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ABSTRACT

The shear strength of soil is one of the most important soil properties that should be identified
before any foundation design. The presence of gypseous soil exacerbates foundation problems. In
this research, an approach to forecasting shear strength parameters of gypseous soils based on
basic soil properties was created using Artificial Neural Networks. Two models were built to
forecast the cohesion and the angle of internal friction. Nine basic soil properties were used as
inputs to both models for they were considered to have the most significant impact on soil shear
strength, namely: depth, gypsum content, passing sieve no.200, liquid limit, plastic limit, plasticity
index, water content, dry unit weight, and initial voids ratio. Multi-layer perceptron training by the
backpropagation algorithm was used in creating the network. It was found that both models can
predict shear strength parameters for gypseous soils with good reliability. Sensitivity analysis of
the first model indicated that dry unit weight and plasticity index have the most significant effect
on the predicted cohesion. While in the second model, the results indicated that the gypsum content
and plasticity index have the most significant effect on the predicted angle of internal friction.
Keywords: Gypseous soil, Cohesion, Angle of internal friction, Artificial Neural Networks.

dpc U] Aupanl) Gl aladiuls Aucwall quill (el daslie cDlalaas Gl

biad) 3 gana anl y A 3 Al dease Glasdw 3L L2 * g A 3 g anla Lo
e Luue M i piiwale L
DY) daals Auigl) 4K Opgl Anala gl 4K Ol daala fAunigl) 45
daMAl)

I5ns G Gua) JSUie ailig L el (gl aranad U8 laaaat Cingyy ) LAl pailiad aal (e Gl daslie a3
Apalel) (ailadl) o 3l dpcall Gl Gadl) doglie cDlabeay 3l Ayl alagd cCanall 138 (8 o5 LAl A5

*Corresponding author

Peer review under the responsibility of University of Baghdad.
https://doi.org/10.31026/j.eng.2022.04.03

This is an open access article under the CC BY4 license http://creativecommons.org/licenses/by /4.0/).
Article received: 3/12/2021

Acrticle accepted: 4/1/2022

Acrticle published: 1/4/ 2022

39


http://www.joe.uobaghdad.edu.iq/
http://creativecommons.org/licenses/by%20/4.0/
mailto:dunia_salem@yahoo.com
mailto:kr_aljanabi@uoanbar.edu.iq
mailto:zeyadkhaled@eng.nahrainuniv.edu.iq

Number 4  Volume 28 April 2022 Journal of Engineering

Alasiad w3 3) . A Y Ay dlalally sill aadsat ol & 3 Aue lilaiaY) duanl) KA aladialy 4yl
toy Aol al daglia o dueal SSYI M @l s Y Gadsall D eBlAAS Ll Dpulid (alliad des
sl Bang celal) (ggina cAigalll ydge (Aigalll an (dgand) as 200 A3 Jue (g Slall dond (and) (geina ¢(Basl)
Sall L) daay)led aladinly Glidal) Saaete COLE) ARyl ASAN s S A le)dll Ay ccalal)
Cun L Bas Adgiger Dnll il Gail) daglie Llea gail) e 5l (uadgail) DSI ol ang g . dpaill ol JaY
lualaill And sial) Aatl) e SV 800 Lagd Aigalll ydigay el (sl sang of I U1z 3saill dpasbiaall s L]
gl dadgial) Al o HSY) LRl Legd digalll Jisay Guad) ggima of A GBI zasaill il el Ly
Ll sy

e Ul aY) Aaeasl) IS ¢ AN MY Al el chaall L) sAsad ) cilalsl

1. INTRODUCTION

Gypseous soils are one of the most problematic materials that challenge geotechnical engineers.
Constructions on gypseous soil may experience unpredictable deformations, which may cause
catastrophic failure. Several structures in Iraq have encountered various patterns of cracks and
settlements primarily generated from the dissolution of bonding materials of soil particles due to
water-table fluctuation. Gypseous soils demonstrate high bearing capacity and very low
compressibility when dry. On the contrary, sudden collapsible behavior is expected when they are
exposed to water (Al-Saoudi et al., 2013).

Gypseous soils are widely distributed, especially in Iraq, where the arid area of hot climatic is
present (Shakir, 2017).

