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ABSTRACT

Active vibration control is the main problem in different structure. Smart material like
piezoelectric make a structure smart, adaptive and self-controlling so, they are effective in active
vibration control. In this paper piezoelectric elements are used as sensors and actuators in
flexible structures for sensing and actuating purposes, and to control the vibration of a cantilever
beam by using sliding mode control. The sliding mode controller (SMC) is designed to attenuate
the vibration induced by initial tip displacement which is equal to 15 mm. It is designed based
on the balance realization reduction method where three states are selected for the reduced model
from the 24™ states that describe the cantilever beam according to the FEM. These states are
most controllable and observable. The stability and control performance for the proposed SMC
are proved using candidate Lyapunov function and the equivalent control concept. The control
spillover, which is the sources of instability, is completely avoided as ensured within the control
performance proof.

Numerical simulations are preformed to test the vibration attenuation ability of the
proposed SMC. For 15 mm initial tip displacement, the piezoelectric actuator was found able to
reduce the tip displacement to about (0.2) mm within (2.5 s), while it is equal to (3.5) mm with
the open loop case. Moreover, the induced chattering in system response, due to the
discontinuous control action, is removed by approximating the signum function by a continuous
arctan function. As a result a smoother response are obtained with the same control performance
as can be shown in the sliding variable, the control input voltage and the tip displacement plots.

Keywords: Active vibration control, Finite Element, sliding mode control, sliding mode
observer, spillover.
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1. INTRODUCTION

The increasing demand of high structural performance requirements has led to the developments
of smart materials and structures. A smart structure has the capability to respond to change
external environment (such as loads, temperature and shape) as well as to change internal
environment (such as damage or failure).This technology has numerous applications, such as
active vibration and buckling control, shape control, damage assessment and active noise
control. The development of these smart or structures offer great potential or use in advanced
aerospace, hydrospace, nuclear, and automotive structural applications, Bandyopadhyay, 2005.

The system is called a smart structure because it has the ability to perform self-controlling.
One way of making the structure as smart is done by the use of piezoelectric materials. The
technology of smart materials and structures especially piezoelectric smart structures has become
mature over the last decade. The application of piezoelectric smart structures is the control and
suppression of unwanted structural vibrations, Balamurugan, 2000.

The main advantages of piezoelectric actuators are fast response, high power density and
large force output. Piezoelectric materials can be effectively used for active vibration control
with fast response and easy implementation. The electricity for the piezoelectric is produced by
pressure (Direct Effect) Conversely, a piezoelectric material deforms when it is subjected to
an electric field (Converse Effect). The piezoelectric sensor senses the external disturbances
and generates voltage due to direct piezoelectric effect while piezoelectric actuator
produces force due to converse piezoelectric effect which can be used as controlling force,

Kumar, et al., 2014.

To simulate the behavior of mechanical structures under inertia and external loads, very few
analytical solutions for specific situations are available. For this reason, the discretization of
these structures is the basic step for a static and dynamic further analysis. One possibility for this
step is provided by the finite element method. In mathematical terms, finite elements are a
numerical method for solving systems, and generally used to eliminate all spatial derivatives by
increasing, at the same time, the number of the resulting new equations in the system, Sachs,
2004.

The structure is modeled to retain large number of degrees of freedoms. In active vibration
control, the use of smaller order model has computational advantages. Therefore, it is necessary
to apply a model reduction techniques in order to get a reduced model size for which the control
law can be designed. One of these techniques is based on balance realization method, Inman,
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2006. For closed-loop system, it is not always possible to get a control law that causes
eigenvalues to have the required and desired values. This problem raises the concept of
controllability. The system is completely controllable if every state variable can be affected in
such a way as to cause it to reach a particular value within a finite amount of time by some
unbounded control. Then more useful measure is provided for asymptotically stable systems of
the form given by equations by defining the controllability gramian. Gramian matrices can be
used for checking if a system is controllable and observable, Zhou, et al., 1999.

To control vibration of a piezoelectric smart structure, a controller usually designed based on
a reduced order model (ROM) of the system form; whereas, finite element models inevitably
have a large number of degrees of freedom. When such a ROM based controller is applied to the
full order system, actuator forces for reducing the vibration of the lower modes will also
influence the residual modes of the structure and produce undesirable vibration due to the un-
modeled dynamics. This phenomenon is known as control spillover, Meirovitch, 1990. Spillover
phenomenon occurs because the unmodeled dynamics, which are not included in reduce order
model, will be excited. Different control techniques have been suggested and investigated in the
control of smart structure. Some of these studies are linear quadratic regulator (LQR) approach,
Dorf, 2003, sliding mode control, Utkin, et al., 2009, H, control, H,, control, Oveisi and
Nestorovic¢, 2014.

The sliding mode control method, first proposed in the early fifties, is one of the control
design methods to dominate the uncertainties and disturbances acting on the systems. It is been
obtained as significant research attention since early sixties in the former USSR and has been
widely applied in a variety of applications, Bartolini, 2003, Biswas, 2009, Qaiser, 2009. Sliding
mode control (SMC) is a particular type of the so-called Variable Structure Control (VSC) that
changes the control direction to drive the system to a specified manifold in the state space and
then keep the system within a neighborhood of this manifold. Sliding mode control is designed a
controller such that the motion of the system tends to slide mode surface. Therefore designing a
SMC consists of two stages; finding a sliding surface (defined as a desired linear combination of
system states such as displacement, velocity, and acceleration) to stabilize the controlled
system, and find a control force to drive the response trajectory into the sliding surface with
an exponential speed in time, Itik and Salamci, 2005.

The main feature of sliding mode control is its insensitivity to some class of uncertainties,
which makes it attractive in the control applications for uncertain systems. The sliding mode
control method has some advantages such as robustness to parameter uncertainty, insensitivity to
bounded disturbances, fast dynamic response, and easy implementation of the controller,
Magnani, 2007, Ferrara and Vecchio, 2009, and Capisani, 2009. The method enables the
decoupling of overall system motion into independent partial components of low dimension and
as a result reduces the complexity of feedback design Sliding mode theory has been
recognized as a robust control approach in treating disturbances and modeling uncertainties
through the concepts of sliding surface design and equivalent control, Utkin, et al., 2009.

