

Journal of Engineering

journal homepage: www.joe.uobaghdad.edu.iq

Volume 28 Number 10 October 2022

Civil and Architectural Engineering

Evaluation of the Physical and Chemical Treatment of Wastewater for the Dairy Industry

Ahmed Imad Flayyih	Sura Kareem Ali		
M.Sc. student	Asst. Prof. Dr		
College of Engineering	College of Engineering		
University of Baghdad	University of		
Baghdad – Iraq	Baghdad – Iraq		
ahmed.flayyih2001m@coeng.uobaghdad.edu.iq	sura.k.a@coeng.uobaghdad.edu.iq		

ABSTRACT

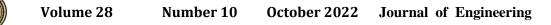
Dairy wastewater generally contains fats, lactose, whey proteins, and nutrients. Casein precipitation causes the effluent to decompose into a dark, strong-smelling sludge. Fluid waste contains soluble organic matter, suspended solids, and gaseous organic matter, which cause undesirable taste and smell, grant tone and turbidity, and advance eutrophication, which plays an essential role in increasing biological oxygen demand (BOD) in water. It also contains detergents and disinfecting agents from the rinses and washing processes, which increase the need for chemical oxygen (COD). One of the characteristics of dairy effluents is their relatively high temperature, high organic contents, and wide pH range, so the discharge of wastewater into water bodies without treatment leads to deterioration of water quality and ecological imbalance, and therefore treatment is required. To remove or reduce environmental damage. Dairy wastewater treatment includes mechanical, physical, chemical, and biological methods.

Organic treatment techniques are reasonable for treating wastewater from the dairy business because of their high biodegradability. Notwithstanding, the long-chain unsaturated fats framed during lipid hydrolysis show an inhibitory impact during anaerobic treatment. Chain block reactors (SBR) and top stream anaerobic slop cover of sludge (UASB) frameworks are the most encouraging advancements for the organic treatment of dairy wastewater. Many papers have applied high-impact exercise and technical methods to the dairy business's anaerobic wastewater treatment of dairy wastewater. However, the two techniques actually have a few disadvantages. The most vital objective of these studies is to track down savvy and naturally manageable ways to deal with and empower the reuse and management of wastewater and waste.

Consequently, elective treatments to organic treatment are physical and substance techniques, for example, coagulation, retention, layer cycles, and electrolysis. This section gives a primary survey zeroing in on physical and compound treatment strategies for dairy wastewater treatment. It is under study and checked for its viability.

Peer review under the responsibility of University of Baghdad.

https://doi.org/10.31026/j.eng.2022.10.01


^{*}Corresponding author

This is an open access article under the CC BY 4 license(<u>http://creativecommons.org/licenses/by/4.0/).</u>

Article received: 1/2/2022

Article accepted: 4/3/2022

Article published: 1/10/2022

Keywords: organic, effluent, treatment, BOD, COD.

تقييم المعالجة الفيزبائية والكيميائية للمياه العادمة لصناعة الألبان

د. سری کریم علي اُستاذ مساعد	أحمد عماد فليح
أستاذ مساعد	طالب ماجستير
كلية الهندسة / جامعة بغداد	كلية الهندسة / جامعة بغداد

الخلاصة

تحتوي مياه الصرف الصحي من منتجات الألبان بشكل عام على الدهون واللاكتوز وبروتينات مصل اللبن والمغذيات. يتسبب ترسيب اللكازين في تحلل النفايات السائلة إلى حمأة سوداء شديدة الرائحة. تحتوي النفايات السائلة على مواد عضوية قابلة للذوبان، ومواد صلبة معلقة، ومواد عضوية غازية، والتي تسبب طعمًا ورائحة كريهة، وتضفي اللون والتعكر، وتعزز التخثر، والتي تلعب دورًا مهمًا في زيادة الطلب البيولوجي على الأكسجين (BOD) في الماء. وتحتوي أيضًا على منظفات وعوامل تعقيم ناتجة عن عمليات الشطف والغسيل، مما يزيد من تركيز الطلب على الأكسجين الكيميائي (COD). تتمثل إحدى خصائص مخلفات الألبان السائلة في ارتفاع درجة حرارتها نسبيًا، ومحتوياتها العضوية العالية، ونطاق الأس الهيدروجيني الواسع، لذا فإن تصريف المياه العادمة في المسطحات المائية دون معالجة يؤدي إلى تدهور جودة المياه واختلال التوازن البيئي، وبالتالي فإن المعالجة مطوبة. من أجل القضاء على الضرر البيئي أو تقليله. تشمل معالجة مياه الصرف الصحي لمنتجات الألبان المائلة والتي المعائية، وبالتالي فإن المعالجة المياه العادمة في المسطحات المائية دون معالجة يؤدي إلى تدهور جودة المياه واختلال التوازن البيئي، وبالتالي فإن المعالجة مطوبة. من أجل القضاء على الضرر البيئي أو تقليله. تشمل معالجة مياه الصرف الصحي لمائية، والمائليني، والمائلي المعالجة المياه العادمة في المسطحات المائية دون معالجة يؤدي إلى تدهور جودة المياه واختلال التوازن البيئي، وبالتالي فإن المعالجة مطوبة. من أجل القضاء على الضرر البيئي أو تقليله. تشمل معالجة مياه الصرف الصحي لمنتجات الألبان استخدام الأساليب

