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ABSTRACT 

The shear strength of soil is one of the most important soil properties that should be identified 

before any foundation design. The presence of gypseous soil exacerbates foundation problems. In 

this research, an approach to forecasting shear strength parameters of gypseous soils based on 

basic soil properties was created using Artificial Neural Networks. Two models were built to 

forecast the cohesion and the angle of internal friction. Nine basic soil properties were used as 

inputs to both models for they were considered to have the most significant impact on soil shear 

strength, namely: depth, gypsum content, passing sieve no.200, liquid limit, plastic limit, plasticity 

index, water content, dry unit weight, and initial voids ratio. Multi-layer perceptron training by the 

backpropagation algorithm was used in creating the network. It was found that both models can 

predict shear strength parameters for gypseous soils with good reliability. Sensitivity analysis of 

the first model indicated that dry unit weight and plasticity index have the most significant effect 

on the predicted cohesion. While in the second model, the results indicated that the gypsum content 

and plasticity index have the most significant effect on the predicted angle of internal friction. 

Keywords: Gypseous soil, Cohesion, Angle of internal friction, Artificial Neural Networks. 
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  استخدام   تم   إذ.  الداخلي  الاحتكاك  وزاوية  التماسكب  للتنبؤ  نموذجين  بناء  تم  فقد.  الاصطناعية  العصبية  الشبكات  باستخدام  للتربة
:  وهي   ،التربة  قص  مقاومة  على  أهمية  الأكثر  التأثير  ذات  تعد  لأنها  النموذجين  لكلا  كمدخلات  للتربة  أساسية  خصائص  تسعة

  وحدة الوزن   الماء،  محتوى   اللدونة،  مؤشر  اللدونة،  حد  السيولة،  حد   ،200  رقم   غربال  من  المار  نسية  الجبس،  محتوى   العمق،
 العكسي   الانتشار  خوارزمية  باستخدام  الطبقات  متعددة  المستقبلات  بطريقة  الشبكة  تدريب  وتم.  الأولية  الفراغات  ونسبة  ،الجاف
  حيث .  جيدة  بموثوقية  الجبسية  للترب  القص  مقاومة  بمعاملات  التنبؤ   على  القدرة  النموذجين  لكلا  أن  وجد  قدو .  النموذج  بناء  لأجل
. لتماسكل   المتوقعة  القيمة  على  الأكبر  التأثير  لهما  اللدونة  الجاف ومؤشر  وحدة الوزن   أن  إلى   الأول  للنموذج  الحساسية  تحليل  أشار
  لزاوية   المتوقعة  القيمة  على  الأكبر   التأثير  لهما  اللدونة  مؤشرو   الجبس  محتوى   أن  إلى  الثاني  النموذج  في  النتائج  أشارت  بينما

 . الداخلي الاحتكاك
 .الداخلي، الشبكات العصبية الاصطناعيةالتربة الجبسية، التماسك، زاوية الاحتكاك  الكلمات الرئيسية:

 
1. INTRODUCTION 

Gypseous soils are one of the most problematic materials that challenge geotechnical engineers. 

Constructions on gypseous soil may experience unpredictable deformations, which may cause 

catastrophic failure. Several structures in Iraq have encountered various patterns of cracks and 

settlements primarily generated from the dissolution of bonding materials of soil particles due to 

water-table fluctuation. Gypseous soils demonstrate high bearing capacity and very low 

compressibility when dry. On the contrary, sudden collapsible behavior is expected when they are 

exposed to water (Al-Saoudi et al., 2013). 

Gypseous soils are widely distributed, especially in  Iraq, where the arid area of hot climatic is 

present (Shakir, 2017). 

Using standard experimental tests, determining soil geotechnical parameters is often costly and 

time-consuming, especially when investigating wide areas. It becomes more complicated when 

dealing with gypseous soil. A technically acceptable alternative approach is required to predict 

those parameters based on easily determined soil properties. The Artificial Neural Networks 

(ANN) technique has already been used as a prediction method to deal with some geotechnical 

aspects; therefore, it can be examined to fit the prediction of shear strength parameters (C) and (φ) 

too. 