The aim of the present paper is to design sliding mode control to attenuate the vibration of a
smart cantilever beam using piezoelectric element. The model utilized for control design purpose
is the reduced order model that is obtained according to the balance realization method. Based
on the equivalent control the performance of the proposed SMC is ensured via satisfying the
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control performance condition. Consequently the control spillover is eliminated by satisfying this
condition.

2. SMART CANTILEVER SYSTEM MODEL

The model of cantilever flexible beam studied here is given in Fig.1. The cantilever beam
bonded with the same place pair of piezoelectric sensor / actuator near the fixed end. By using
the Euler-Bernoulli beam equation, the infinite dimensional mathematical expression of the
beam can be written as follows, Bandyopadhyay, 2007.

2 0%w(xt) | 0%w(xt) _
€ o atz 0, 1)

where ¢ = EI/pA, w(x,t) is the deflection along the x-axis, E is the Young's modulus, I is
the moment of inertia, A is the cross sectional area, and p is the density of the beam. The partial
differential equation (PDE) given by Eq. (1) can be solved by using the supposed mode
approach, which yields finite dimensional ordinary differential equation set.

The dynamic equation of the smart structure is obtained by using both regular beam element
and piezoelectric beam elements. The mass and stiffness matrices of the smart structure include
sensor/actuator mass and stiffness, Chhabra, et al., 2012. The entire structure is modelled in
state space form using the Finite Element Method (FEM) by dividing the structure into six equal
finite elements. The sensor and actuator were integrated on the top and bottom surfaces at the
second element from the fixed end of the beam. A beam element is considered with two
nodes at its end. Each node having two degree of freedom (DOF) (translation and rotation) is
considered. The mass and stiffness matrix is derived using shape functions for the beam element.
When a system vibrates, it undergoes back and forth motion, it has transverse displacements, so
all positions vary with time, and therefore, the system has velocities and accelerations. The
equation of motion, involves a fourth order derivative w.r.t.( X ) and a second order derivative
w.r.t. time (acceleration) The solution of the Eq. (1) is assumed as a cubic polynomial function
of (x) given by:

w(x) = a; + ayx + azx? + a, x3 (2)
where w(x) is displacement function which satisfies the fourth order partial differential equation

(1). The constants a, to a, are obtained by using the boundary conditions given below at both
the nodal points (fixed end and free end). Consider the derivative of w(x) as:

Z—: = a, + 2a3x + 3a,x? (3
thenat x =0, w(x) = a; =w; and Z—: =a, =6,. Also at x =1,
wx)=w, = a; + a,l + azl?>+ a,l3, and Z—: =0, = a, + 2a3l + 3a,l?

where w; , 6, , w,, 08, are Degree of Freedom at node 1 and 2, respectively and [ is the length of
the regular beam. The relation between w;,8;, w,,6, and the constants a, to a, is
represented in a matrix form as,
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Wy 1 0 0 071[™
6] o 1 0 0]
wol |1 1 12 1B]]as (4)
0, 0 1 21 302] |las
Solving for a; to a, yields;
a {5 00 Sp e "
GQl_|_3 _z 3 _a1f|9%] _1fo %1 5)
as N w; B3|-31 —212 3l w;
@ |2 1 _z 16 2 6,
& 12 & 12

Substituting the constants obtained from (5) into (2) and by rearranging the terms, the final

form for w(x) is obtained as:
W1

6
w(x) == [(l3 —3lx% +2x3) (Bx—202x% + x31) (31x? —2x3) (—1%x? + [x3)] Wl

6,
(6)
or w(kx)= NTgq (7)
where N is the shape function and q is the displacements at the nodes, which are given by
N = li3 [(13=3lx?+2x3) (Bx—21%x% + x31) (3lx? — 2x3) (=12x% + I3)]T (8)
q= [w; 61w, 6,]" )

The strain energy U and the kinetic energy T for the beam element with uniform cross section in
bending is obtained as:

U=Elef (20 g = Bl g L)) T W, )] d (10)

T =t [0 g S et g G )] T e, )] d (1)

where p;, is the mass density of the beam material, A, is the cross sectional area of the beam,
I, is the moment of inertia of the beam, and E, is the modulus of elasticity of the
beam material. The equation of motion of the regular beam element is obtained by using the
Lagrangian equation:

< [21] , [ou

a gl T 5q] = Fi] (12)
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For free vibration, F; = 0. The strain energy U and the kinetic energy T in terms of the shape

function N and q are

A . . A . .
T pbz bflb[NT :I]T[NTCI] dx sz bflb TNNTq dx
. A . 1. .
= qT (_sz bfleNTdX ) q= —2 CIT Mbq

Accordingly
T
YT = Myq

d aT]

a2 12T - m.
dt Logq; b4

where M, is the mass matrix of regular beam

156 221, 54 —131,,]
zzzb 412 131, =312 |

131, 156 —zzzbJ
131, —317 =221, A4l

|[
_ T 3.. _ PbAplp
Mb—pbAbflb NN'dx = 420 [
Also for the strain energy,

_Eplp

Eypl
U==2[ [N q]"[N; qldx === q"N,. Nj q dx
Eyl 1
= q" (22 f, N, NJ dx)q =3 q"Kyq
one can obtain

[Z_:i =Ky q

K,= Epl, flb N, NI dx

where K, is the stiffeness matrix of regular beam

12 6l —-12 6l

Epyly| 61 417 —6l 217
B 1-12 -6l 12 -6l
6l 212 —6l 417

K, = E,,I,,flb N, NI dx =

Eventually the equation of motion according to the Lagrangian equation is:

M, G+ Kpq = fp

or
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[156 221, 54  —13l,)piy [12 6L, =12 6, ] wy
ppay | 221, 4y 131, =3I} |[é L Eplp| 6L, 4y —6l, 215 | |61
a20 | 54 131, 156 —zzszWZJ E [—12 —6l, 12 —6le w,

-131, 312 -221, 4z 110, 6l, 213 —e6l, A4l

= | @

where F,, F,, M;, M, are the forces and the bending moments acting on nodes 1 and 2
respectively Fig.1. When PZT patches are assumed as Euler-Bernoulli beam elements the
elemental mass and stiffness matrices of PZT beam element can be computed in similar fashion
as, Bandyopadhyay, 2007.