Using standard experimental tests, determining soil geotechnical parameters is often costly and
time-consuming, especially when investigating wide areas. It becomes more complicated when
dealing with gypseous soil. A technically acceptable alternative approach is required to predict
those parameters based on easily determined soil properties. The Artificial Neural Networks
(ANN) technique has already been used as a prediction method to deal with some geotechnical
aspects; therefore, it can be examined to fit the prediction of shear strength parameters (C) and (o)
too.

Concerning previous studies on shear strength parameters, some recent related studies can be
summarized as follows:

(Al-Ameery, 2003) used gypseous soil from Al-Daur town with (66.4%) gypsum content. The
results of the Triaxil test of saturated gypseous soil showed a (38%) reduction in cohesion (C) and
(52%) reduction in the angle of internal friction (¢) due to soaking.

(Khan, 2005) used gypseous soil with (37%) and (57%) gypsum content, where it was found that
both cohesion and the angle of internal friction increased with increased compaction effort. The
cohesion continued to grow with increased molding water under various compaction efforts until
it had reached its maximum water content and then began to decrease in the same manner as a
compaction curve did. However, the angle of internal friction decreased with increased molding
water content.

(Karim et al., 2013) used gypseous soil from Al-Qarma town with a gypsum content of (50%).
The direct shear test showed that shear strength parameters increased and then decreased with
increased kaolinite and bentonite additives. Higher shear strength parameters were obtained when
bentonite was used rather than kaolinite for the same percentages of additives. It was concluded
that bentonite was much more effective in increasing (C) and reducing (¢) than kaolinite. However,
kaolinite was much more effective in reducing (C) than bentonite.
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(Khaboushan et al., 2018) predicted unsaturated shear strength parameters for soils with different
clay, sand, and silt percentages, particle size, organic matter (OM) content, and calcium carbonate
(CaCO03) content. Fourteen soil samples from Northeast Iran were used, and Multiple Linear
Regression (MLR) was utilized to estimate the shear strength parameters of saturated soil tested
by direct shear tests.

(Schanz and Karim, 2018) studied the effect of the short-term soaking period on shear strength
parameters (C and @) of (12) gypseous soil samples from Tikrit town. Direct shear tests using a
pneumatic shear device were carried out on (4) dry and (8) soaked soil samples, in which (4) were
soaked in water for (6 hr) and (4) were soaked for (24 hr). The normal stresses used were (50, 100,
200, and 400 kPa). The results for the (6 hr) soaked samples showed a (12.24%) reduction in the
angle of internal friction and (91.5%) reduction in cohesion compared to dry samples. However,
the results for the (24 hr) soaked samples showed (9.2%) reduction in the angle of internal friction
and (94.24%) reduction in cohesion compared to dry samples. The loss in strength due to soaking
was clearly noticed in cohesion, which can be attributed to softening.

(Najemalden et al., 2020) used a backpropagation neural network approach to model the relation
between the collapse potential of gypseous sandy soil and seven soil properties employed as inputs,
including gypsum content, specific gravity, initial dry unit weight, initial degree of saturation,
initial voids ratio, initial water content and passing sieve #200. The relative importance analysis
revealed that the specific gravity and gypsum content were the most important factors. The results
revealed the veracity of using ANNs as an effective method to estimate the collapse potential of
gypseous sandy soils.

(Mawlood, 2021) used linear and nonlinear regression to simulate shear strength parameters and
compressibility characteristics of gypseous soils. A set of 220 data items gathered from several
published articles were used. The compression index and collapse potential were found to be well
predicted in terms of gypsum concentration, initial water content, initial voids ratio, liquid limit,
plasticity index, total unit weight, and dry unit weight using adjusted (R?), Mean Absolute Error,
and Root Mean Square Error. The sensitivity analysis of the models revealed that the liquid limit
and total unit weight were the most influential parameters in determining cohesion and angle of
internal friction, while the ratio of specific gravity to initial voids ratio was the most significant
physical soil property in estimating the collapse potential.

(Mohammed et al., 2021) also used linear and nonlinear regression to estimate shear strength
parameters, collapse potential, and compression index of gypseous soils based on physical
properties by utilizing a set of 220 data items from several published studies. It was found that the
developed models did accurately predict the outputs as a function of the available inputs, including
specific gravity, moisture content, density, and Atterberg limits. It was also found that the gypsum
content was well associated with total soluble salts, sulfate, and pH values. The models were tested
using the adjusted (R?), Mean Absolute Error, and Root Mean Square Error.