طرق المعالجة البيولوجية المناسبة لمعالجة مياه الصرف الناتجة عن صناعة الألبان بسبب قدرتها العالية على التحلل البيولوجي. ومع ذلك، فإن الأحماض الدهنية طويلة السلسلة التي تتشكل أثناء التحلل المائي للدهون تظهر تأثيرًا مثبطًا أثناء العلاج اللاهوائي. مفاعل الدُفعات المتسلسلة (SBR) وأنظمة بطانية الحمأة اللاهوائية ذات التدفق العلوي (UASB) يبدو أنها أكثر التقنيات الواعدة للمعالجة البيولوجية لمياه الصرف الصحي لمنتجات الألبان. تم نشر العديد من الأوراق حول تطبيق التمارين الهوائية والأساليب الفنية لمعالجة البيولوجية لمياه الصرف الصحي لمنتجات الألبان، تم نشر العديد من الأوراق حول تطبيق التمارين الهوائية والأساليب من هذه الدر اسات هو إيجاد مناهج فعالة من حيث التكلفة ومستدامة بيئيًا لتمكين إعادة استخدام وإدارة مياه الصرف الصحي و النفايات. لذلك، فإن تقنيات العلاج البديلة ضد العلاج البيولوجي هي طرق المعالجة الفيزيائية و الكيميائية مثل التخش و عمليات الغشاء والتحليل الكهربائي. إنه قيد الدراسة والتحقق من فعاليته. يقدم هذا الفصل مراجعة نقدية تركز على تقنيات المعالجة المياء و التحليل الكهربائي. إلى من علم المعالجة ومستدامة بيئيًا لمعالجة الفيزيائية و الكيميائية مثل التخش و الامتصاص و مليات الذلك، فإن تقنيات العلاج البديلة ضد العلاج البيولوجي هي طرق المعالجة الفيزيائية و الكيميائية مثل التخش و الامتصاص و عمليات الغشاء و التحليل الكهربائي. إنه قيد الدراسة والتحقق من فعاليته. يقدم هذا الفصل مراجعة نقدية تركز على تقنيات

الكلمات الرئيسية: عضوي, معالجة النفايات, BOD, COD.

1. INTRODUCTION

The dairy business is the primary wellspring of food handling, with the most elevated water utilization rates utilized throughout the dairy industry. Therefore, how much wastewater is released from the dairy factories has additionally expanded (Tikariha, et al., 2014). Dairy factory discharges of high-organic wastewater and high chemical oxygen demand in untreated water bodies lead to multiple problems that destroy aquatic life and other marine organisms, which can potentially lead to significant losses in the environment (Kushwaha, et al., 2011). They provide more food for microbial communities and cause more oxygen depletion toxicity and aesthetic problems (Sivrioğlu, et al., 2015). These problems remove pollutants before they are discharged into various water bodies (Sarkar, et al., 2006). The process used to empty these elements from wastewater is a physical, chemical, and biological function. The most economical way for people who can remove pollutants without burdening the state budget should be using local materials for processing. Thus, the treatment of dairy Remnants turns out to be vital before draining. Subsequently, it is important to realize the wastewater sources in dairy

manufacturing (**Deshmukh, 2017**). The origins of wastewater for the dairy industry are shown in **Table 1.**

It is essential to know the operating program, production methods, type of product being treated, and water management based on which the treatment plant is designed because it affects the formation and Concentration of milk effluents. The primary wastewater sources from the dairy

industry are treated water, cleaning water, and sewage water (Britz, et al., 2004).