[ 156 221, 54 —13l,]
ppAplpizzzp 412 131, —312|

My == l 54 131, 156 —22I, 23)
~131, —312 —221, 4L
(12 6l, —12 6L,
2 2
|6, 42 —6l, 202
Ko="5"1_12 —61, 12 —é6l, 24)
6L, 202 —6l, 42

The smart beam element is obtained by sandwiching the regular beam element in
between the two PZT patches Fig. 1.

Inwhich EI = E, I, + 2E, I, is the flexural rigidity and pA = b(ppt, + 2p,ty,) is the
mass per unit length of smart beam element, ¢, is the thickness of PZT patches thickness
of Actuator and Sensor, and I, = bt“+ bt, (t“:t”) . So the elemental mass and stiffness
matrices of smart beam element are:

156 221, 54 —13l,
oA, | 221, 412 131, —3I2

Me=%0 | 54 131, 156 —221, (25)
_131, —312 —221, 42
[ 6lb —-12 6lb
e 6lb 4 —6l, 213 | -
l _6l, 12 —6le

6l, 202 —6l, 42
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2.1 Sensor and Actuator Equations

The sensor equation is derived from the direct piezoelectric equation, which is used to calculate
the total charge created by the strain in the structure. Piezoelectric materials can be used as strain
rate sensors. When used so, the output charge can be transformed into the sensor current i(t) ,
Bandyopadhyay, 2007.

i(t)= zes b [P

i
Xi

N," g dx (27)

where, z = %’+ t, and N, is the second spatial derivative of the shape function, e;; is the

piezoelectric stress constant.

The output current of the piezoelectric sensor measures the moment rate of the flexible beam.
This current is converted into the open circuit sensor voltage V;(t) using a signal-conditioning
device with the gain G., Bandyopadhyay, 2007.

[*1] [*1]
Ve(t) =[0 —Gozez b 0 Gozesy b ]mlzi =Sc[0 —10 1]|3;12|=qu (28)
L6, ] L6, ]

where S, = G.ze3z; b and p is a constant vector depends on the type of sensor, its
characteristics and its location on the beam. The actuator equation is derived from the converse
piezoelectric equation. The strain developed €, by the electric field Ef on the actuator layer is
given by, Jalili, 2010.

e = dE; (29)

Ya(®)
ta
actuator in the thickness direction t,. Then the stress o, that developed by the actuator is given

by, Bandyopadhyay, 2007.

where, Ef = is the electric field, and V,(t) is the input voltage applied to the piezoelectric

0o = Ep dyy (“2) (30)

ta

where E,, is the Young’s modulus of the piezoelectric and d3, is piezoelectric strain constant.
The bending moment in a small cross section of the piezoelectric element is given by:

d?w
I

dMazEpﬁ

P (31)

The resultant moment M, acting on the beam element due to the applied voltage V, is determined
by integrating the stress in Eq. (30) throughout the structure thickness as:

M, = Ep d31z Vo (t) (32)
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The control force f_.,; produced by the actuator that is applied on the beam element is obtained
as, Bandyopadhyay, 2007.

fetrt = Epdsib z [-1010]" Va(t) (33)

Alternatively, f..-; can be expressed as:

fctrl =h Va (t) (34)
where,
h=E,d3; bz[-1010]" (35)

3. DYNAMIC EQUATION OF SMART STRUCTURE

The dynamic equation of the smart structure is obtained by using both the regular and
piezoelectric beam elements (local matrices) given by Eq. (25) and Eq. (26). The mass and
stiffness of the bonding or the adhesive between the master structure and the sensor / actuator
pair is neglected. The mass and stiffness of the entire beam, which is divided into six finite
elements with the piezo-patches placed at only one discrete location is assembled using the FEM
technique and the assembled matrices (global matrices) M and K are obtained. The equation of
motion of the smart structure is given by, Bandyopadhyay, 2007.

Mq +Kq:fext+fctrl:f (36)

where M, K, foxe, feers @nd f are the global mass matrix, global stiffness matrix of the smart
beam, the external force applied to the beam, the controlling force from the actuator and the total
force coefficient vector respectively.

The generalized structural modal damping matrix D is introduced into Eq. (36) by using,
Balamurugan and Narayanan, 2000, Clough, 2007.

D =aM + BK (37)
where «a and B are the frictional damping constant and the structural damping constant

respectively. When applying the cantilever beam boundary condition, the system equation of
motion for the 6-element cantilever beam is:

Mg+ Dg+Kq=f (38)

For free vibration condition f,,; equal to zero, so the remaining applied force on the system is
the controlling force f,.,; exerted by the controller.

3.1 State Space Model of the Smart Structure

Many design tools and model reduction in modern control theory need a state space form for the
mathematical model of a plant. Consequently, the smart flexible cantilever beam mathematical
model can be written in state space form as follows;
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Q1] _ [*1] _ o [Ga] _ [x] %3 . [%3 }
q2] = [xz] =x,q= C'Iz] = [xz] = [x4]' and § = L.CJ then the 6-element smart
cvantilever beam sate space model is;

Let g =

X3 X3 X1
M Z o ]+ K ] = fen (39)
which yields
X3 — _m-1p 3] p-1p [F2 -1
[xJ‘ M D[x4] M K[x2]+M hV,(t) (40)
or
).Cl X1
Xz _ 0 I X2 0
X-3 - [_M—lK _M—ID] X3 +[M—1h] Va(t) (41)
564 X4

And in a matrix form
x = Ax(t) + Bu(t)

(42)
X1
X2 _ 0 I
x3| ' A= [—M—l K —-M™'D
X4

where x = ] , B= [M‘Olh] and u(t) = V,(t).

with approperate zero and identity matrices dimensions. The sensor voltage is taken as the output
of the system and the output equation is obtained as:

y(® = Vi(®) =p"a =" [ ] (43)

Thus, the sensor output equation in state space form is given by:

X1

y@© =00 p'1|} (44)
Xg

or,

y(£) = Cx(©) (45)

where ¢ = [0 pT]. The single input single output state space model (state equation and the
output equation) of the smart structure developed for the system is given by Eqgs. (42) and (45):

x=Ax (t) + Bu(t)}

y = Cx(t) (46)
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With
_ 0 I \
A= [—M—lK —M1 D]24*24L
70 (47)
B= [M_lh]24*1 |
c=1[0 pT]1*24

In the following section, the state space model is reduced via balance realization to a form and
dimension more appropriate for controller and observer design.