Concerning previous studies on shear strength parameters, some recent related studies can be 

summarized as follows: 

(Al-Ameery, 2003) used gypseous soil from Al-Daur town with (66.4%) gypsum content. The 

results of the Triaxil test of saturated gypseous soil showed a (38%) reduction in cohesion (C) and 

(52%) reduction in the angle of internal friction (φ) due to soaking. 

(Khan, 2005) used gypseous soil with (37%) and (57%) gypsum content, where it was found that 

both cohesion and the angle of internal friction increased with increased compaction effort. The 

cohesion continued to grow with increased molding water under various compaction efforts until 

it had reached its maximum water content and then began to decrease in the same manner as a 

compaction curve did. However, the angle of internal friction decreased with increased molding 

water content. 

(Karim et al., 2013) used gypseous soil from Al-Qarma town with a gypsum content of (50%). 

The direct shear test showed that shear strength parameters increased and then decreased with 

increased kaolinite and bentonite additives. Higher shear strength parameters were obtained when 

bentonite was used rather than kaolinite for the same percentages of additives. It was concluded 

that bentonite was much more effective in increasing (C) and reducing (φ) than kaolinite. However, 

kaolinite was much more effective in reducing (C) than bentonite. 
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(Khaboushan et al., 2018) predicted unsaturated shear strength parameters for soils with different 

clay, sand, and silt percentages, particle size, organic matter (OM) content, and calcium carbonate 

(CaCO3) content. Fourteen soil samples from Northeast Iran were used, and Multiple Linear 

Regression (MLR) was utilized to estimate the shear strength parameters of saturated soil tested 

by direct shear tests. 

(Schanz and Karim, 2018) studied the effect of the short-term soaking period on shear strength 

parameters (C and φ) of (12) gypseous soil samples from Tikrit town. Direct shear tests using a 

pneumatic shear device were carried out on (4) dry and (8) soaked soil samples, in which (4) were 

soaked in water for (6 hr) and (4) were soaked for (24 hr). The normal stresses used were (50, 100, 

200, and 400 kPa). The results for the (6 hr) soaked samples showed a (12.24%) reduction in the 

angle of internal friction and (91.5%) reduction in cohesion compared to dry samples. However, 

the results for the (24 hr) soaked samples showed (9.2%) reduction in the angle of internal friction 

and (94.24%) reduction in cohesion compared to dry samples. The loss in strength due to soaking 

was clearly noticed in cohesion, which can be attributed to softening. 

(Najemalden et al., 2020) used a backpropagation neural network approach to model the relation 

between the collapse potential of gypseous sandy soil and seven soil properties employed as inputs, 

including gypsum content, specific gravity, initial dry unit weight, initial degree of saturation, 

initial voids ratio, initial water content and passing sieve #200. The relative importance analysis 

revealed that the specific gravity and gypsum content were the most important factors. The results 

revealed the veracity of using ANNs as an effective method to estimate the collapse potential of 

gypseous sandy soils. 

(Mawlood, 2021) used linear and nonlinear regression to simulate shear strength parameters and 

compressibility characteristics of gypseous soils. A set of 220 data items gathered from several 

published articles were used. The compression index and collapse potential were found to be well 

predicted in terms of gypsum concentration, initial water content, initial voids ratio, liquid limit, 

plasticity index, total unit weight, and dry unit weight using adjusted (R2), Mean Absolute Error, 

and Root Mean Square Error. The sensitivity analysis of the models revealed that the liquid limit 

and total unit weight were the most influential parameters in determining cohesion and angle of 

internal friction, while the ratio of specific gravity to initial voids ratio was the most significant 

physical soil property in estimating the collapse potential. 

(Mohammed et al., 2021) also used linear and nonlinear regression to estimate shear strength 

parameters, collapse potential, and compression index of gypseous soils based on physical 

properties by utilizing a set of 220 data items from several published studies. It was found that the 

developed models did accurately predict the outputs as a function of the available inputs, including 

specific gravity, moisture content, density, and Atterberg limits. It was also found that the gypsum 

content was well associated with total soluble salts, sulfate, and pH values. The models were tested 

using the adjusted (R2), Mean Absolute Error, and Root Mean Square Error. 