Other researchers have also conducted studies to forecast shear strength parameters (C and o)
using different methods, e.g. (Mahmoud, 2013) used standard penetration test and (Abu-Farsakh
and Titi in 2004) used cone penetration test.

This research aims to develop two reliable mathematical models capable of predicting shear
strength parameters of gypseous soils; cohesion (C) and angle of internal friction (¢) based on
basic soil properties using the ANN technique. Nine input parameters were used, aiming at more
precise results.

2. RESEARCH METHODOLOGY
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The research paradigm correlates relevant geotechnical data using the Artificial Neural Networks

technique to develop mathematical prediction models subjected to statistical analysis.

The following steps were carried out:

e Factual data available at different sources were collected concerning cohesion (C) and internal
angle of friction (@) of gypseous soils in different territories in Iraq.

e Relevant soil properties needed to build suitable prediction models were identified.

e The ANNS technique basics, characteristics, elements, and types, especially perceptrons, layers,
and algorithms, were carefully studied and employed for modeling.

e Models Creation using the ANNs technique.

o Statistical analyses were carried out to test the reliability of the results.

2.1 Research Limitation

The effect of applied stress and degree of saturation on cohesion (C) and internal angle of friction
() were not taken into consideration due to the scarcity of relevant data of gypseous soils in
different territories in Irag.

3. ARTIFICIAL NEURAL NETWORK

Acrtificial Neural Network consists of a large number of units known as nodes. Weighted links
connect each node to the other nodes. These weights represent information used by the net to solve
the case to be solved. This network is composed of many layers of nodes. The first layer is the
input layer, where the inputs (dependent variables) are applied to the net. The last layer is the
output layer, where the outputs (independent) are extracted. A number of nodes serve as preceding
items in the hidden layers between the input and output (Al-Musawi, 2016). The true power and
advantage of ANN lie in its ability to represent both linear and nonlinear relationships from data
being modeled (Lal and Tripathy, 2012).

The input from each processing element in the previous layer (xi) is multiplied by an adjustable
connection weight (w;j) at each processing element, the weighted input signals are summed, and a
threshold value (6;) may be added. This combined input (I;) is then passed through a transfer
(activation) function f(l;) to produce the output of the processing element (y;). The output of one
processing element provides the input to the processing elements in the next layer. This process is
summarized in equations (1) and (2) (Al-Janabi, 2006).

lj = Xwjixi + 6 (1)
yi = f(lj) )
where:

lj: is the activation level of node (j),

wiji: is the connection weight between (j) and (i),
Xi: is the input from node (i) for (i=0, ... n),
0;: is the bias or threshold for node (j),

yj: is the output of node (j), and

f(1j): is the transfer (activation) function.

The best sets of random data divisions were used to develop each model, which was found to be

(33) data for training, (7) data for testing, and (10) data for validation for model (C). On the other

hand, the best sets were (30) data for training, (6) data for testing, and (14) data for validation for

model (). Default parameters of the SPSS v.23 programs were utilized to select a learning rate of
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(0.4), momentum term of (0.9), and tanh or sig transfer functions in the hidden and output layers
nodes. Several networks with different number of hidden nodes were tried. A network with two
hidden nodes was found to be the best for model (C) using tanh transfer function in the hidden and
output layers nodes. The testing set of this model revealed the lowest prediction error of (0.016%)
with a high coefficient of correlation (R = 97.63%) and a high coefficient of determination (R? =
95.33%). On the other hand, a network with two hidden nodes was found to be the best for model
(9) using the sig transfer function in the hidden layer nodes and the tanh transfer function in the
output layer nodes. The testing set of this model revealed the lowest prediction error of (0.283%)
with the coefficient of correlation (R = 99.31%) and a high coefficient of determination (R? =
98.63%).

The effects of using different transfer functions were also investigated for both models. For model
(C), a better performance was obtained when the (tanh vs. tanh) transfer function was used for
both hidden and output layers, as shown in Table 1. For model (¢), the better performance was
obtained when the (sigmod vs. tanh) transfer function was used for both hidden and output layers,
as shown in Table 2.

Table 1. Effect of transfer functions on the performance of the model (C).