3.2 Model Reduction

In the finite element modeling, the structure is modeled to retain large number of degrees of
freedoms. In active vibration control, the use of smaller order model has computational
advantages. Therefore, it is necessary to apply a model reduction technique to the state space
representation. The reduced order system model extraction techniques solve the problem of the
complexity by keeping the essential properties of the full model only, Inman, 2006. For the
present work the 24™ order system model obtained from the finite element model is reduced to
the three order using a model reduction technique based on balance realization. The approach
taken for reduction the order of a given model based on deleting the coordinates, or modes, that
are the least controllable and observable. To implement this idea, a measure of the degree of
controllability and observability is needed. However, an alternative, more useful measure is
provided for asymptotically stable systems of the form given by equations by defining the
controllability grammian, denoted by W, as

W2 = [ e BBTe tdt (48)
And the observability grammian, denoted by W,, as, Inman, 2006.
Wg = [7edtCTCe dt (49)

The matrices A, B, and C defined as in Eq. (47). The properties of these matrices provide useful
information about the controllability and observability of the closed-loop system. If the system is
controllable (or observable), the matrix W, (or W,) is nonsingular, Williams and Lawrence,
2007. These grammians characterize the degree of controllability and observability by
quantifying just how far away from being singular the matrices W, and W, are, Janardhanan,
2013.

Applying the idea of singular values as a measure of rank deficiency to the controllability
and observability grammians yields a systematic model reduction method. The matrices W, and
W, are symmetric and hence are similar to a diagonal matrix. There is equivalent system for
which these two grammians are both equal and diagonal. Such a system is called balanced
system, also W, and W, must satisfy the two Liapunov-type equations:
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AWZ +WEAT = —BBT} (50)

ATWE+WiA=-CTC

Now to transform the system to a balance realization form, this requires the determination of a
transformation matrix P that will transform the system in Eq. (46) to:

x'=Ax"+B'u

y=C'x"+Du } (51)

where A’ =P 'AP, B'=P7'B and C'=CP. The controllability and observability
grammians matrices are diagonal and equal to

VT/C = WO =)= diag(Gl, 0y, ... ....,Un)

where W, and W, are the controllability and observability grammians for system after
applying the transformation P and the numbers o; are the singular values of the grammians and
are ordered such that, g; > 0y, ,i = 1,2,.....,n
Therefore the pair (A", B") could be uncontrollable pair since some of o; could be equal to zero.
Indeed there exists a subsystem (i.e., a reduced order model) which is still controllable and
observable.

Now the choice

1
P=G"'Ux2 (52)
will transform the grammians W2 and W2 to become equal and transform the system in Eq. (46)
to a balanced realization form. Namely,

WC = Vl\/o =X (53)

where X can be written in terms of two set of the singular values o1y and a(,) as

[ o)

0(2)

In this representation o,y describes the “strong” sub-systems to be retained and o) the “weak”
sub-systems to be deleted. Conformally partitioning the matrices as

A = [A11 A12] \

Ayr Az
I _ Bl (55)
B = [Bz]
C'= [C1 Cz]

and truncating the model, retaining A, = A;;, B, = B; and C, = C; as the reduced system,
and deleting the “weak” internal subsystems, Inman, 2006.
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4. SLIDING MODE CONTROL DESIGN

This section is devoted to design a sliding mode controller to the smart cantilever beam using its
reduced order model. The sliding mode control approach is recognized as one of the
efficient tools to design robust controllers for complex high-order nonlinear dynamical
systems which are operating under parameter’s uncertainty or in presence of disturbance
inputs, Al-khazraji and Hamzaoui, 2006. Sliding mode theory has been recognized as a
robust control approach in treating disturbances and modeling uncertainties through the
concepts of sliding surface design and equivalent control. The equivalent control method means
replacement of discontinuous control on the intersection of switching surfaces by a continuous
one such that the state velocity vector lies in the tangential manifold, Utkin, et al., 2009.

The major advantage of the sliding mode control design approach is the low sensitivity to
the system model parametric variations and disturbances which eliminates the necessity of
exact modeling, Bandyopadhyay, 2005. The sliding mode design method consists of two steps.
The first step, a sliding surface is designed so that the state trajectory of the plant forced to the
required surface, and the second step is to design a control law such that the system remains on
the sliding surface. Therefore, the design of SMC includes the determination of sliding surface
and controller design, Balamurugan and S. Narayanan, 2000.

To design a sliding mode control to the reduced order model of the smart beam the
Reduced Model (RM) and the Residual Model (RSM), Dorf, 2003. are presented here as
follows; according to the balance realization the linear state model for the cantilever beam, as
given in Eq. (51) are rewritten as follow;

X'R = Aerr + AZRxR + Bzu
y = Crxp + Crxp

)'Cr = Alrxr + AleR + Blu}
(56)

where x,, € R, is the reduced model states, x; € R™" is the residual model states, and

4 A;';-(r AI; (n-r)
- A(n—r)xr A(n—r)x(n—r) ’
2r 2R

Ber
5| ppenal

Bz(n—r)x 1

C = [CT}XT Céx(n_r)]
where the pair (44, B;) is a controllable pair with highest controllability and observability
grammian. The RM of Eq. (51) from Eq. (56) is

X’r = Alrxr + AleR + Blu (57)