Other researchers have also conducted studies to forecast shear strength parameters (C and φ) 

using different methods, e.g. (Mahmoud,  2013) used standard penetration test and (Abu-Farsakh 

and Titi in 2004) used cone penetration test. 

This research aims to develop two reliable mathematical models capable of predicting shear 

strength parameters of gypseous soils; cohesion (C) and angle of internal friction (φ) based on 

basic soil properties using the ANN technique. Nine input parameters were used, aiming at more 

precise results. 

 

 

 

 

2. RESEARCH METHODOLOGY 
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The research paradigm correlates relevant geotechnical data using the Artificial Neural Networks 

technique to develop mathematical prediction models subjected to statistical analysis. 

The following steps were carried out: 

• Factual data available at different sources were collected concerning cohesion (C) and internal 

angle of friction (φ) of gypseous soils in different territories in Iraq. 

• Relevant soil properties needed to build suitable prediction models were identified. 

• The ANNs technique basics, characteristics, elements, and types, especially perceptrons, layers, 

and algorithms, were carefully studied and employed for modeling. 

• Models Creation using the ANNs technique.   

• Statistical analyses were carried out to test the reliability of the results. 

 

2.1 Research Limitation 

 

The effect of applied stress and degree of saturation on cohesion (C) and internal angle of friction 

(φ) were not taken into consideration due to the scarcity of relevant data of gypseous soils in 

different territories in Iraq. 

 

3. ARTIFICIAL NEURAL NETWORK 

Artificial Neural Network consists of a large number of units known as nodes. Weighted links 

connect each node to the other nodes. These weights represent information used by the net to solve 

the case to be solved. This network is composed of many layers of nodes. The first layer is the 

input layer, where the inputs (dependent variables) are applied to the net. The last layer is the 

output layer, where the outputs (independent) are extracted. A number of nodes serve as preceding 

items in the hidden layers between the input and output (Al-Musawi, 2016). The true power and 

advantage of ANN lie in its ability to represent both linear and nonlinear relationships from data 

being modeled (Lal and Tripathy, 2012). 

The input from each processing element in the previous layer (xi) is multiplied by an adjustable 

connection weight (wij) at each processing element, the weighted input signals are summed, and a 

threshold value (θj) may be added. This combined input (Ij) is then passed through a transfer 

(activation) function f(Ij) to produce the output of the processing element (yj). The output of one 

processing element provides the input to the processing elements in the next layer. This process is 

summarized in equations (1) and (2) (Al-Janabi, 2006). 

 

Ij = ∑wjixi + θj                 (1) 

 

yj = f(Ij)                  (2) 

 

where: 

Ij: is the activation level of node (j), 

wji: is the connection weight between (j) and (i),  

xi: is the input from node (i) for (i = 0, 1… n), 

θj: is the bias or threshold for node (j), 

yj: is the output of node (j), and 

f(Ij): is the transfer (activation) function. 

 

The best sets of random data divisions were used to develop each model, which was found to be 

(33) data for training, (7) data for testing, and (10) data for validation for model (C). On the other 

hand, the best sets were (30) data for training, (6) data for testing, and (14) data for validation for 

model (φ). Default parameters of the SPSS v.23 programs were utilized to select a learning rate of 
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(0.4), momentum term of (0.9), and tanh or sig transfer functions in the hidden and output layers 

nodes. Several networks with different number of hidden nodes were tried. A network with two 

hidden nodes was found to be the best for model (C) using tanh transfer function in the hidden and 

output layers nodes. The testing set of this model revealed the lowest prediction error of (0.016%) 

with a high coefficient of correlation (R = 97.63%) and a high coefficient of determination (R2 = 

95.33%). On the other hand, a network with two hidden nodes was found to be the best for model 

(φ) using the sig transfer function in the hidden layer nodes and the tanh transfer function in the 

output layer nodes. The testing set of this model revealed the lowest prediction error of (0.283%) 

with the coefficient of correlation (R = 99.31%) and a high coefficient of determination (R2 = 

98.63%). 