Parameters Transfer Function Training | Testing | Validation R R
Hidden layer/Output layer| SSE* | SSE* SSE*
Model (C) Tanh tanh 0.038 | 0.016 0.410 | 97.6% |95.33%
Learning rate (0.4) tanh sigmod 0.030 | 0.048 0.101 | 96.6% 93.90%
Momentum rate (0.9)| sigmod sigmod 0.085 | 0.071 0.902 | 90.5% | 82.0%
No. of Nodes (2) sigmod tanh 0.040 | 0.040 | 0.252 |89.5% | 80.0%

* Sum of Squared Error.

Table 2. Effect of transfer functions on the performance of the model (o).

Parameters Transfer Function Training | Testing | Validation R R?2
Hidden layer/Output layer| SSE* | SSE* SSE*
Model () Tanh tanh 0.085 | 0.455 0.161 | 98.1% | 96.2%
Learning rate (0.4) tanh sigmod 0.026 | 0.284 0.046 | 98.0% |96.00%
Momentum rate (0.9)| sigmod sigmod 0.884 | 0.891 0.972 | 96.0% | 92.1%
No. of Nodes (2) sigmod tanh 0.014 | 0.283 0.015 199.31%98.63%

* Sum of Squared Error.

4. INPUT AND OUTPUT VARIABLES

A compilation of available data on gypseous soils from different regions in Iraq was derived from
fifty research publications, theses, and dissertations showing laboratory tests results of gypseous
soil shear strength parameters (C) and (). Nine parameters were used as inputs to develop two
prediction models using SPSS V23. Two mathematical equations to predict cohesion (C) and angle
of internal friction (¢) were determined. The input parameters included: depth, gypsum content,
liquid limit (LL), plastic limit (PL), plasticity index (PI), passing sieve #200, dry unit weight (ya),
water content (wc), and initial void ratio (eo).

Statistical analysis was carried out to ensure that the subsets of training, testing, and validation
data represent the same statistical population as shown in Tables 3 and 4. The results indicated
that these subsets were statistically consistent. Furthermore, t-tests were also carried out to
examine how these subsets are statistically consistent with respect to each other. The tests were
based on a level of confidence of (95%). The results of t-tests are given in Tables 5 and 6.

Table 3. Input and output statistics for cohesion (C) ANN model.
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. Actual
Statistical Actual Input Variables Output

Data set | Parameters Gypsum Sieve
Depth content L.L. P.L. P.I. #200 Yd wC [ C (kPa)

Range | 14.200 | 65.940 | 62.000 | 32.000 | 44.000 | 92.000 | 11.510 | 29.900 | 0.695 | 74.205
Min. 0.800 | 4.060 | 18.000 | 8.000 | 5.000 | 8.000 | 11.700 | 3.600 | 0.200 | 10.125
Training Max. 15.000 | 70.000 | 80.000 | 40.000 | 49.000 |100.000| 23.210 | 33.500 | 0.895 | 84.330
n=33 Mean 2.733 | 28.368 | 45.514 | 24.653 | 23.315 | 69.917 | 16.440 | 15.564 | 0.588 | 24.584
Std. 3.573 | 20.053 | 14.414 | 9.446 | 10.928 | 32.781 | 2.620 | 7.747 | 0.194 | 15.581
Range 3.500 | 40.580 | 34.700 | 7.240 | 28.800 | 6.700 | 3.000 | 7.980 | 0.265 | 33.809
Min. 1.500 | 2.600 | 21.000 | 18.260 | 1.400 | 93.300 | 14.800 | 12.520 | 0.435 | 10.747
Max. 5.000 | 43.180 | 55.700 | 25.500 | 30.200 |100.000| 17.800 | 20.500 | 0.700 | 44.555
Mean 2.786 | 14.754 | 41.814 | 20.680 | 21.134 | 98.086 | 16.540 | 17.060 | 0.574 | 21.903
Std. 1.286 | 13.848 | 10.958 | 2.428 | 9.984 | 3.269 | 1.178 | 2.666 | 0.128 | 11.444
Range 1.000 | 55.490 | 28.500 | 19.000 | 25.800 | 91.000 | 6.500 | 19.300 | 0.605 | 25.904
Min. Depth | 5.010 | 26.500 | 20.000 | 5.200 | 8.000 | 12.600 | 6.500 | 0.310 | 10.329
Validation| Max. 14.200 | 60.500 | 55.000 | 39.000 | 31.000 | 99.000 | 19.100 | 25.800 | 0.915 | 36.233
n=10 Mean 0.800 | 29.061 | 41.350 | 25.230 | 16.120 | 58.150 | 15.578 | 14.310 | 0.666 | 24.977
Std. 15.000 | 17.182 | 8.648 | 6.121 | 7.990 | 38.140 | 1.754 | 4.942 | 0.169 | 7.496

Testing
n=7

Table 4. Input and output statistics for the angle of internal friction (¢) ANN model.