In order to design a SMC for the reduced model, and as a first step, it is required to
transform Eq. (57) to the so-called Regular Form (RF). The sliding mode control had two-stage
design procedure which is the selection a switching manifold and then finding control enforcing
sliding mode in this manifold, these two stage becomes simpler for systems in RF. The regular
form consists of two blocks; the first block does not depend on control, whereas the dimension of
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the second block coincides with that of the control, Utkin, et al., 2009. The RM is decomposed
first to the form;

Xr1 = A1r11Xr1 + A1r12X%2 + Aigaxg + Bllu} (58)
Xry = A1r21Xr1 + A1r22X2 + A1gaXg + Biou

where:

X
x. =", x, ERTY x,., €ER®
r xr2 yrrl A2

AOIX(T—&) AOEX(Z Ale

1r22

A(r—a)x(r—a:) A(r—a)xal

_ 1r1l 1r12
Ay = [

(r-a)xa
Ay = AlRl] and , B, = [311 ]

1r21 Bixzxa

The required transformation matrix to the RF is presented in the following proposition.
Proposition (1) The RM as given in Eq. (58) is transformed to the RF via the following
transformation;

o= [ =t = [l T o 59)

Z2 ax(r—a) Iy Xr2

where I and O are the identity and zero matrices respectively with the matrix size given as the
subscript.

Proof: The validity of the transformation T, can be proved as follows; first it is needed to show
that T;. is a nonsingular matrix and then to show that the RM is transformed to the regular form
via T,.. The transformation matrix T,. is nonsingular since, Bernstein,2009.

I(r—a) _BllBl_Z1
Oax(r—a) Ia
= detly_qdetl, =1

det(T,) = det

Secondly, the RM in terms of the new state z is;
Z = TTAerT_lz + TTAIR'XR + TT-Blu (60)
All what it is necessary to prove it is that the control term T,.B;u doesn’t appear in z;. Namely;

I(r—a) _BllBl_Z1

O¢—
T.B, = Bll] _ [ (r a)xa]

B12 Blz

Oax(r—a) Ia

Accordingly the RM dynamics becomes (The RF model);

2y = Apy121 + Ap1azy + Agixg } (61)
Zy = Ayp12y + AppaZy + Apaxg + Biou
Where
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~

“ A
Ay = TrAerr_1 l i

A
Ajp = T Ajg = [ Rll

Remark 1: By considering the transformation matrix T,, which it is devoted to the RM state
only, one can easily find the overall non-singular transformation matrix to system model state x
(Eg. (51)) in the form

Z
X=\|2

XR

rXr
T

Orx(n—r)

62
O(n—T)XT I(n—r)x(n—r) ( )

:TrTx:l

And accordlngly Eq. (51) is transformed to
= T, AT 7% + T,rBu
Or
Z = Ar11Z1 + Aruzz + ARlxR
Zy = Ar21Z1 + Ar22Z2 + AszR + Byou (63)
Xp = Ay312y + Ay3p2; + Apsxp + Byu

Equation (63) can be named as the Total Regular Form (TRF) model where the RF model (Eq.
(61)) is the upper part of it.
Note (1) that det(T,;) = det(T;.) = 1 and the total transformation from x to X is

X=TqTyx =Tx (64)
where

T =TT, (65)
T, =P~1

Remark 2: In the RF model in Eq. (61) the terms A;z,xz and A;r,xg are the matched and
unmatched disturbances, Castafios and Fridman,2006.

Proposition (2): For the RF model in Eq. (61) with @ = 1, the sliding mode controller that will
regulate the system state x to the origin is given by

U= Uy + U (66)
where

s=2,+Gz,G € RV (67)
Uy = _szl(Ar21Z1 + Arp22y + GAp121 + GAr1222) (68)
us = k * sgn(s) (69)
k= |B12|_1|AR2 + GARll * SUP¢solXp| + ko, kp >0

(70)

With the selection of the matrix G such that;
i. the matrix (A1, — A;12G) is Hurwitz

ii. the matrix (A + BH) must has (n — 1) negative roots plus one equal to zero value
where

H= _szl[(l‘irm + GArn) (Arzz + GArlZ) (ARZ + GARl)]T (71)
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iii.  the following control performance condition is satisfied;

R¢ = min;—_,|Rf| > mini—;_,|R?| = R?
(72)

Where R{ represents the real term of the it" eigenvalue of (A + BH) except zero and R?
represents the real term of the i** eigenvalue of A. The zero eigenvalue of (A + BH) is due to
constrain the system state to the sliding manifold s = 0.

Proof: the objective of the SMC is to direct the sliding variable s to the origin using a
discontinuous control action. Accordingly, a SMC is designed such that it makes the derivative

of the candidate Lyapunov function V(s) = %52 negative definite. The time derivative of V is
V(s) =s*s$
and the time derivative of s is
$=2,+ G2y = Ap17y + Arppzy + Agoxp + Bipu + GApy1 2y + GA,yp7, + GAgyxp
Select the control law as
U= ug+ Uy
Where u, and ug are the nominal (continuous) and the discontinuous control terms, the s then
becomes;
§=App121 + AArZZZZ t GAr112y + GAr1222 + BiaUo + Bials + ApaXg + GApy Xg
= Byyus + (Apgy + GAgy )xg
Where the control term wu, is selected to eliminate the known terms in s as;
Uy = —szl(Ar21Z1 + Argzy + GApyzy + GArlZZZ)
The term (ARZ + GARl)xR is the unknown term due to the unmeasurable (or estimated) states xg
and for which ug is devoted as follows;
us = k * sgn(s)
To this end s becomes;
S =By *k *sgn(s) + (ARZ + GARl)xR
= —|Byz| * k * sgn(s) + (ARZ + GARl)xR
where B;, < 0. The discontinuous gain k is determined such that V(s) < 0. So let k be given
by
k = |312|_1|AR2 + GARll * SUPesolXr| + ko, ko >0
Then V(s) becomes
V(s) =ss= s{—IBlzl * kxsgn(s) + (ARZ + GARl)xR}
= —|s||Bi2l xk + S(ARZ + GARl)xR
< —|s||Bi2| xk + |S||(AR2 + GARl)le = _|5|(|B12| *k — |AR2 + GARlllle)
= —|S|{|B12| * (|312|_1|AR2 + GARll * SUP¢»o|Xg| + ko) - |AR2 + GARl'lle}
= —|S|{ko + |AR2 + GARll(Suptzolle - |xR|)}
Since (supesolxrl — |xz|) > 0 Vt, then V(s) < 0. This will lead to s = s = 0 after a finite
interval of time. To this end, the attractiveness of the sliding variable s is proved but then it is
required to show that the RM is asymptotically stable during sliding mode and also to derive the
matrix H that will ensure the asymptotic stability of the control system. To show that the RM, as
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given in Eq. (61), Eq. (67) is solved to z, when = 0, to get z, = —Gz;. Then sub z, in the first
equation in Eq. (61) to obtain the dynamics of z; during sliding motion