Mass milk handling Industries utilize a clean setup (CIP) system of alkaline, phosphoric/citrus, and Sodium Hypochlorite solutions for cleaning, and these synthetic alchemical have become a piece of wastewater (Shete, et al., 2013).

Dairy industry wastewater contains suspended and broken-down solids and solvents and follows natural matter; supplements, fats, chlorides, sulfates, and lactose are portrayed by high synthetic substance oxygen interest (COD) and organic oxygen interest (BOD). Wastewater perhaps additionally contains bactericides, cleansers, and different kinds of synthetic alchemical (Shivsharan, et al., 2013).

Dairy operations	Wellsprings from wastewater				
Readiness stages					
Milk getting steps	unfortunate seepage of big	foaming			
	haulers				
	spills and breaks from hoses and	cleaning activity			
	lines				
	spills from capacity storehouse				
	tanks				
pasteurization high-heating	fluid misfortunes spills	foaming			
curing	recuperation of downsized item	deposit at the surface of			
		sanitization and warming gear			
	cleaning operation				
Homogenization	Fluid losses leaks	Cleaning operation			
division/explanation (centrifuge,	Foaming	lines seepages			
invert assimilation)	Cleaning operation				
Item treating steps					
Market milk	Foaming	sludge expulsion of clarifiers			
		separation			
	item washing				
	Cleaning operation	Leaks			
	Overloading	spoilage milk bundles			
	Poor drainage	Cleaning of milk hardware			
Cheese action	Overloading vats	Spills and breaks			
	deficient detachment of whey	Cleaning activity			
	from the curd				
	Involving salt in cheese action				
Butter action	Cleaning processes				

Table 1. Dairy wastewater sources (Tawfika A et al., 2008)

	Produce washing	variation (decreased strain pasteurization utilizing stream) and salt utilizing
Powder making	spills from powder treating	Stacks misfortunes
	Start-up and close down losses	Cleaning from evaporators and dryers
	factory malfunction	Bagging wastage

Qualities and norms for removing fluid milk waste discharge are specific in **Table 2**. The credits of dairy wastewater showed a changing structure and shifted from one industry to another. It makes it hard to involve similar strategies for all junk water types treatment (**Cristian, 2010**).

Ordinary strategies (aerobic and anaerobic cycles) for curing dairy factories' wastewater have many drawbacks, such as the expense of land, climatic conditions, the requirement for sludge reusing, and these lines. The most favored technique for treating dairy wastewater is the natural strategy, including cycles, for example, initiated sludge, imitation channels, high-impact tidal ponds, chain bunch reactor (SBR), and anaerobic ooze cover (UASB), anaerobic channels, and so forth. Oxygen-consuming cycles are energy-escalated however should be joined with anaerobic cycles. They are achieving drainage standards. From a physical and chemical perspective, strategies are promising and successful wastewater treatment methods.

Table 2. Characteristics of wastewater for dairy products in some factories and standards for the discharge of this wastewater

	Dairy eff.	Arab dairy industry	central pollution control board (CPCB)	World bank report	disposal criterion at turkey	disposal criterion in Iraq
pН	7.2 - 8.8	6.7 – 9.1	6.5-8.5	6 - 9	6 - 9	6-9.5
BOD	1200 - 1800	1941 ± 864	100	50	_	Less than 40
COD	1900 - 2700	3383 ± 1345	_	250	160	Less than 45
TSS	-	_	150	10	30	60
GREASE & OIL	_	_	10	10	_	_
N (TOTAL)	_	_		2	_	_
P (TOTAL)	_	_		10	30	_
References	global Dairy union	Global magazine of basic and utilized chemical science	The Environment (Protection) Rules of India	Marshall KR, Harper WJ	T.R.General Directorate of Prime Ministry Legislation Development and Publication.	Environmental Legislation 1998

2. Evaluation of Chemical and Physical Treatment Processes on Wastewater Dairy Products

It is essential to know the wastewater characteristics of the dairy industry because it plays a vital role in designing wastewater treatment systems. At the same time, the concentrations of BOD and

COD in dairy wastewater are very different from that of general wastewater. There are different concentrations of pollutants in the sewage water of the dairy industry. For example, the manufacture of yogurt and milk, which is considered a milk product, leaves wastewater containing low groupings of slick oil and COD; requires just physical and organic treatment cycles to treat and dispose of. While the attention of grease, oil, and KOI is high in the cheese industry's wastewater, it needs physical, chemical, and biological treatment processes to treat and discharge. It is generally preferred in small-scale factories (**Karpati, et al., 1989**).