The effects of using different transfer functions were also investigated for both models. For model 

(C), a better performance was obtained when the (tanh vs. tanh) transfer function was used for 

both hidden and output layers, as shown in Table 1. For model (φ), the better performance was 

obtained when the (sigmod vs. tanh) transfer function was used for both hidden and output layers, 

as shown in Table 2. 

 

Table 1. Effect of transfer functions on the performance of the model (C). 

Parameters 
Transfer Function Training 

SSE* 

Testing 

SSE* 

Validation 

SSE* 
R R² 

Hidden layer Output layer 

Model (C) 

Learning rate (0.4) 

Momentum rate (0.9) 

No. of Nodes (2) 

Tanh tanh 0.038 0.016 0.410 97.6% 95.33% 

tanh sigmod 0.030 0.048 0.101 96.6% 93.90% 

sigmod sigmod 0.085 0.071 0.902 90.5% 82.0% 

sigmod tanh 0.040 0.040 0.252 89.5% 80.0% 

* Sum of Squared Error. 

 

Table 2. Effect of transfer functions on the performance of the model (φ). 

Parameters 
Transfer Function Training 

SSE* 

Testing 

SSE* 

Validation 

SSE* 
R R² 

Hidden layer Output layer 

Model (φ) 

Learning rate (0.4) 

Momentum rate (0.9) 

No. of Nodes (2) 

Tanh tanh 0.085 0.455 0.161 98.1% 96.2% 

tanh sigmod 0.026 0.284 0.046 98.0% 96.00% 

sigmod sigmod 0.884 0.891 0.972 96.0% 92.1% 

sigmod tanh 0.014 0.283 0.015 99.31% 98.63% 

* Sum of Squared Error. 

 

4. INPUT AND OUTPUT VARIABLES 

A compilation of available data on gypseous soils from different regions in Iraq was derived from 

fifty research publications, theses, and dissertations showing laboratory tests results of gypseous 

soil shear strength parameters (C) and (φ). Nine parameters were used as inputs to develop two 

prediction models using SPSS V23. Two mathematical equations to predict cohesion (C) and angle 

of internal friction (φ) were determined. The input parameters included: depth, gypsum content, 

liquid limit (LL), plastic limit (PL), plasticity index (PI), passing sieve #200, dry unit weight (γd), 

water content (wc), and initial void ratio (eo). 

Statistical analysis was carried out to ensure that the subsets of training, testing, and validation 

data represent the same statistical population as shown in Tables 3 and 4. The results indicated 

that these subsets were statistically consistent. Furthermore, t-tests were also carried out to 

examine how these subsets are statistically consistent with respect to each other. The tests were 

based on a level of confidence of (95%). The results of t-tests are given in Tables 5 and 6. 

 

Table 3. Input and output statistics for cohesion (C) ANN model. 
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Data set 

Statistical 

Parameters 

Actual Input Variables 
Actual 

Output 

Depth 
Gypsum 

content 
L.L. P.L. P.I. 

Sieve 

#200 
γd WC e° C (kPa) 

 

Training 

n = 33 

Range 14.200 65.940 62.000 32.000 44.000 92.000 11.510 29.900 0.695 74.205 

Min. 0.800 4.060 18.000 8.000 5.000 8.000 11.700 3.600 0.200 10.125 

Max. 15.000 70.000 80.000 40.000 49.000 100.000 23.210 33.500 0.895 84.330 

Mean 2.733 28.368 45.514 24.653 23.315 69.917 16.440 15.564 0.588 24.584 

Std. 3.573 20.053 14.414 9.446 10.928 32.781 2.620 7.747 0.194 15.581 

Testing 

n = 7 

Range 3.500 40.580 34.700 7.240 28.800 6.700 3.000 7.980 0.265 33.809 

Min. 1.500 2.600 21.000 18.260 1.400 93.300 14.800 12.520 0.435 10.747 

Max. 5.000 43.180 55.700 25.500 30.200 100.000 17.800 20.500 0.700 44.555 

Mean 2.786 14.754 41.814 20.680 21.134 98.086 16.540 17.060 0.574 21.903 

Std. 1.286 13.848 10.958 2.428 9.984 3.269 1.178 2.666 0.128 11.444 

 

