocking of coarse particles in the fine section. The ratios introduced by (Al-Mosawe, 2016)
[25] and are used in this research are:

Cf/ — %Passing PCS—%Passing SCS (3)
Fc %Passing HS—%Passing PCS

This ratio defines the fine-coarse particles interlock.

F %Passing PCS
/c= - (4)
100—%Passing PCS

The ratio of the fine particles in the mix is to give the percentage to coarse particles.

1.3 Materials and Methodology
The materials used here are available locally and are currently used in Iragi road construction. In
addition to additives, they include asphalt binders, aggregates, and fillers.
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1.3.1 Asphalt Cement

In this work, a (40-50) penetration grade asphalt cement was used. The asphalt was brought from
the refinery at Al-Duarah, southwest of Baghdad. In particular, The physical properties of this
asphalt cement are described in Table 1, and optimum asphalt contents were found in Base course
mixes (4%) by weight of aggregate, as shown in Table 5.

Table 1. Physical properties of asphalt cement.

Test Unit Result Speuflcatlon
Requirement
Penetration At 25°C,100 gm, 5 sec. i
(0.1mm).ASTM D 5-06 1/10mm 46 40-50
Ductility at 25°C, Scm/min, (cm).
ASTM D 113-07 em 110 =100
Flash Point (Cleveland open cup) o
ASTM D 92-05 ¢ 280 =230
Specific gravity (25 °C). ASTM D L 103 L
70-08 '

1.3.2 Modified Asphalt Cement

One type of polymers was used in this research added to the asphalt binder known as SBS collected
from the local market. The qualities of the SBS modifier are often solid, basically odorless white,
also with a density of 880-950 kg/m®. By weight, 4% of SBS content has been used with a control
binder for asphalt. The SBS enhanced asphalt was prepared through mixing by hand. Table 2
illustrated the physical properties and material specifications of SBS.

Table 2. Physical properties and material specification of SBS.

Type of Asphalt | Designation |  Non-Modified 4%SBS Requirements
[¢]
R.V @135°C D4402 0.462 1.182
(Pa.sec)
[¢]
R.V @165 ~C D4402 0.112 0.286
(Pa.sec)

@64 °C 3.16 @76 °C 2.43
@70°C 1.73 @82 °C 1.13
Ageing RTFO
@64°C | 5.17 @76 °C 2.67
@70°C | 1.92 @82°C 1.96
Loss (%) <1 <1

G" /sin 5(kPa) D7552

G* /sin d(kPa) D7552

Ageing PAV

G* .sin d(kPa) D7552 @25°C 7421 @25°C 7450
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@28°C 4735 @28°C 4782
(0] 0O
Creep @-16°C | 188 | @-16°C | 215
StiffneSS(M Pa) @_220C 438 @_220C 456
D6648
@-16°C | 0.399 @-16°C 0.363
@-22°C | 0.289 @-22°C 0.269

Slop m-value

1.3.3 Aggregate

Crushed quartz aggregates, which are routinely used in the production of HMA mixes, were
sourced from Al-Nabai quarries in Al-Taji. One aggregate gradation was used in this study, as
shown in Fig. 2 for aggregate's orientation detection, referred to as coarse and fine mix which was
specified by the State Commission of Road and Bridges (SCRB)/Iraqg. To evaluate its physical
properties, typical standard tests were conducted on the aggregate. The results are summarized in
Table 3 and Table 4.

Table 3. Physical Properties of Al-Nabai Aggregate.

Property Coarse Fine
Aggregate Aggregate

Bulk Specific Gravity 2.524 2.646
ASTM C-127 and C-128

Apparent Specific Gravity 2.546 2.687
ASTM C-127 and C-128

Percent Water Absorption 0.369 0.519
ASTM C-127 and C-128

Table 4. Physical Properties of Limestone Dust.