Z; = Ar1121 + ArlZ (=Gzy) + ARlxR = (Arn - Ar1zG)Z1 + ARlxR

For a controllable pair (4,11, 4,1;) the matrix G can be selected such that the matrix (4,1, —
A,1,G) is Hurwitz, which also determine the sliding motion dynamics. Now the objective is to
derive the matrix H during sliding mode based on the equivalent control as follow;

[Sleq =0 = Ary1zy + Argpzy + Agyxg + Bioueq + GAr1121 + GArz2, + GAgixp
Solving for u,,
Ueq = _szl{Ar21Z1 + Arz22; + Apaxg + GAr1121 + GAp122; + GARIxR}

= _31_21{(/101 + GAr11)Z1 + (Arzz + Gl‘imz)Zz + (ARZ + GARI)xR}
= —szl[(l‘irn + GArn) (Arzz + GATlZ) (ARz + GARl)]

Z1
22]
XR
= =B} |(Arp1 + GAr11) (Ao +GAriy) (Ary + GAgy)|2
= —szl[(l‘irn + GArn) (Arzz + GATlZ) (ARz + GARl)]Txo
- U, = Hx  where
H = —szl[(l‘irm + Gl‘irn) (Arzz + GAmz) (ARZ + GARI)]T

Now sub u., in Eq. (46) to get
x =Ax +BHx = (A + BH)x

For the control system to be asymptotically stable the matrix (A + B H) must be Hurwitz.
But since the state is constrained to the sliding manifold s = 0 during sliding motion (s = 0 is a
hyperplane of dimension n — 1 in the state space) so one of the eigenvalue of (A + B H) is equal
to zero. Accordingly, the remaining n — 1 eigenvalues must be of negative real part. Finally, the
performance of the proposed SMC to suppress the smart material vibration is determined by the
eigenvalues of the control system during sliding motion. If the minimum (but differ from zero)
absolute real term of the " eigenvalue of (A + BH) is greater than that for the original
systemA , then the control system will attenuate and suppress the smart cantilever vibration
effectively. This idea is coined in condition (72).

The sliding mode controller, as in Eq. (66), that grantted asymptotic stabilty of the reduce
model, may also cause the unstability for the system dynamic which named the control spillover.
In the following section the avoideness of spillover problem is proved to happen if the SMC
staisfies the performance condition as given in proposition (2).

4.1 Control Spillover Problem and control performance condition

To control vibration of a smart structure, a controller is usually designed based on a reduced
order model of the system. When such a reduce order model based controller is applied to the
full order system model, the actuating force that reduce the vibration of the lower modes will
also influence the residual system model of the structure. Consequently it may produce
undesirable vibration due to the unmodeled dynamics. This phenomenon is known as control
spillover, Meirovitch, 1990 .

148



Number 9 Volume 22 September 2016 Journal of Engineering

In the proposed SMC presented in proposition 2, the control spillover is avoided via the
second condition imposed on the selection of the matrix G. Morover the smart cantilver beam
dynamics with the SMC will be given by;

x =Ax +BHx = (A + BH)x (73)

which represent the whole model matrix after applying the sliding mode control.
Remark (3): the smart cantilver beam dynamics as given in Eq. (73) is derived based on the
equivalent control concept in SMC theory.

Remark (4): The second condition ii. can be used in measuring the performance of the
proposed controller; where a higher vibration suppression can be achieved for large difference
between R¢ and R°.

5. SIMULATION RESULTS AND DISCUSSION

In this section the simulation results for a smart cantilever beam, which is subjected to an
initial tip deflection, are presented. MATLAB software is used as a simulator to the cantilever
beam system. The physical and geometrical specifications for the beam are given in Table 1
below. To show that the derived model represents the system dynamics at least with respect to
the dominant natural frequencies, the natural frequencies of the beam (Eq. 47) are calculated and
compared with the natural frequencies obtained from the ANSYS program. The results are
shown in Table 2 with a good agreement.

The balance realization and order reduction process for the system model had been
performed to reduce its states form (24) states to (3) states, without significant affect to its
dominant mode. This is demonstrated in Fig.2 in the Bode plot. The number of states is equal to
the selected singular values in Table 3 for the diagonal elements of matrix X (the diagonal
elements are the singular values of the grammians o;, i = 1,2, .....,n). Acoordingly the reduced
order model matrices are determined according to section three with approperate dimension and
only three states. By using the reduce order model states x,. € R3, the designed sliding mode
controller is applied to the cantilever beam and the system is simulated for 15 mm initial tip
displacement. To investigate the stability of the smart cantilever, (the total system model with
the SMC), the eigenvalues are determined based on the equivalent control, i.e., during sliding
motion. The new system eigenvalues are presented in the second column of Table 4. In this
table, in the second column, one of the eigenvalues (before the last one) is nearly equal to zero,
while the minimum (but differ from zero) absolute real term is greater than that for the original
system A (the first column). This agrees with what has been pointed in section four.