Validation 

n = 10 

Range 1.000 55.490 28.500 19.000 25.800 91.000 6.500 19.300 0.605 25.904 

Min. Depth 5.010 26.500 20.000 5.200 8.000 12.600 6.500 0.310 10.329 

Max. 14.200 60.500 55.000 39.000 31.000 99.000 19.100 25.800 0.915 36.233 

Mean 0.800 29.061 41.350 25.230 16.120 58.150 15.578 14.310 0.666 24.977 

Std. 15.000 17.182 8.648 6.121 7.990 38.140 1.754 4.942 0.169 7.496 

 

Table 4. Input and output statistics for the angle of internal friction (φ) ANN model. 

 

Data set 

Statistical 

Parameters 

Actual Input Variables 
Actual 

Output 

Depth 
Gypsum 

content 
L.L. P.L. P.I. 

Sieve 

#200 
γd WC e° C (kPa) 

 

Training 

n = 30 

Range 14.200 65.940 62.000 32.000 44.000 92.000 11.510 29.900 0.695 12.368 

Min. 0.800 4.060 18.000 8.000 5.000 8.000 11.700 3.600 0.200 23.997 

Max. 15.000 70.000 80.000 40.000 49.000 100.000 23.210 33.500 0.895 36.365 

Mean 2.880 29.698 45.732 25.118 23.313 66.909 16.326 15.529 0.594 30.168 

Std. 3.717 20.453 15.100 9.788 11.472 32.905 2.717 8.125 0.200 3.181 

Testing 

n = 6 

Range 4.200 15.220 7.000 3.000 7.000 0.000 1.410 3.250 0.217 1.122 

Min. 0.800 5.000 40.000 19.000 18.000 100.000 16.690 14.500 0.423 29.377 

Max. 5.000 20.220 47.000 22.000 25.000 100.000 18.100 17.750 0.640 30.498 

Mean 2.633 15.037 41.667 20.167 21.500 100.000 17.612 16.042 0.483 29.942 

Std. 1.675 6.360 2.733 1.472 2.429 0.000 0.500 1.066 0.084 0.392 

 

Validation 

n = 14 

Range 1.000 57.900 34.700 20.740 29.600 92.000 6.500 19.300 0.605 6.736 

Min. 1.000 2.600 21.000 18.260 1.400 8.000 12.600 6.500 0.310 27.864 

Max. 2.000 60.500 55.700 39.000 31.000 100.000 19.100 25.800 0.915 34.600 

Mean 1.607 24.921 41.871 24.004 17.867 69.150 15.616 15.287 0.668 30.617 

Std. 0.446 18.308 10.324 5.683 9.858 36.555 1.509 4.736 0.142 2.160 

 

4.1 Data Division (Preparation) 

The ANNs used were  Multi-Layer Perceptrons trained with the feed-forward backpropagation 

algorithm. The typical MLP has a number of processing elements generally known as neurons 

which are arranged in layers, including an input layer, an output layer, and one hidden layer. Each 

neuron in the specific layer is connected to the neuron of other layers through a weighted 

connection. The input from each neuron in the previous layer is multiplied by an adjustable 

connection weight. 

The available data were divided into subsets to develop the ANN model. Subsets were checked 

using the SPSS v.23 program to ensure the best data division. The default parameters of the SPSS 

program which were applied were: linear activation function for input layer and tanh function for 

both hidden and output layers. 

 

Table 5. Results of cohesion (C) ANN model t-test. 
Statistical Input Variables Actual 
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Parameters Output 

Depth 
Gypsum 

content 
L.L. P.L. P.I. 