Worldwide the wastewater of the dairy items industry is considered one of the most polluting factories of the environment and natural water bodies. Many examinations have been led to essentially decrease the impacts of these hurtful poisons in wastewater (Lolei, et al., 2013). Physical, chemical, and biological processes are widely used to treat industrial wastewater.

2.1. Chemical treatment includes Alchemical precipitation, coagulation, and flocculation

Chemical sedimentation is the addendum of synthetics to isolate dissolved, suspended, and strong materials by deposition. Colloids are collected by coagulation and flocculation processes. Both sedimentation, coagulation, and flocculation coincide. It is possible to remove some phosphorous and heavy metals in the current process (**Aghili, et al., 2016**). Several precipitants were used during the previous years, such as alum, ferric sulfate, ferrous sulfate, and other precipitants. It is primarily used to treat metal cations, organic molecules, detergents, and oil emulsions (**Hung, et al., 2005**).

Coagulation/flocculation processes separate suspended matter, colloid, and disintegrated substances in wastewater and are applied straightforwardly to crude sewage. This cycle can be separated into two sections; The initial segment is known as the coagulation interaction, where synthetic compounds (thickening specialists, for example, iron or aluminum are utilized to defeat the elements that enhance system stabilization. Concerning the subsequent part, it is called flocculation. Unstable particles clump together and are easily separated by gravitational settling. Treatises have been read up on the coagulation wastewater for dairy factories (Al-jabari, et al., 2017). The studies are summed up in Table 3.

curing operation	Characterization	Eliminate/evacuation effectiveness (%)	sources
Substance sedimentation	FeSO ₄ and Fecl ₃ as coagulants	biological chemical demand= 64% (FeSo ₄) & = 85% (Fecl ₃)	Hamdani, et al., 2004
Chemical precipitation	Pretreatment	High COD removal	Rusten, et al., 1990
coagulating	(XAl(SO ₄) ₂ ·12H ₂ O) and (FeSO ₄) as a coagulating	Alum has extra impactive than (FeSo ₄), and it eliminated 5% more chemical oxygen demand than (FeSo ₄).	Blanc, Navia R.
coagulating	FeCl ₃ , Al ₂ (SO ₄) ₃ , and CaCl ₂ as coagulating	Ca(OH) ₂ : organic material= 40%, S.S =94% & P = 89%	Rao, Bhole AG, 2002

Table 3. Summary of published research studies related to wastewater's physical and chemical treatment for the dairy industry.