Property Result
Specific Gravity 2.933
Passing sieve N0.200 (0.075mm) %95

Asphaltic samples of 10.16 cm in diameter with an approximate thickness of 6.35 cm, was
compacted by Marshall Hammer to fabricate twenty-four samples of different mixtures (for two
types of deviations), as in Fig. 3. Bailey ratios were calculated, and other ratios were introduced
by (Al-Mosawe, et al., 2015) were also calculated.

Table 5. Selected Gradation of Combined Aggregate and Mineral Filler for Asphalt Mixture
(Control Base Course).

Sieve Sieve size Specification Selected
Opening(mm) (inch) limits(SCRB) Gradation
(Base Course) (Base) (Base)

375 1(1/2) 100 100

25 1 90-100 95

73



Number 10 Volume 27 October 2021 Journal of Engineering

19 34 76-90 83
12.5 1/2° 56-80 68
9.5 3/8 48-74 61
4.75 No.4 29-59 44
2.36 No.8 19-45 32
0.3 No.50 5-17 11
0.075 No0.200 2-8 5

—i—upper limit —#— lower limit —&—mid gradtion

100

80

%P assing

0.06 012 024 048 0.9‘98'1.928'3.84 7.68 1536 30.72 61.44
onleve dlZe

Figure 2. Selected gradation of combined aggregate and mineral filler (control base course).

Figure 3. Specimen's preparation.

2. EXPERIMENTAL DATA ANALYSIS

The base course mixture was evaluated using Irag's requirements, which is the Iraqi Specifications
for Roads and Bridges (SCRB). The required tests are Marshall stability and flow and their
volumetric properties (see Fig 4 and 5. After the determination of the optimum asphalt content,
twenty-four different mixtures of the base course between the tolerance of the Iraqi specifications
and beyond the upper and lower limit of these specifications were tested in the laboratory, as shown
in Table 6 and Table 7 below.

The symbols of the mixtures are defined as follow:

B = the Base course.

T = the tolerance of Iragi specifications.

S = the mixtures out of specifications.
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U = the deviations near or out of the upper limit of the specifications.
L = the deviations beyond or out of the lower limit of the specifications.

It can be seen inError! Reference source not found.Figs. 4, 5, 6, and 7 that most of the
deviations caused a reduction in Marshall stability. The first twelve different asphalt mixtures for
the tolerance, as shown in Fig. 8 and Fig. 9, are BTU1 and BTL1 for mixtures that are close to the
upper and the lower limits inside the range at the sieve (19 mm). BTU2 and BTL2 for mixtures
that are close to the upper and the lower limits inside the range at sieve (12.5). BTU3 and BTL3
for mixtures that are close to the upper and the lower limits inside the range at sieve (9.5 mm).
BTU4 and BTL4 for mixtures that are close to the upper and the lower limits inside the range at
the sieve (4.75 mm). BTUS and BTL5 for mixtures that are close to the upper and the lower limits
inside the range at the sieve (2.36 mm). BTU6 and BTL6 for mixtures close to the upper and the
lower limits inside the range at sieve (0.3 mm). The second twelve different asphalt mixtures for
the type of deviation BSU1 which are asphalt mixtures that are within the tolerance of SCRB
specification beyond the upper limit at sieve size (19 mm). BSL1 for mixtures that approach the
lower limits of specification at sieve size (19 mm). BSU2 and BSL2 for mixtures that exceed the
upper and the lower limits outside the range at sieve size (12.5 mm). BSU3, and BSL3 for mixtures
that exceed the upper and the lower limits outside the range at sieve size (9.5 mm). BSU4 and
BSL4 for mixtures that exceed the upper and the lower limits outside the range at sieve size (4.75
mm). BSU5, and BSL5 for mixtures that exceed the upper and the lower limits outside the range
at sieve size (2.36 mm). BSU6 and BSL6 for mixtures that exceed the upper and the lower limits
outside the range at sieve size (0.3 mm).