Sieve 

#200 
γd WC e° C (kPa) 

Data set Testing 

t-value -0.0379 1.7034 0.6384 2.1098 0.4860 -2.2482 -0.0978 -0.8885 0.1924 0.4295 

Lower critical value -2.8478 -2.5654 -8.0318 0.1549 -6.9039 -53.5332 -2.1628 -4.9377 -0.1408 -9.9572 

Upper critical value 2.7430 29.7938 15.4305 7.7911 11.2656 -2.8043 1.9634 1.9462 0.1704 15.3208 

Sig.(2-tailed) 0.9699 0.0967 0.5271 0.0418 0.6298 0.0504 0.9226 0.3815 0.8484 0.6700 

Results Accept Accept Accept Accept Accept Accept Accept Accept Accept Accept 

Data set Validation 

t-value 1.0798 -0.0986 1.1219 -0.2272 1.9250 0.9579 0.9727 0.4809 -1.1379 -0.0766 

Lower critical value -1.0734 -14.8781 -3.4731 -5.8275 -0.3534 -13.0407 -0.9280 -4.0130 -0.2149 -10.7489 

 Upper critical value 3.5401 13.4930 11.8004 4.6735 14.7437 36.5747 2.6526 6.5215 0.0600 9.9631 

Sig.(2-tailed) 0.2866 0.9219 0.2724 0.8223 0.0612 0.3437 0.3364 0.6331 0.2618 0.9393 

Results Accept Accept Accept Accept Accept Accept Accept Accept Accept Accept 

 

Table 6. Results of the angle of internal friction (φ) ANN model t-test. 

Statistical 

Parameters 

Input Variables 
Actual  

Output 

Depth 
Gypsum 

content 
L.L. P.L. P.I. 

Sieve 

#200 
γd WC e° C (kPa) 

Data set Testing 

t-value 0.1579 3.2236 1.3668 2.6265 0.7825 -5.5082 -1.1420 -0.3316 1.3269 0.3740 

Lower critical value -2.9271 5.3307 -1.9791 1.1180 -2.8980 -45.3784 -3.5727 -3.6588 -0.0592 -1.0009 

Upper critical value 3.4205 23.9919 10.1091 8.7854 6.5247 -20.8043 1.0020 2.6335 0.2821 1.4515 

Sig.(2-tailed) 0.8754 0.4033 0.1807 0.0629 0.4394 0.0559 0.2614 0.7423 0.1934 0.7108 

Results Accept Accept Accept Accept Accept Accept Accept Accept Accept Accept 

Data set Validation 

t-value 1.8475 0.7449 0.8643 0.4750 1.5299 -0.2032 0.9105 0.1240 -1.2418 -0.4781 

Lower critical value -0.1328 -8.1651 -5.1536 -3.6266 -1.7376 -24.5001 -0.8636 -3.7004 -0.1943 -2.3458 

Upper critical value 2.6785 17.7197 12.8741 5.8547 12.6300 20.0174 2.2834 4.1841 0.0463 1.4471 

Sig.(2-tailed) 0.0743 0.4605 0.3924 0.6374 0.1335 0.8400 0.3678 0.9019 0.2212 0.6350 

Results Accept Accept Accept Accept Accept Accept Accept Accept Accept Accept 

 

Based on the minimum error of the testing set, the coefficient of correlation (R), and coefficient 

of determination (R2), the best data division into subsets was found to be as shown in Table 7. 

Output and input variables were pre-processed by scaling them to repeal their dimension in order 

to assure that all variables receive equal attention during training and to be proportional to the 

limits of the transfer functions used in hidden and output layers (0.0) to (1.0) for sigmoid transfer 

function and (-1.0) to (1.0) for tanh transfer function. The scaled value (xn) is found by equation 

(3) (Mahmood and Aziz, 2011): 
 

Scale value = 
𝑋−𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛
                (3) 

 

where: 

x: is the original value, 

xmin and xmax: are the actual minimum and maximum values. 

 

Table 7. Best data division into subsets. 
Model (C) for Cohesion Model (φ) for Angle of Friction 

Number and (%) 
R R2 

Number and (%) 
R R2 

Training Validation Testing Training Validation Testing 

33 (66%) 10 (20%) 7 (14%) 97.63% 95.33% 30 (60%) 14 (28%) 6 (12%) 99.31% 98.63% 
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4.2 Evaluation Criteria 

The statistical methods used to measure models output included: 

• Mean Percentage Error (MPE). 

• Root Mean Squared Error (RMSE). 

• Mean Absolute Percentage Error (MAPE). 

• Average Accuracy Percentage (AA%). 

• The Coefficient of Determination (R2). 

• The Coefficient of Correlation (R). 