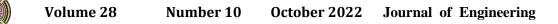
coagulating	Ferric chloride as coagulating Pretreating	Expansion of (0.10-0.15) mg Ferric chloride hexahydrate/mg chemical oxygen demand, or around (0.20) mg Aluminium Sulfate Octadecahydrate/mg chemical oxygen demand, was adequate to get great evacuation of organic material. Most extreme evacuation efficiencies of (67-90%) overall chemical oxygen demand	Kurzbaum, Shalom, 2004
coagulating /flocculation	Ferric chloride, ferrous sulfate & alum Pretreating	Ferric chloride, ferrous sulfate = chemical oxygen demand >70% & Alum: chemical oxygen demand: >65%	Vourch, et al., 2008
coagulating /flocculation	Ferric chloride as coagulating	Ferric chloride low wastewater: Dosage: (550,180, 180 mg/l) chemical oxygen demand: 76, 88 & 82%, individually powerful wastewater: Dosage: (500, 500, 500 mg/l) chemical oxygen demand: (45, 28 & 29%), respectively	Shivsharan, et al., 2013
Adsorption	minimal expense adsorbents such as powdered enacted carbon, bagasse, straw residue, sawdust, fly ash, & coconut coir as adsorbent	Total suspended solids = enacted carbon had a superior evacuation effectiveness	Sarkar, et al., 2005
Adsorption	lanthanum modified bentonite as adsorbent	Phosphate: 100% in the first 15 min.	Andrade, et al., 2014
Membrane operation	Reverse osmosis	water recuperation = 95% with a medium flow around 10-11 L/h.m2 TOC = 99.8%, TKN = 96%, conductivity: 97% & lactose: 99.5%	Tchamango, et al., 2010
Membrane operation	Reverse osmosis	Conductivity= 98.2%, chemical oxygen demand= 97.8%	Melchiors, et al., 2016
Membrane operation	Ultrafiltration + invert assimilation (pretreating the wastewater for coagulating and PAC previously)	Dairy factory wastewater ability to be reused and recycling	Yavuz,, et al., 2011
Membrane operation	Membrane bioreactor + nanofiltration	MBR: chemical oxygen demand = 98%, nutrients: 86% (N = 86% & P = 89%) NF: chemical oxygen demand = 99.9%, Total suspended solids = 93.1%	Tawfika, et al., 2008
Electrocoagulation		chemical oxygen demand= 98% (at ideal circumstances at electrolysis season of 7 min)	Markou, et al., 2014
Electrocoagulation	Dissolvable aluminum anode as utilized	P = 89%, $N = 81%$ & COD = 61%	Yonar, et al., 2017
Electrocoagulation	Iron electrodes	organic material = 97.4% (at final pH =7.4)	Bazrafshan, et al., 2013
Combined electrode system	Iron & aluminum electrodes	Twenty minutes of electrolysis was sufficient for curing chemical oxygen demand.	Sharma, 2014.
Electrochemical oxidation	IrO2-Pt/Ti coated anodes	next 360 minutes 3700 mg/L chemical oxygen demand expulsion was finished in a current thickness from 100 mA/cm2 by utilizing IrO2/Ti anode, and total decolorization was accomplished under 60 min	Vaccari, et al., 2005
Electrochemical process	Sn/Sb/Ni-Ti coated anodes	Chemical oxygen demand = 98% an immediate intensity from 50 mA/cm2 at 10 min	Beneois, et al., 2016
Electrocoagulation	Aluminum anodes were utilized within the sight of potassium chloride as electrolytes	chemical oxygen demand = 98.84% expulsion, biological oxygen demand = 97.95% evacuation, total suspended solids = 97.75% evacuation, & bacterial index = 99.9% in 60 V through 60 min	Tzoupanas, et al., 2008
Electrocoagulation	Direct instant-aluminum sheets were utilized as sacrificial anodes	chemical oxygen demand = 87% (the ideal current force, power of hydrogen, & electrolysis time from 1070 mg/dm3 & were 3A, 9, 75 min, individually. Mean energy utilization was 112.9 kWh/kg)	Sarkar, et al., 2005

2.2. Adsorption process

The process of polarizing organic compounds to remove them from wastewater. There are many sorts of adsorbents that contain artificial polymers, initiated carbon, and silica-based adsorbents. The most important of which is animate carbon due to its high proficiency and cost the capacity to retain a wide scope of natural mixtures. Adsorption ability is designated to physical and catalytic maintenance. Van der Waals force is utilized at actual adsorption while initiating carbon issue the better illustration from basic adsorption. However, a synthetic response happens among the adsorbents, which don't vastly stratify wastewater curing.

Adsorption on strong surfaces has different applications and is utilized to eliminate organic matter, synthetic substances, weighty metals, etc. Fly debris, rice husk debris, and Sucker plane dust, while activated carbon is comparatively the depressed-value adsorbents (**Vignesvaran, et al., 2005**).

2.3 Membrane processes


It is characterized as the expulsion or detachment of colloidal and particulate matter from the fluid that goes about as a particular obstruction and is, as a rule $0.0001-1.0 \mu m$. Membrane processes are microfiltration, ultrafiltration, nanofiltration, and hemodialysis. Hemodialysis and reverse osmosis are two up-and-coming methods. Many countries have focused on treating dairy wastewater by utilizing layer processes. The layer filtration process offers a wide scope of benefits to the shopper. Membrane processes are environmentally friendly non-thermal technologies that reduce Future possibilities of the negative impact of rising temperatures involving the change for stage, Denaturation from proteins, while variation at the organoleptic elements from of item (Chen, et al., 2005).

2.4 Electrochemical processes

This process includes decay from natural mineral materials by utilizing electric charges. Where the process of oxidation and decrease happens through responses in the electrolytic cell consisting of the anode and cathode. When the electricity is delivered to the cell, the minus ions shall go at the positive anode while the plus particles shall go at the negative pole, and the cations shall lessen; furthermore, the anions are oxidized in the two Electrodes.

Coagulation processes, electro contamination, and anodic oxidation are methods used to treat dairy waste. Previously published studies on this method of treating pollutants from dairy by-products have proven that it is especially compelling for a wide scope of contaminants (weighty metals, natural mixtures, micro-organisms, and different others). As a result, it has an essential and promising future in water treatment.