. Actual
Statistical Actual Input Variables Output

Data set | Parameters Gypsum Sieve
Depth content L.L. P.L. P.I. #200 Yd wC e C (kPa)

Range | 14.200 | 65.940 | 62.000 | 32.000 | 44.000 | 92.000 | 11.510 | 29.900 | 0.695 | 12.368
Min. 0.800 | 4.060 | 18.000 | 8.000 | 5.000 | 8.000 |11.700 | 3.600 | 0.200 | 23.997
Training Max. 15.000 | 70.000 | 80.000 | 40.000 | 49.000 |100.000| 23.210 | 33.500 | 0.895 | 36.365
n=30 Mean 2.880 | 29.698 | 45.732 | 25.118 | 23.313 | 66.909 | 16.326 | 15.529 | 0.594 | 30.168
Std. 3.717 | 20.453 | 15.100 | 9.788 | 11.472 | 32.905 | 2.717 | 8.125 | 0.200 | 3.181
Range 4.200 | 15.220 | 7.000 | 3.000 | 7.000 | 0.000 | 1.410 | 3.250 | 0.217 | 1.122
Min. 0.800 | 5.000 | 40.000 | 19.000 | 18.000 |100.000| 16.690 | 14.500 | 0.423 | 29.377
Max. 5.000 | 20.220 | 47.000 | 22.000 | 25.000 |100.000| 18.100 | 17.750 | 0.640 | 30.498
Mean 2.633 | 15.037 | 41.667 | 20.167 | 21.500 |100.000| 17.612 | 16.042 | 0.483 | 29.942
Std. 1.675 | 6.360 | 2.733 | 1.472 | 2.429 | 0.000 | 0.500 | 1.066 | 0.084 | 0.392
Range 1.000 | 57.900 | 34.700 | 20.740 | 29.600 | 92.000 | 6.500 | 19.300 | 0.605 | 6.736
Min. 1.000 | 2.600 | 21.000 | 18.260 | 1.400 | 8.000 | 12.600 | 6.500 | 0.310 | 27.864
Validation| Max. 2.000 | 60.500 | 55.700 | 39.000 | 31.000 [100.000| 19.100 | 25.800 | 0.915 | 34.600
n=14 Mean 1.607 | 24.921 | 41.871 | 24.004 | 17.867 | 69.150 | 15.616 | 15.287 | 0.668 | 30.617
Std. 0.446 | 18.308 | 10.324 | 5.683 | 9.858 | 36.555 | 1.509 | 4.736 | 0.142 | 2.160

Testing
n==6

4.1 Data Division (Preparation)

The ANNs used were Multi-Layer Perceptrons trained with the feed-forward backpropagation
algorithm. The typical MLP has a number of processing elements generally known as neurons
which are arranged in layers, including an input layer, an output layer, and one hidden layer. Each
neuron in the specific layer is connected to the neuron of other layers through a weighted
connection. The input from each neuron in the previous layer is multiplied by an adjustable
connection weight.

The available data were divided into subsets to develop the ANN model. Subsets were checked
using the SPSS v.23 program to ensure the best data division. The default parameters of the SPSS
program which were applied were: linear activation function for input layer and tanh function for
both hidden and output layers.