 

5. OPTIMUM ANN MODELS 

The connection weights obtained for both optimal ANN models (cohesion and angle of internal 

friction) enables each network to be translated into a relatively simple formula. Tables 8 and 9 list 

each model's connection weights and threshold levels. 

Table 8. Parameter Estimates for the cohesion optimal ANN model (C). 

Layer Predictor 

Input Layer Hidden Layer 1 

(Bias) Depth 
Gypsum 

content 
L.L. P.L. P.I. 

Sieve 

#200 
γ d WC eo (Bias) H(1:1) H(1:2) 

Predicted 

Hidden Layer1 
H(1:1) .104 .387 -.129 .337 -.433 -.059 .217 -.719 -.106 -.003    

H(1:2) .024 0.033 -.080 .498 .274 .931 .524 -1.456 -.480 .007    

Output Layer C           0.302 0.629 2.118 

 

Table 9. Parameter Estimates for the angle of internal friction optimal ANN model (φ). 

Layer Predictor 

Input Layer Hidden Layer 1 

(Bias) Depth 
Gypsum 

content 
L.L. P.L. P.I. 

Sieve 

#200 
γd WC eo (Bias) H(1:1) H(1:2) 

Predicted 

Hidden Layer1 
H(1:1) -.917 1.185 -1.074 .305 .601 1.154 -.389 .589 -.366 .608    

H(1:2) .014 -.440 .586 .350 -.283 -.292 -.226 -.858 .236 -.428    

Output Layer C           .811 -2.808 1.403 

 

The predicted cohesion (C kPa) was found to be expressed as follows: 

 

(C)nor = Tanh [0.302 + 0.629 ∗ H1 + 2.118 ∗ H2]             (4) 

 

H1 = [
1

1+𝑒(−𝑋1)
]                 (5) 

 

H2 = [
1

1+𝑒(−𝑋2)
]                 (6) 

 

x1 = {0.104 + (0.387 * depth) - (0.129 * gypsum) + (0.337 * L.L) - (0.433 * P.L) -           

(0.059 * P.I) + (0.217 * Sieve) - (0.719 * γd) - (0.106 * wc) - (0.003 * eo)}         (7) 

 

x2 = {0.024 - (0.033 * depth) - (0.080 * gypsum) + (0.498 * L.L) + (0.274 * P.L) +           

(0.931 * P.I) + (0.524 * Sieve) - (1.456 * γd) - (0.480 * wc) + (0.007 * eo)}        (8) 

 

(C)act = [(C)nor * range + min]                (9) 

 

(C)act = [(C)nor * 74.205 + 10.125]             (10) 
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where: 

(C)act: is the actual cohesion, 

H1, H2: are the connection weights, 

x1, x2: are outputs, and 

(C)nor: is the normalized cohesion. 

 

The predicted angle of internal friction (φ) was found to be expressed as follows: 

 

(φ)nor = Tanh [0.811 - 2.808 * H1 + 1.403 * H2]           (11) 

 

H1 = [
1

1+𝑒(−𝑋1)
]               (12) 

 

H2 = [
1

1+𝑒(−𝑋2)
]               (13) 

 

x1 = {-0.917 + (1.187 * depth) - (1.074 * gypsum) + (0.305 * L.L) + (0.601 * P.L) +       

(1.154 * P.I) - (0.389 * Sieve) + (0.589 * γd) - (0.366 * wc) + (0.608 * eo)}      (14) 

 

x2 = {0.014 - (0.440 * depth) + (0.856 * gypsum) + (0.350 * L.L) - (0.283 * P.L) -           

(0.292 * P.I) - (0.226 * Sieve) - (0.858 * γd) + (0.236 * wc) - (0.428 * eo)}       (15) 

 

(φ)act = [(φ)nor * range + min]             (16) 

 

(φ)act = [(φ)nor * 13.368 + 23.997]             (17) 

 

where: 

(φ)act: is the actual angle of internal friction, 

H1, H2: are the connection weights, 

x1, x2: are outputs, and 

(φ)nor: is the normalized angle of internal friction. 

 

 

5.1 Model Performance Evaluation 

According to (Khaled, et al., 2014), the statistical measures shown in Tables 10 and 11 were used 

to measure the shear strength parameters of both prediction models. Results related to models (C) 

and (φ) are also shown in both tables. 