EC is the essential wastewater treatment to incite the planned electro age of flocculant/Coagulants are in situ, normally affected by a consistent current. It isn't a direct A cycle including numerous synthetic and actual peculiarities for the evolution of irons, aluminum cations of dissolution for comparing (anode), during Concurrent creation from OH anions through a negative pole decrease from water. Polymer The mineral hydroxides are framed. To go about as amazing coagulants to lean toward the evacuation of solutes, A colloid or suspension, which in the end prompts the expulsion of enormous extents of Shading and turbidity. Coagulation primarily happens because of shakiness; once in metal cations, it consolidates with adversely charged particles that move towards the positive anode by electrophoresis Movement (**Kuswaha, et al., 2010**).

CONCLUSIONS

1- Membrane technology is under study for effective treatment and can be used to treat most wastewater due to its unique properties, eliminating many of the drawbacks of classical systems. It may be utilized alone or blended with other wastewater treatment frameworks.

2- Advanced film bioreactors work on successful fluid muscular partition and have high profluent creation, modest plant sizes, and low ooze creation.

3- AlChemical treatment techniques (coagulation-flocculation, oxidation-decrease, buoyancy, and so on) utilized in water, wastewater, solids, turbidity, heavy metals, and decolorization purposes for organic materials can be used as a pretreatment step. It will be essential to direct extra organic treatment.

4 - The treatment proficiency is impacted by a few variables, including the boundary to be taken out, the compound utilized, the holding time, the thickness from a combination, and the quantity of sludge created ability much or few chemicals.

5- In contrast with biological cycles, the benefits like the simplicity of activity, a sweep from a non-degradable piece from a natural matter, and disposal of process changes proficiency especially favor solids, turbidity, weighty metals, and decolorization purposes.

REFERENCES

Aghili F., Ghoreyshi A.A., Rahimpour A., and Rahimnejad M., 2016. Enhanced treatment of pretreated sour whey by PAC adsorption/ membrane process, Chemical Engineering and Processing, **99:80**-85. DOI: 10.1016/j.cep.2015.11.006

Al-Jabari M., 2017. Kinetic mass transfer adsorption model for treating dairy wastewater with stone cutting solid waste, Environmental Technology and Innovation, **7**:21-29. DOI: 10.1016/j.eti.2016.11.004

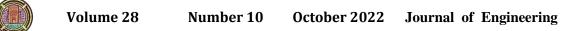
Andrade L.H., Mendes F.D.S., Espindola J.C., and Amaral M.C.S., 2014. Nanofiltration as tertiary treatment for the reuse of dairy wastewater treated by membrane bioreactor, Separation and Purification Technology, **126:21**-29. DOI: 10.1016/j.seppur.2014.01.056

Bazrafshan E., Moein H., Mostafapour F.K., and Nakhaie S., 2013. Application of electrocoagulation process for dairy wastewater treatment, Journal of Chemistry, 8:Article ID 640139. DOI: 10.1155/2013/640139

Beneois K., Dahmani S., and Berrebah K., 2016. Efficiency and limits of physicochemical treatment of dairy wastewater. (Case Study: Dairy industry in Western Algeria), International Journal of Chemical, Environmental and Biological Sciences, **4**(1):9-11. ISSN: 2320-4087

Blanc F., and Navia R., Treatment of dairy wastewater by chemical coagulation. In: Proceedings of the 45th Industrial Waste Conference; Pardue University, USA. pp. 681-689

Britz T.J., Van Sckalkwyk C., and Hung Y.T., 2004. Treatment of Dairy Processing Wastewater: Handbook of Industrial and Hazardous Waste Treatment. 2nd ed. New York: Marcel Dekker, pp. 616-646. DOI: 0-8493-7236-4


Bulletin of the International Dairy Federation, 2016. The World Dairy Report No: 485/216.

Chen J.P., Chang S.Y., and Hung Y.T., 2005. Electrolysis, Phsysicochemical Treatment Processes, In Wang LK, Hung YT, Shammas NK, editors, Totowa, New Jersey: Humana Press Inc., pp. 359-376. DOI: 10.1385/159259820x

Cristian O., 2010. Characteristics of the Untreated Wastewater Produced by Food Industry. Analele Universității din Oradea, Fascicula: Protecția Mediului, p. XV

Dabhi Y.M., 2013. Physicochemical treatment of dairy plant wastewater using ferrous sulphate and ferric chloride coagulants, International Journal of Basic and Applied Chemical Sciences, 3(4):9-14

Demirel B., Yenigün O., and Onay T.T., 2005. Anaerobic treatment of dairy wastewater: A review, Process Biochemistry, **40:2583**-2595. DOI: 10.1016/j.procbio.2004.12.015