For the first set of numerical simulation, a (0.00001) second is used as a period of
integration to the sliding mode control system. In Fig.3, the controlled tip displacement is
compared with the open loop case. The ability of the SMC in stabilizing the tip displacement is
clarified in this figure where it required about 2.5 second only. In addition, the control input
voltage to the piezoelectric element, shown in Fig.4, is switched between 200 and —200 volt.
This is a consequence of the discontinuous nature of the proposed SMC. Additionally the sliding
variable is plotted in Fig.5 where it reaches zero value after a very small period of time. The
oscillation of the sliding variable is because that the sliding variable dynamics is affected also by
the remaining states which ignored during getting the reduced order model.
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In the real application of the suggested controller, it may be difficult to use 0.00001 second
as sampling time for the control input where it is required to change the control voltage after
each 0.00001 second. In order to access the real situation, the time period for the control input is
taken equal to 0.0025 second. Consequently, the second set of numerical simulation use these
time numerical values. The control performance is similar to the first set of simulation as
clarified in Figs.6, 7 and 8 for the sliding variable, the tip displacement and the control input
voltage respectively where, as can be seen, the vibration suppression ability is nearly the same as
in the first set of simulation. This enhances the applicability of the suggested controller.

From Figs.4 and 8 it can be seen that the control input voltage to the piezoelectric still
actuated in full value in spite of the sliding variable equals zero approximately. This makes
system chatter because the control voltage switches between the full input voltage due to the
oscillation of the sliding variable s around the zero with a very small amplitude. To remove or
attenuate the chattering effect, the signum function Eq. (69) is replaced by a continuous
approximate function (the arc tan function), Edwards, et al., 1998. It is given by;

sgn(s) = % * tan~1( 10 * s). Replacing sgn(s) by the approximation given above will prevent
chattering and smoothing the values of the input voltage as shown in Fig (9). Eventually the
sliding variable and the tip displacement are shown in Figs.10 and 11 respectively, which proves

that the control performance is as in the case of using signum function but with control voltage
tends to zero after the beam vibration is die out.

6. CONCLUSIONS

In this paper, the sliding mode was designed to suppress the vibration induced in a
cantilever smart beam subjected to an initial tip displacement. The state space model is obtained
using the finite element approach and modal analysis resulting after appropriate modal reduction.
During the theoretical calculations, the 24™ order system model obtained from the finite element
model is reduced to the three order using a model reduction technique based on balance
realization without affecting its dominant modes. For the proposed SMC, the control system
stability and the control performance condition are derived in Eq. (71) and inequality (71)
respectively. When the (4 + B H) matrix has (n — 1) negative roots plus one equal to zero the
control system is asymptotically stable and the control spillover is avoided. These results were
proved by making the derivative of the candidate Lyapunov function negative definite and using
the equivalent control concept and also clarified in Table 4 where 23 negative real eigenvalues
plus one value very close to zero (1.056e-09). In addition, the control performance was
maintained at the desired level via satisfying inequality (72) as can be detected in Table 4 where
the largest eigenvalue (has negative sign) for the closed loop system is smaller than that for the
open loop case. The numerical simulations prove the effectiveness and performance of the
proposed SMC where the cantilever beam vibration is suppressed in effective way when
compared to the open loop case. Finally, and in order to overcome the chattering problem the
signum function was replaced with the approximation given by the arctan function with
appropriate parameters. The chattering is attenuated; the sliding variable and the control voltage
input are accordingly smoothed as shown in Figs.9 to 11 with the same control performance.

150



Number 9 Volume 22 September 2016 Journal of Engineering

REFERENCES

Al-khazraji, A. and Hamzaoui, A., 2011, Robust Tracking Control Of Uncertain
Dynamic Nonlinear Systems Via Type-2 Fuzzy Sliding Mode Approach, International
Federation of Automatic Control (IFAC), vol. 18, pp. 4181-4185.

Balamurugan, V. and Narayanan, S., 2000 Active Vibration Control of Piezolaminated
Smart Beams, PP. 103-114.

Bandyopadhyay, B., 2005, Vibration Control of Smart Structure Using Second Order
Sliding Mode Control, IEEE Conference on Control Applications, PP. 1691-1696.

Bandyopadhyay, B., 2007, Modeling, Control and Implementation of Smart Structures,
germany Verlag Berlin Heidelberg.

Bartolini, G., and Pisano, A., 2003, A Survey of Applications of Second-Order Sliding
Mode, International Journal of Control, vol. 76, no. 9, pp. 875-892.

Bernstein, D. S., 2009, Matrix Mathematics, New Jersey: Princeton University Press.

Biswas, et al., 2009, Sliding mode control of quadruple tank process, Mechatronics, vol.
19, pp. 548-561.

Capisani, L. M.,2009, Design and Experimental Validation of A Second-Order Sliding-
Mode Motion Controller for Robot Manipulators, International Journal of Control, vol.
82, no. 2, pp. 365-377.

Castafios, F. and Fridman, L., 2006, Analysis and Design of Integral Sliding Manifolds
for Systems With Unmatched Perturbations, IEEE Transactions On Automatic Control,
vol.51, No. 5, pp. 853-858.

Chhabra, D., Narwal, K., and singh, P., 2012, Design and Analysis of Piezoelectric Smart
Beam for Active Vibration Control, International Journal of Advancements in Research &
Technology, vol.1, No.1.

Clough, R. W., 2003, Dynamics Of Structures, USA: Computers & Structures, Inc.

Dorf, R. C., 2003, Optimal Control System, New York: CRC Press LLC.

Edwards, C., Spurgeon, S. K., and Patton, J. R., 1998, Sliding Mode Control, Theory and
Applications. Taylor & Francis.

Ferrara, A., and Vecchio, C., 2009, Second order sliding mode control of vehicles with
distributed collision avoidance capabilities, Mechatronics, vol. 19, pp. 471-477.

151



Number 9 Volume 22 September 2016 Journal of Engineering

Inman, D. J., 2006, Vibration with Control, USA: John Wiley & Sons Ltd.

Itik, M. and Salamci, U., 2005, Active Vibration Suppression of a Flexible Beam via
Sliding Mode and H.. Control, IEEE Conference on Decision and Control, and the
European Control Conference , vol. 44, pp. 1240-1245.

Jalili, N.,2010, Piezoelectric-Based Vibration Control, USA: Springer Science Business
Media, LLC.

Janardhanan, D., 2001, Model Order Reduction and Controller Design Techniques.