Table 5. Results of cohesion (C) ANN model t-test.
\ Statistical | Input Variables | Actual |
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Parameters Output
Depth | SYPU L[ L | pa | Sy | we | e | CkPa)

Data set Testing
t-value -0.0379 | 1.7034 | 0.6384 | 2.1098 | 0.4860 | -2.2482 | -0.0978 | -0.8885 | 0.1924 | 0.4295
Lower critical value | -2.8478 | -2.5654 | -8.0318 | 0.1549 | -6.9039 |-53.5332| -2.1628 | -4.9377 | -0.1408 | -9.9572
Upper critical value | 2.7430 | 29.7938 | 15.4305| 7.7911 | 11.2656 | -2.8043 | 1.9634 | 1.9462 | 0.1704 | 15.3208
Sig.(2-tailed) 0.9699 | 0.0967 | 0.5271 | 0.0418 | 0.6298 | 0.0504 | 0.9226 | 0.3815 | 0.8484 | 0.6700
Results Accept | Accept | Accept | Accept | Accept | Accept | Accept | Accept | Accept | Accept

Data set Validation
t-value 1.0798 | -0.0986 | 1.1219 | -0.2272 | 1.9250 | 0.9579 | 0.9727 | 0.4809 | -1.1379 | -0.0766
Lower critical value | -1.0734 |-14.8781| -3.4731 | -5.8275 | -0.3534 |-13.0407| -0.9280 | -4.0130 | -0.2149 | -10.7489
Upper critical value | 3.5401 | 13.4930|11.8004 | 4.6735 | 14.7437 | 36.5747 | 2.6526 | 6.5215 | 0.0600 | 9.9631
Sig.(2-tailed) 0.2866 | 0.9219 | 0.2724 | 0.8223 | 0.0612 | 0.3437 | 0.3364 | 0.6331 | 0.2618 | 0.9393
Results Accept | Accept | Accept | Accept | Accept | Accept | Accept | Accept | Accept | Accept

Table 6. Results of the angle of internal friction (¢) ANN model t-test.

- Input Variables Actual
Statistical Output
Parameters Depth %gﬁf:n”t’ LL | PL | PL S#g’a’g va WC e | C(kPa)
Data set Testing
t-value 0.1579 | 3.2236 | 1.3668 | 2.6265 | 0.7825 | -5.5082 | -1.1420 | -0.3316 | 1.3269 | 0.3740

Lower critical value | -2.9271 | 5.3307 | -1.9791 | 1.1180 | -2.8980 |-45.3784| -3.5727 | -3.6588 | -0.0592 | -1.0009
Upper critical value | 3.4205 | 23.9919|10.1091 | 8.7854 | 6.5247 |-20.8043] 1.0020 | 2.6335 | 0.2821 | 1.4515
Sig.(2-tailed) 0.8754 | 0.4033 | 0.1807 | 0.0629 | 0.4394 | 0.0559 | 0.2614 | 0.7423 | 0.1934 | 0.7108
Results Accept | Accept | Accept | Accept | Accept | Accept | Accept | Accept | Accept | Accept
Data set Validation
t-value 1.8475 | 0.7449 | 0.8643 | 0.4750 | 1.5299 | -0.2032 | 0.9105 | 0.1240 | -1.2418 | -0.4781
Lower critical value | -0.1328 | -8.1651 | -5.1536 | -3.6266 | -1.7376 |-24.5001| -0.8636 | -3.7004 | -0.1943 | -2.3458
Upper critical value | 2.6785 | 17.7197 | 12.8741 | 5.8547 |12.6300 | 20.0174 | 2.2834 | 4.1841 | 0.0463 | 1.4471
Sig.(2-tailed) 0.0743 | 0.4605 | 0.3924 | 0.6374 | 0.1335 | 0.8400 | 0.3678 | 0.9019 | 0.2212 | 0.6350
Results Accept | Accept | Accept | Accept | Accept | Accept | Accept | Accept | Accept | Accept

Based on the minimum error of the testing set, the coefficient of correlation (R), and coefficient
of determination (R?), the best data division into subsets was found to be as shown in Table 7.

Output and input variables were pre-processed by scaling them to repeal their dimension in order
to assure that all variables receive equal attention during training and to be proportional to the
limits of the transfer functions used in hidden and output layers (0.0) to (1.0) for sigmoid transfer
function and (-1.0) to (1.0) for tanh transfer function. The scaled value (x») is found by equation
(3) (Mahmood and Aziz, 2011):

Scale value = 2T 3
Xmax—Xmin

where:

X: is the original value,

Xmin @nd Xmax: are the actual minimum and maximum values.

Table 7. Best data division into subsets.
Model (C) for Cohesion Model (@) for Angle of Friction
Number and (%) R R? Number and (%) R R?