Table 10. Performance measures for the cohesion Model (C). 
MPE RMSE MAPE AA% R R2 

1.650% 2.000 7.374% 92.626% 97.63% 95.33% 

 

Table 11. Performance measures for the angle of internal friction Model (φ). 
MPE RMSE MAPE AA% R R2 

-0.1521% 0.253 0.679% 99.321% 99.31% 98.63% 

 

To explore the validity of the derived equations for both ANN models, predicted values of (C) and 

(φ) were drawn against actual (observed validation data) values as shown in Fig. 1 and Fig. 2, 

respectively. These Figures support the generalization of both ANN models in which the 
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coefficient of determination (R2) is (95.33%) for model (C) and (98.63%) for model (φ), so it can 

be inferred that both models are very well agreed with the actual observations. 

 

 

 

 

Figure 1. Observed vs. Predicted values of 

cohesion (C kPa). 

 
Figure 2. Observed vs. Predicted values of 

the angle of internal friction (φ). 

 

 

6. SENSITIVITY ANALYSIS 

To identify which of the input variables has the most significant impact on shear strength 

parameters (C) and (φ), sensitivity analyses were carried out on both ANN models according to 

(Al-Janabi, 2006). The results of sensitivity analysis of the cohesion model shown in Table 12 

indicate that (γd) has the highest effect, followed by (PI), (passing sieve #200), (LL), and (wc) with 

relative effects of (50.7%), (41.2%), (35.7%) and (34.4%) respectively. The other parameters 

(P.L.), (gypsum content), (depth) and (eo) have lower relative effects of (9.5%), (8%), (5.3%) and 

(0.4%) respectively. 

The results of sensitivity analysis of the angle of internal friction model shown in Table 13 indicate 

that the gypsum content has the highest effect, followed by (PI), depth, (γd) and (eo) with relative 

effects of (95%), (88.9%), (72.3%) and (60.6%) respectively. The other parameters (PL), (wc), 

passing sieve #200, and (LL) have lower relative effects of (55.1%), (33.1%), (18.6%), and 

(10.1%) respectively. 

Table 12. Sensitivity analysis of the cohesion (C) ANN model 
Independent Variable Importance 

 Depth 
Gypsum 

content 
L.L. P.L. P.I. 

Sieve 

#200 
γd WC eo 

Importance .019 .028 .125 .033 .178 .144 .351 .121 .001 

Normalized Importance 5.3% 8.0% 35.7% 9.5% 50.7% 41.2% 100.0% 34.4% 0.4% 

Table 13. Sensitivity analysis of the angle of internal friction (φ) ANN model 
Independent Variable Importance 

 Depth 
Gypsum 

content 
L.L. P.L. P.I 

Sieve 

#200 
γd WC eo 

Importance .167 .187 .019 .103 .178 .035 .136 .062 .114 

Normalized Importance 88.9% 100.0% 10.1% 55.1% 95.0% 18.6% 72.3% 33.1% 60.6% 

 

7. CONCLUSIONS 

As a result of this research, the following conclusions can be drawn: 
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• The developed models have the ability to predict shear strength parameters (C and φ) for 

gypseous soils with good reliability. Sensitivity analysis of the first model indicated that dry 

unit weight and plasticity index have the most significant effect on the predicted cohesion. 

While in the second model, the results indicated that the gypsum content and plasticity index 

have the most significant effect on the predicted angle of internal friction. 

• The validity and generalization of both models were met by testing them using the statistical 

validation measures (MPE, RMSE, MAPE, AA%, R, and R2). In which (R2) for ANN models 

(C) and (φ) was found to be (95.33%) and (98.63%), respectively. 

• Basic soil properties such as gypsum content, dry unit weight, water content, liquid limit, plastic 

limit, plasticity index, passing sieve #200, and initial void ratio in addition to depth were found 

to have different influences on shear strength parameters (C and φ) of gypseous soil. 

• The obtained mathematical equations provide a quick method to estimate shear strength 

parameters (C and φ) for gypseous soils based on basic soil properties. 
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