Deshmukh D.S., 2017. Wastewater generation and its treatment in dairy industries, International Journal of Application of Engineering and Technology, 2(3):25-35. ISSN: 2321-8134

Hamdani A., Chennaoui M., Assobhei O., and Mountadar M., 2004. Dairy effluent characterization and treatment by coagulation decantation, Le Lait, **84**(3):317-328 Hung Y.T., Lo H.H., Wang L.K., Taricksa J.R., Li K.H., 2005. Granular activated carbon adsorption: Phsysicochemical treatment processes, Phsysicochemical Treatment Processes. Totowa, New Jersey: Humana Press Inc., pp. 573-630. DOI: 10.1016/j.watres.2010.07.001

Jasim, N. A., and Ibrahim, J. A. K., 2020. Stabilization of Al-Rustamiya Waste Water Treatment Plant Sludge Using Lime, *Journal of Engineering*, 26(9), pp. 165–172. doi: 10.31026/j.eng.2020.09.11.

Karpati A., Bencze L., and Boszeki J., 1989. New phisico-chemical pretreatment of dairy effluents, In: Proceedings of International Symposium on Waste Management Problems in Agro Industries; İstanbul, pp. 121-128

Khudair B. H., and Jasim, S. A., 2017. Performance Evaluation of Sequencing Batch Reactor and
Conventional Wastewater Treatment Plant based on Reliability assessment, *Journal of*
Engineering, 23(11), pp. 97–112. Available at:
https://joe.uobaghdad.edu.iq/index.php/main/article/view/365 (Accessed: 6 March 2022).

Kurzbaum E., and Shalom O.D., 2016. The potential of phosphate removal from dairy wastewater ad municipal wastewater effluents using a lanthanum modified bentonite, Applied Clay Science, **123:182**-186. DOI: 10.1016/j.clay.2016.01.038

Kushwaha J.P., Srivastana C., and Mall I.D., 2011. An overview of various technologies for the treatment of dairy wastewaters. Critical Reviews in Food Science and Nutrition, **51:442**- 452. DOI: 10.1080/10408391003663879

Kuswaha J.P., Srivastava V.C., and Mall I.D., 2010. Organics removal from dairy wastewater by electrochemical treatment and residue disposal, Separation and Purification Technology, **76:198**-205. DOI: 10.1016/j.watres.2010.07.001

Lolei M., Alidadi H., Nekonam G., and Kor Y., 2013. Study of the coagulation process in wastewater treatment of dairy industries, International Journal of Environmental Health Engineering, **2**(5):17-21. DOI: 10.4103/2277-9183.132684

Markou V., Kontogianni M.C., Frontistis Z., Tekerlekopoulou A.G., Katsonous A., and Vayenas D., 2017. Electrochemical treatment of biologically pre-treated dairy wastewater using dimensionally stable anodes, Journal of Environmental Management, **202**:217-224. DOI: 10.1016/j.jenvman.2017.07.046

Marshall K.R., and Harper W.J., 1984. Treatment of wastes from the dairy industry. In: Barnes D., Forster C.F., Hrudey S.E., editors, Surveys in Industrial Wastewater Treatment, Vol. 1., Boston: Pitman Advanced Publishing Program, pp .296-376

Melchiors M.S., Piovesan M., Becegato V.R., Becegato V.A., Tambourgi E.B., and Paulino A.T., 2016. Treatment of wastewater from the dairy industry using electroflocculation and solid whey recovery, Journal of Environmental Management, **182:574**-580. DOI: 10.1016/j. jenvman.2016.08.022 Qazi J.I., Nadeem M., Baig S.S., Baig S., and Syed Q., 2011. Anaerobic fixed film biotreatment of

dairy wastewater, Middle-East Journal of Scientific Research, **8**(3):590-593. ISSN: 1990-9233

Sarkar B., Chakrabarti P.P., Vijaykumar A., and Kale V., 2005. Wastewater treatment in dairy industries: Possibility of reuse. Desalination, **195:141**-152. DOI: 10.1016/j.desal.2005.11.015

Sarkar B., Chakrabari P.P., Viyajkumar A., Kale V., 2006. Wastewater treatment in dairy industries-possibility of reuse. Desalination, **195:141**-152. DOI: 10.1016/j.desal.2005.11.015

Sharma D., 2014. Treatment of dairy wastewater by electrocoagulation using aluminum electrodes and settling, filtration studies, International Journal of ChemTech Research, 6(1):591-599. ISSN: 0974-4290