Training | Validation | Testing Training | Validation | Testing
33 (66%) | 10 (20%) | 7 (14%) | 97.63% | 95.33% | 30 (60%) | 14 (28%) | 6 (12%) | 99.31% | 98.63%
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4.2 Evaluation Criteria
The statistical methods used to measure models output included:

5

Mean Percentage Error (MPE).

Root Mean Squared Error (RMSE).

Mean Absolute Percentage Error (MAPE).
Average Accuracy Percentage (AA%).
The Coefficient of Determination (R?).
The Coefficient of Correlation (R).

OPTIMUM ANN MODELS
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The connection weights obtained for both optimal ANN models (cohesion and angle of internal
friction) enables each network to be translated into a relatively simple formula. Tables 8 and 9 list
each model's connection weights and threshold levels.

Table 8. Parameter Estimates for the cohesion optimal ANN model (C).

Input Layer Hidden Layer 1
Layer Predicton . Gypsum Sieve . ) .
(Bias) | Depth content LL | PL | P.L 4000 | V¢ WC | e, [(Bias)|H(1:1)|H(1:2)
Predicted

Hidden Layerl

H(1:1) | .104 | .387 | -.129 | .337 | -.433|-.059 | .217 | -.719 | -.106 | -.003

H(1:2) | .024 | 0.033| -.080 | .498 | .274 | .931 | .524 |-1.456| -.480 | .007

Output Layer C 0.302

0.629

2.118

Table 9. Parameter Estimates for the angle of internal friction optimal ANN model ().

_ Input Layer _ Hidden Layer 1
Layer  Predictor gi.5) | Depth %gﬁf:nr? LL | PL. | Pl S#'zea’g va | WC | e |(Bias) H(1:1)H(1:2)
Predicted
Hidden Laver1 H(:1) | -917 |1.185| -1.074 | .305 | .601 |1.154 -.389 | 589 | -.366 .608
YeIlH(12) | 014 |-440| 586 | .350 | -.283 | -.202 | -.226 | -.858 | .236 | -.428
Output Layer C 811 |-2.808|1.403
The predicted cohesion (C kPa) was found to be expressed as follows:
(C)nor = Tanh [0.302 + 0.629 = H; + 2.118 * Hy] 4)
_ 1
M= [ ©)
1
Ha = [1+e(—xz)] ©
x1 = {0.104 + (0.387 * depth) - (0.129 * gypsum) + (0.337 * L.L) - (0.433 * P.L) -
(0.059 * P.I) + (0.217 * Sieve) - (0.719 * yd) - (0.106 * wc) - (0.003 * e0)} @)
X2 ={0.024 - (0.033 * depth) - (0.080 * gypsum) + (0.498 * L.L) + (0.274 *P.L) +
(0.931 * P.I) + (0.524 * Sieve) - (1.456 * yd) - (0.480 * wc) + (0.007 * e0)} (8)
(C)act = [(C)nor * range + min] 9)
(C)act = [(C)nor * 74.205 + 10.125] (10)
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where:

(C)act: is the actual cohesion,

H1, Ho: are the connection weights,
X1, X2: are outputs, and

(C)nor: is the normalized cohesion.

The predicted angle of internal friction (@) was found to be expressed as follows:

(©)nor = Tanh [0.811 - 2.808 * H1 + 1.403 * Hy] (12)
1
Hy = [1+e(‘X1) 12
1
Hz = [1+e(—X2) 13)
x1 = {-0.917 + (1.187 * depth) - (1.074 * gypsum) + (0.305 * L.L) + (0.601 * P.L) +
(1.154 * P.I) - (0.389 * Sieve) + (0.589 * yd) - (0.366 * wc) + (0.608 * e0)} (14)
X2 = {0.014 - (0.440 * depth) + (0.856 * gypsum) + (0.350 * L.L) - (0.283 * P.L) -
(0.292 * P.I) - (0.226 * Sieve) - (0.858 * yd) + (0.236 * wc) - (0.428 * e0)} (15)
(@)act = [(p)nor * range + min] (16)
(©)act = [(p)nor * 13.368 + 23.997] a7

where:

(p)act: 1S the actual angle of internal friction,

Hi, H2: are the connection weights,

X1, X2: are outputs, and

(p)nor: 1s the normalized angle of internal friction.