B.33

21 83 BBTL1
8 a5 822 o9 7.99
8 7.66 BBTL2
75 7.11 7. 7.
6.77 - BTL3
BTL4

Stabiliny (kIV)
)

5
7
5
6 517
5
5

4.999 HBTLG

Type of Mix Type of Mix

Figure 4. Marshall Stability Values for the Figure 5. Marshall Stability Values for the
Upper Limits Approached Mixtures within the  Lower Limits Approached Mixtures within
Tolerance for (Base Course). the Tolerance for (Base Course).

Table 6. Mixture Gradations for Tolerance deviations and Results for Base Course

IS = — N ~ ™ ™ = < o o © © S .S § 8 m 8
1S -] — ) - ) — ) — ) 1 - — = x 3 = =
© 'c'a s B s m s m s B s A h | SEQ 35| 873
.5_'; -
%Passing

375 | 100 | 100 | 100 | 10 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 100

25 95 | 95 95 | 95 | o5 95 95 | 95 | o5 | 95 | 95 95 95 fgo 90-100
19 90~ | 76 | 83 | 8 | 83 83 83 | 83 | 83 | 83 | 83 83 83 | 77-89 | 77-89
125 68 | 68 | 78 | 61* | 72 | 68 68 | 68 | 68 | 68 | 68 68 68 | 62-74 | 62-74
95 61 | 61 | 61 | 61 | 71 | 51 | 61 | 61 | 61 | 61 | 61 61 61 | 55-67 | 55-67
4.75 a4 | a4 | 44 | a4 | 4 a2 | 55% [ 33 | 44 | 44 | 44 42 42 | 3850 | 3850
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2.36 32 32 32 32 32 32 32 32 | 42¢ | 22 | 32 32 32 | 2836 | 28-36

0.30 11 11 11 11 11 11 11 11 11 11 | 17* 5> 11 715 | 7-15

0.075 5 5 5 5 5 5 5 5 5 5 5 5 5 37 37
Volumetric Properties

%%‘rsn'tsy 2243 | 2.241 | 2257 | 227 | 2.243 | 2276 | 2263 | 227 | 2.246 | 2279 | 2.297 | 2.224 | 2.23

%AV | 628 | 635 | 572 | 522 | 627 | 490 | 546 | 520 | 614 | 479 | 40 | 7.10 4

Stalfl'\'l'ty 711 | 766 | 677 | 822 | 722 | 799 | 833 | 577 | 533 | 799 | 722 | 5.00 8.3

F'%"‘;(m 365 | 2.9 23 | 27 | 28 3.45 3 23 2 26 | 2.8 2.0 28
Gradation Ratios

CA 075 | 075 | 154 | 043 1 0.75 04 1 075 | 075 | 075 | 075 | 075

Fac 045 | 045 | 045 | 045 | 045 | 045 | 036 | 06 | 055 | 035 | 053 | 037 | 045

CfiFc 1 1 07 | 141 | 085 1 269 | 037 | 082 | 117 | 085 | 1.14 1

FIC 086 | 086 | 086 | 0.86 | 086 | 086 | 137 | 053 | 086 | 0.86 | 086 | 086 | 0.86

(*) refers to deviation

The SCRB deviations, as shown in Table 7, are formed as eliminating one of the sieves. The gap
that is made in the mixture highly affected the results

Table 7. Mixtures Gradations Beyond Specification Requirements for Base Course.

o 13 13 1y 3 3 s (3 |3 |35 |9 |g |g |Conwel| Tolrawe SCRB
S £ N n 7] n n n n n n n n n
.% = m m ] ] m s m fia] m s m M (BMC)
%Passing

375 100 100 100 10 100 100 100 100 100 100 100 100 100 100 100
25 95 95 95 95 95 95 95 95 95 95 95 95 95 90-100 90-