Kumar, S., Srivastava, R. and Srivastava, R.K., 2014, Active Vibration Control Of Smart
Piezo Cantilever Beam Using Pid Controller, International Journal of Research in
Engineering and Technology, vol. 3, No. 1, PP.392-399.

Magnani, A. F., 2007, Motion Control of Rigid Robot Manipulators via First and Second
Order Sliding Modes, J Intell Robot Syst, vol. 48, pp. 23-36.

Meirovitch, L., 1990, Dynamics and Control of Structures, USA: John Wiley & Sons.

Oveisi, A., and T. Nestorovi¢, 2014, Robust Mixed H 2/H owoActive Vibration Controller
In Attenuation Of Smart Beam, Mechanical Engineering , vol. 12, No. 3, pp. 235-249.

Qaiser, S. H., 2009, Estimation of Precursor Concentration In A Research Reactor by
Using Second Order, Nuclear Engineering and Design, vol. 239, pp. 2134-2140.

Sachs, G., 2004, Intrinsic Dynamic Analysis And Control Design Of Integrally Actuated
Helicopter Blades, Usa: Cand.-Ing. Johannes Traugott.

Utkin V. L., Guldner J., and Shi J., 2009, Sliding Mode Control in Electro-mechanical
Systems, CRC Press. Taylor & Francis Group.

Williams, R. L. and Lawrence, D. A., 2007, Linear State-Space Control Systems, USA:
John Wiley & Sons, Inc.

Zhou, K., Salomon, G., and Wu, E., 1999, Balanced Realization And Model Reduction
For Unstable Systems, International Journal Of Robust And Nonlinear Control, vol. 9,
pp. 183-198.

NOMENCLATURE
altoa4  constants used in solution of the displacement function, dimensionless.

A
A

A

b
p

cross-section area of the beam element, mm?.
cross-section area of the piezoelectic element, mm?.
state matrix.
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width of the beam, mm.
input matrix.

constant which equal to \/EI/pA

output matrix.

piezoelectric constant, m/V.
piezoelectric stress/charge constant, VmN™
young modulus of the beam, GPa.

young modulus of the piezoelectric, GPa.
external force, N.

control force, N.

force acting at the node, N

signal condition device, dimensionless.
constant vector.

sensor current, Amps.

stiffness matrix of the beam element.
stiffness matrix of the piezoelectric element.
length of the beam element, mm.

length of beam, mm.

mass matrix of the beam element.

mass matrix of the piezoelectric element.
shape function.

vector displacement.

velocity vector.

acceleration vector.

thickness of the actuator, mm.

thickness of the beam, mm.

Kinetic energy.

control input, Volt.

Strain enegy.

actuaor voltage, Volt.

sensor voltage, Volt.

displacement function.

dgree of freedom.

damping coefficient, dimensionless.
strain.

density of the beam, kg/m®

Density of the piezoelectric patch kg/m®
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piezoelectric actuator
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Figure 2. Bode plot
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Figure 3. Tip Displacement for open loop and closed loop control system
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Figure 4. The control input voltage to the piezoelectric
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Figure 5. The sliding variable s
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Figure 6. The sliding variable s
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Figure 7. Tip Displacement for open loop and closed loop control system
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Figure 8. The control input voltage to the piezoelectric
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Figure 9. Control input voltage to the piezoelectric by using approximate function
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Figure 10. The sliding variable s using approximate function
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Figure 11. Tip Displacement for open loop and closed loop control system using approximate

function

Table 1. The specification for the flexible cantilever beam and piezoelectric

Physical Specification Cantilever Beam (st-st ) Piezoelectric
Length L=276 mm l, =46 mm
Width b =33 mm b= 33 mm
Thickness tp, =1 mm t, =0.762 mm
Young modulus Ep =193.06 Gpa Ep-68 Gpa
Density pb=8030 Kg/m® pp = 7700 Kg/m®
Damping coefficients a=0.8 & p=6.8E-5
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Table 2. Natural frequency results of the system

Journal of Engineering

MATLAB ANSYS o
Natural Frequency (H2) (H2) Error%
fy 11.878 11.421 3.125
f, 61.376 61.148 0.372
f3 181.06 180.1 0.558
fa 153.5 151.3 1.45
Table 3. Singular value of grammians matrix
diag { 0.0011404 0.0011399 0.000698  0.0006932 0.00058469
Y= 0.00057315 0.00040318 0.00037605 0.00034589 0.00032743
0.00018763 9.8742e — 05 6.1004e — 05 5.7566e — 05 ...... }
Selected
singular
values for o) = dig{0.0011404 0.0011399  0.000698}
model
reduction
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Table 4. System eigenvalues and controlled system eigenvalues

System Eigenvalues

Controlled System Eigenvalues

-96730 + Oi

-96757 + Oi

-84999 + Oi

-85330 + Oi

-21374  +13107i

-20079 +  14749i

-21374 - 13107i

-20079 -  14749i

-11184 +  14277i

-10038 + 17969i

-11184 - 14277i

-10038 -  17969i

-17782 + (0]

-17721 + Oi

-17342 + Oi

-17338 + Oi

-6491.8+ 12198i

-6289.6 + 11276i

-6491.8- 12198

-6289.6 - 11276i

-3092.9+ 9021.6i

-4558.6 + 7464.2i

-3092.9- 9021.6i

-4558.6 - 7464.2i

-1122.7+ 5634.6i

-1898.7+ 5931.3i

-1122.7 - 5634.6i

-1898.7 - 5931.3i

-482.27+ 3733.7i

-285.41+ 3354.9i

-482.27 - 3733.7i

-285.41- 3354.9i

-190.95+ 2359.6i

-135.03 + 1341.8i

-190.95 - 2359.6i

-135.03 - 1341.8i

-44.402 + 1136.8i

-3.3486 + 1148.7i

-44.402 - 1136.8i

-3.3486 - 1148.7i

-5.4563 + 385.6i

-14.623+ 386.09i

-5.4563 - 385.6i

-14.623 - 386.09i

-0.58936 + 74.626i

1.056e-09 + 0i

-0.58936 - 74.626i

-43.536 + 0i
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