Shete B.S., and Shinkar N.P., 2013. Dairy industry wastewater sources, characteristics and its effects on environment. International Journal of Current Engineering and Technology, **3**(5): 1611-1615. ISSN: 2277-4106

Shivsharan V.S., Kulkarni S.W., and Wani M., 2013. Physicochemical characterization of dairy effluents, International Journal of Life science and Pharma Research, **2**(2):182-191. ISSN: 2250-3137

Shivsharan V.S., Kulkarni S.W., and Wani M., 2014. Physicochemical characterization of dairy effluents, International Journal of Life science and Pharma Research, **2**(2):182-191. ISSN: 2250-3137

Sivrioğlu Ö., and Yonar T., 2015. Determination of the acute toxicities of physicochemical pretreatment and advanced oxidation processes applied to dairy effluents on activated sludge, Journal of Dairy Science, **98**(4):2337-2344. DOI: 10.3168/jds.2014-8278

SKKY: Su Kirliligi Kontrol Yonetmeligi (Water Pollution and Control Regulation), T.C. Basbakanlik Mevzuati Gelistirme ve Yayin Genel Mudurlugu, 2004. p. 54. Available from: http://mevzuat.basbakanlik.gov.tr

Suarez A., Fidalgo T., and Riera F.A., 2014. Recovery of dairy wastewaters by reverse osmosis, Production of boiler water, Separation and Purification Technology, **133:204**-211. DOI: 10.1016/j.seppur.2014.06.041

Rao M., and Bhole A.G., 2002. Removal of organic matter from dairy industry wastewater using low-cost adsorbents, Journal of Indian Chemical Engineer, Section A, **44**(1):25-28

Rusten B., Eikebrokk B., and Thorvaldsen G., 1990. Coagulation as pretreatment of food industry Wastewater, Water Science and Technology, **22:1**-8

Tawfika A., Sobheyb M., Badawya M., 2008. Treatment of a combined dairy and domestic wastewater in an up-flow anaerobic sludge blanket (UASB) reactor followed by activated

sludge (AS system), Desalination, 227(1-3):167-177. DOI: 10.1016/j.desal.2007.06.023

Tchamango S., Njiki C.P.N., Ngameni E., Hadjiev D., and Darchen A., 2010. Treatment of dairy effluents by electrocoagulation using aluminum electrodes, Science of the Total Environment, **408:947**-952. DOI: 10.1016/j.scitotenv.2009.10.026

Tikariha A, Omprakash S., 2014 Study of characteristics and treatments of dairy industry wastewater. Journal of Applied & Environmental Microbiology, **2**(1):16-22. DOI: 10.12691/jaem-2-1-4

Tzoupanas N.D., and Zouboulis A.I., 2008. Coagulation-Flocculation processes in water/wastewater treatment: The application of new generation of chemical reagents, In: Proceedings of the 6th International Conference on Heat Transfer, Thermal Engineering and Environment (HTE'08); 20-22 Aug., Greece

Vaccari D.A., Li Y., and Shammas N.K., 2005. Chemical precipitation, Physicochemical Treatment Processes, Totowa, New Jersey: In Wang LK, Hung YT, Shammas N.K., editors, Humana Press Inc., pp. 141-174. DOI: 10.1016/j.watres.2010.07.001

Vignesvaran S., Ngo H.H., Chaudry D.S., and Hung Y.T., 2005. Physicochemical treatment processes for water reuse, Phsysicochemical Treatment Processes, , In: Wang LK, Hung YT, Shammas NK, editors, Totowa, New Jersey: Humana Press Inc., pp. 359-376. DOI: 10.1385/159259820x

Vourch M., Balannec B., Chaufer B., and Dorange G., 2008. Treatment of dairy industry wastewater by reverse osmosis for water reuse, Desalination, **219:190**-202. DOI: 10.1016/j. desal.2007.05.013

Yavuz Y., Öcal E., Koparal A.S., and Öğütveren Ü.B., 2011. Treatment of dairy industry wastewater by EC and EF processes using hybrid Fe-Al plate electrodes, Journal of Chemical Technology and Biotechnology, **86**(7):964-969. DOI: 10.1002/jctb.2607

Yonar T., and Sivrioğlu Ö., 2017. Electrochemical degradation of dairy effluent using novel Sn/Sb/ Ni-Ti anodes, Journal of Physical Chemistry and Biophysics, **7**:2. In: 3rd International Conference on Electrochemistry, 10-11 July, Berlin, Germany