100
19 95* 71* 83 83 85* 83 83 83 83 83 83 83 83 77-89 76-90
12.5 68 68 83* 50* 80* 68 68 68 68 68 68 68 68 62-74 56-80
9.5 61 61 61 50 79* 44* 65* 61 61 61 61 61 61 55-67 48-74
4.75 44 44 44 4 44 44 64* 29* 50* 44 44 44 44 38-50 29-59
2.36 32 32 32 32 32 32 32 27* 49* 14* 32 32 32 28-36 19-45
0.30 11 11 11 11 11 11 11 11 11 11 27* 3* 11 7-15 5-17
0.075 5 5 5 5 5 5 5 5 5 5 5 2* 5 3-7 2-8

Volumetric Properties

Density | 2.28 2.27 2.25 2.28 222 2.29 2.27 2.3 221 2.25 231 224 2.29
g/lcm3

%AV 451 4.97 5.67 4.72 6.88 4.24 4.78 3.52 7.29 5.67 3.15 6.0 4

Stability | 5.55 6.33 5.83 6.00 577 | 1111 | 8.00 8.88 6.77 6.22 | 1055 | 3.77 8.3
KN

Flow 25 3.6 2.75 25 3.15 3.25 3.2 3 1.5 2.9 3 15 2.8
(mm)

Gradation Ratios

CA 0.75 0.75 2.29 0.12 1.8 0.75 0.12 1.21 0.56 0.75 0.75 0.75 0.75

Fac 0.45 0.45 0.45 0.45 0.45 0.45 0.31 0.61 0.54 0.27 0.66 0.34 0.45

CflFc 1 1 0.61 4 0.66 1 11 0.28 1.26 1.32 0.61 1.19 1

F/IC 0.86 0.86 0.86 0.86 0.86 0.86 2.06 0.43 111 0.86 0.86 0.86 0.86

Bailey ratios and those introduced by Al-Mosawe were calculated, and it can be seen that in Table
6 for example, mixes BTU4 and BTL4; the difference between them is the percent of passing in
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sieve No.4. BTU4 has a deviation that makes the number of fine particles much more than that in
BTLA4. This is reflected in the ratio Cf/Fc, which has great change between them and compared to
the control mix. This explanation is compatible with the reference finding, which states that many
fine particles support the interceptor particles, such as in BTUA4.
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Figure 8. Aggregate gradation for asphalt mixtures (Tolerance limit) (Continued).
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Figure 9. Aggregate gradation for asphalt mixtures (out of specification).
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Figure 9. Aggregate gradation for asphalt mixtures (out of specification) (Continued).

3. MODIFIED MIXTURES

To enhance the performance of the deviated asphalt mixtures and control the distress that could be
induced from the traffic loading or the environmental effect, this study focused on determining the
polymer modification influence of the responses of the deviated hot mix asphalt and apply the
proposed enhancement on both categories of HMA base course.

3.1 Effect of SBS- Modification Base Deviated Mixtures Performance
After using an ordinary asphalt binder in all previous mixes, the highest and lowest stability
samples were re-manufactured, using modified (improved) asphalt binder, to show the difference

in results as shown in Table 8.

Table 8. Modified Mixtures Gradations for Tolerance deviations and Results for Base Course.

MBTL4 MBSU5 | MBTL6 | M control | Toleranc SCRB
mix e
(MBCM) Limits
Sieve mm %Passing
37.5 100 100 100 100 100 100
25 95 95 95 95 90-100 90-100
19 83 83 83 83 77-89 76-90
12.5 68 68 68 68 62-74 56-80
9.5 61 61 61 61 55-67 48-74
4.75 33* 44 44 44 38-50 29-59
2.36 32 42* 32 32 28-36 19-45
0.30 11 11 5* 11 7-15 5-17
0.075 5 5 5 5 3-7 2-8
Volumetric Properties
Density 2.31 2.25 2.23 2.28
g/cm3
%AV 35 5.6 6.5 4.4
Stability kN 11.11 9.99 7.11 12.22
Flow(mm) 1.8 1.9 1.6 2.2
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Obviously, there is an increase in the stability values for the modified base mixtures by 47.2%,
Increasing air voids content by 10.5%, and a decrease in the flow by 21.4%, as shown in Fig. 10.
The increase in the Stability values is due to the higher resistance of the modified asphalt binder
to deformation than the neat binder at a certain temperature. Therefore, the modified binder carries
an amount of the load when applying pressure to the sample more than that of the neat binder due
to its higher viscosity and more temperature resistance. Modified mixtures gradations for tolerance
deviations and Base Course mixtures are shown in Fig. 11, where the stability is increased by a