5.1 Model Performance Evaluation
According to (Khaled, et al., 2014), the statistical measures shown in Tables 10 and 11 were used
to measure the shear strength parameters of both prediction models. Results related to models (C)
and (¢) are also shown in both tables.

Table 10. Performance measures for the cohesion Model (C).

MPE

RMSE

MAPE

AA%

R

RZ

1.650%

2.000

7.374%

92.626%

97.63%

95.33%

Table 11. Performance measures for the angle of internal friction Model ().

MPE

RMSE

MAPE

AA%

R

RZ

-0.1521%

0.253

0.679%

99.321%

99.31%

98.63%

To explore the validity of the derived equations for both ANN models, predicted values of (C) and

() were drawn against actual (observed validation data) values as shown in Fig. 1 and Fig. 2,

respectively. These Figures support the generalization of both ANN models in which the
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coefficient of determination (R?) is (95.33%) for model (C) and (98.63%) for model (¢), S0 it can
be inferred that both models are very well agreed with the actual observations.

50 40.00
40.00 ®
» - / 37.00
g 30.00 L Z um
E i R*=9533% E 3100

A
15.00

R / 28.00
10.00

/s

5.00 25.00
500 1000 1500 2000 2500 30.00 3500 40.00  45.00 25.00 28.00 3100 34.00 .00 40.00
(Observed CO) (Observed FR)

Figure 1. Observed vs. Predicted values of  Figure 2. Observed vs. Predicted values of
cohesion (C kPa). the angle of internal friction (o).

6. SENSITIVITY ANALYSIS

To identify which of the input variables has the most significant impact on shear strength
parameters (C) and (@), sensitivity analyses were carried out on both ANN models according to
(Al-Janabi, 2006). The results of sensitivity analysis of the cohesion model shown in Table 12
indicate that (yq) has the highest effect, followed by (P1), (passing sieve #200), (LL), and (wc) with
relative effects of (50.7%), (41.2%), (35.7%) and (34.4%) respectively. The other parameters
(P.L.), (gypsum content), (depth) and (eo) have lower relative effects of (9.5%), (8%), (5.3%) and
(0.4%) respectively.

The results of sensitivity analysis of the angle of internal friction model shown in Table 13 indicate
that the gypsum content has the highest effect, followed by (PI), depth, (yd) and (eo) with relative
effects of (95%), (88.9%), (72.3%) and (60.6%) respectively. The other parameters (PL), (wc),
passing sieve #200, and (LL) have lower relative effects of (55.1%), (33.1%), (18.6%), and
(10.1%) respectively.

Table 12. Sensitivity analysis of the cohesion (C) ANN model

Independent Variable Importance

Gypsum Sieve
Depth content L.L. P.L. P.l. 4900 Y wC €o
Importance .019 .028 125 .033 178 144 351 121 .001
Normalized Importance| 5.3% 8.0% | 357% | 95% | 50.7% | 41.2% | 100.0% | 344% | 0.4%

Table 13. Sensitivity analysis of the angle of internal friction (¢p) ANN model
Independent Variable Importance

Gypsum Sieve
Depth content L.L. P.L. P.1 #200 Yd WC €
Importance 167 187 .019 103 178 .035 136 .062 114
Normalized Importance| 88.9% | 100.0% | 10.1% | 55.1% | 95.0% | 18.6% | 72.3% | 33.1% | 60.6%

7. CONCLUSIONS
As a result of this research, the following conclusions can be drawn:
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The developed models have the ability to predict shear strength parameters (C and ¢) for
gypseous soils with good reliability. Sensitivity analysis of the first model indicated that dry
unit weight and plasticity index have the most significant effect on the predicted cohesion.
While in the second model, the results indicated that the gypsum content and plasticity index
have the most significant effect on the predicted angle of internal friction.

The validity and generalization of both models were met by testing them using the statistical
validation measures (MPE, RMSE, MAPE, AA%, R, and R?). In which (R?) for ANN models
(C) and (¢) was found to be (95.33%) and (98.63%), respectively.

Basic soil properties such as gypsum content, dry unit weight, water content, liquid limit, plastic
limit, plasticity index, passing sieve #200, and initial void ratio in addition to depth were found
to have different influences on shear strength parameters (C and ¢) of gypseous soil.

The obtained mathematical equations provide a quick method to estimate shear strength
parameters (C and o) for gypseous soils based on basic soil properties.
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