range of 42.4 t0 92.5% .
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Figure 10. Effect of SBS on the Stability for Control Base Mixture.
T IT = MBTL4
_u 9.99 “BTL4 7
g o = MBTUS 56
= 7.11 85
3 7 5.77 533 4,09 BTU5 g
& s = MBTL6 £
2 =BTL6 S
Type of Mix 2 .
Type of Mix

80




Figure 11. Effect of SBS-Modification on Marshall properties within the Tolerance Limits
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3.2 Effect of Modified Mixtures Gradations beyond Specification Requirements
Additionally, Modified Mixtures Gradations Out of Specific Requirements had been tested to
assess the effect of the SBS-modification on the volumetric properties, as shown in Table 9.

Table 9. Modified Mixtures Gradations beyond Specification Requirements (Base Course).

M control
MBSU2 | MBSU3 | MBSL6 Mix TOI_era_mce SCRB
(MBCM) Limits
Sieve mm %Passing
375 100 100 100 100 100 100
25 95 95 95 95 90-100 90-100
19 83 85* 83 83 77-89 76-90
125 83* 80* 68 68 62-74 56-80
9.5 61 79* 61 61 55-67 48-74
4.75 44 44 44 44 38-50 29-59
2.36 32 32 32 32 28-36 19-45
0.30 11 11 5 11 7-15 5-17
0.075 5 5 2* 5 3-7 2-8
Volumetric Properties
Density g/cm3 2.271 2.254 2.249 2.28
%AV 5.13 5.84 6.04 4.4
Stability kN 12.44 9.99 6.66 12.22
Flow(mm) 2.5 1.9 1.3 2.2

Fig. 12 illustrates the modifier's effect on the stability of out-of-specification limits. It is clear that
SBS can raise the stability of the extremely deviated mixtures by 133, 73.1, and 76.6% for BSU2,
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BSU3, and BSLS6, respectively. The modified binder's higher stiffness contributes to carrying the
load more than that of the neat binder mixtures.
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Figure 12: Effect of modified binder on Marshall Properties.

4. CONCLUSIONS

This study examined the impact on the performance and particle packing of the inner structure of
the mixture. The base course mixing properties were selected for this study, and the mid
gradation as a control mix was chosen. In the designed mix, the out-of-control sieves in the asphalt
concrete industry were applied with two types of deviations. The two types of deviation are:
beyond the SCRB's tolerances, and the second is beyond the SCRB specification. The
combined gradation has a significant impact on asphalt mixture performance. The following
conclusions can be summarized:

1. The first type of deviations has been found to have less effect on the mixture performance
of Marshall properties.

2. The deviations which exceed the lower limit (coarser mixture) do not adversely affect the
performance of the mixture in comparison with those which exceed the upper limit for the
first type of deviation (tolerance deviated samples). The reason behind this is probably due
to the increase in the contact points with large particles, and this caused an increase in the
stability of the sample. The second type of deviation shows, in general, deterioration in the
mixture performance.

3. Aggregate gradation deviation in Base Course has also shown a reduction in Marshall
stability, but the reduction in stability kept it within the accepted limits.

4. Thereis agood indication about using SBS-modification for the deviated asphalt mixtures,
which is clear that SBS can raise the stability value by 47% compared to their neat deviated
mixture.
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5. The increase in Marshal stability for the modified mixtures was about 47% for the

tolerance-deviated mixtures, while the second type of deviations the increase was larger up
to 133%.

Packaging ratios were a good tool for understanding aggregate packing and the mixing
efficiency in turn.
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