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ABSTRUCT

The Aim of this paper is to investigate numerically the simulation of ice melting in one and
two dimension using the cell-centered finite volume method. The mathematical model is based on
the heat conduction equation associated with a fixed grid, latent heat source approach. The fully
implicit time scheme is selected to represent the time discretization. The ice conductivity is chosen
to be the value of the approximated conductivity at the interface between adjacent ice and water
control volumes. The predicted temperature distribution, percentage melt fraction, interface location
and its velocity is compared with those obtained from the exact analytical solution. A good
agreement is obtained when comparing the numerical results of one dimensional temperature
distribution with the analytical results.
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1.

INTRODUCTION

The classical Stefan problem is a mathematical
model for ‘phase-change’ or ‘moving-boundary’
engineering problems involving heat and mass
transfer in materials undergoing phase change
during thermal processes. Such kind of processes
can be the solidification of pure metals, melting of
ice, freezing of water and deep freezing of food-
stuffs and so on. These materials are assumed to
undergo a phase change with a continuously
moving liquid-solid isothermal front ‘moving
boundary’ that has to be tracked as part of the
solution, (Carslaw and Jaeger, 1959). Owing to the
nonlinear form of the thermal energy balance
equation at the unknown location of this time-
dependent liquid-solid isothermal front ‘the phase
change constant temperature interface’ associated
with both, the absorption or release of latent heat
and the abrupt discontinuity of properties.
Analytical solutions are difficult to obtain except
for a limited number of special cases. Therefore,
approximate analytical methods are used in the
analysis of phase change problems. The Picard’s
iterative method was used in (Witula et al., 2011).
The Lie-Group shooting method was used in
(Chein-Shan Liu, 2011). In addition, the heat
balance integral method (HBIM) was used in
(Myers, 2007). The asymptotic solution for zero-
phase type problem for cases having small but
finite Biot numbers was used in (Naaktgeboren,
2007). On the other hand, numerical methods are
used commonly. The explicit Finite Deference
Method was used in (Savovic and Caldwell, 2003).
The Faedo-Galerkin Finite Element Method with a
Crank-Nicolson time scheme was used in (Rincon
and Scardua, 2008). The numerical simulation of
ice formation in one and two dimension using the
cell-centered Finite Volume Method based on the
latent heat source approach was investigated in
(Prapainop and Maneeratana, 2004). An enthalpy
transforming method with finite volume approach
to investigate numerically the steady state natural
convection melting process of a two-dimensional
square ice cavity was adopted in (Al-Zubaidy,
2006). Several effective modeling techniques with
approximate analytical and numerical methods
using; Enthalpy Method, Boundary
Immobilization Method (BIM), Perturbation
Method, Nodal Integral Method and the (HBIM)
for the solution of One-Dimensional Stefan
problem have been described and compared in
(Caldwell and Kwan, 2004). In addition,
commercial software packages have been used to
solve the ‘moving boundary’ problem. The
melting of snow/ice and the effect of adding salt to
the ice/snow has been modeled using MATLAB in
(Patrick et al., 2008). The three-dimensional
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melting of ice around a liquid-carrying tube placed
in an adiabatic rectangular cavity was investigated
numerically using PHOENICS Code in (Sugawara
etal., 2011).

Basically, there are two main approaches for
the solution of the Stefan problem. One is the
front-tracking method, where the position of the
phase boundary is continuously tracked in every
time step. Sadoun et al. (2012), has used the
Goodman (HBIM) which explicitly tracks the
motion of the isothermal liquid-solid front with an
explicit finite difference method including
modified boundary immobilization scheme in
transformed coordinates based on front-tracking
and referred to as variable space grid method
(VSGM). Hence, this method does not require the
discontinuity  approximation for isothermal
problems and it is poorly suited to multi-
dimensional problems due to the difficulties with
algorithms  of implementations and large
computational cost. Zhaochun et al. (2011)
presented the moving interface locations and used
these location coordinates as the grid points to find
out the arrival time of moving interface
respectively. Through this approach, the difficulty
in mesh generation was avoided completely.
Another approach is to use a fixed-grid method,
which implicitly contains the moving interface
condition within the mathematical model. This
method is more flexible than the front-tracking and
is suitable for multi-dimensional problems. For the
second method, the latent heat is accounted for by
either the temperature-based or the enthalpy-based
method. The  temperature-based  approach
considers the temperature as the only dependent
variable in the governing equation. In order to
avoid the discontinuity in isothermal problems, an
approximate numerical smoothing must be used
and a special integration is needed to compute the
latent heat. On the other hand, the enthalpy-based
method is further divided into basic enthalpy,
apparent heat capacity and latent heat source. In
the basic enthalpy scheme, enthalpy is used as the
primary variable and the temperature is calculated
from a previously defined enthalpy-temperature
relation. This method gives reasonably accurate
results for metallic solidifying over mushy ranges,
but it is complex and computationally expensive
and it performs poorly for isothermal problems. In
the apparent heat capacity method, the latent heat
is calculated from the integration of heat capacity
with respect to temperature. As the relationship
between heat capacity and temperature in
isothermals involves sudden changes, the zero-
width phase change interval must be approximated
by a narrow range of phase change temperature.
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Thus, the size of time step must be small enough
that this temperature range is captured in the
calculation. In the latent heat source method, the
latent heat is included in the source term of the
governing differential equation, which is obtained
from a prescribed relation between latent enthalpy
and temperature.

The aim of this paper is to predict the
temperature distribution, the percentage melt
fraction, the liquid-solid interface location and its
velocity in one and two dimension using the Finite
Volume Method based on the fixed grid, latent
heat source approach. The fully implicit time
scheme is selected to represent the time
discretization. The ice conductivity is chosen to be
the value of the approximated conductivity at the
liquid-solid interface between adjacent ice and
water control volumes. To validate the predicted
numerical results, it will be compared with those
obtained from the exact analytical solution.

2. MATHEMATICAL MODEL

Consider a semi-infinite ice body with
(0< x <o) is initially at a uniform temperatureT; .
This body is suddenly subjected (at x = 0) with a
constant temperature T, and(T, >T, >T;) as
shown in Fig. (1). It is required to find: The

temperature distribution of the solid phase (Ice),
T and liquid phase (Water), T, , the Melt

fraction, M, the Liquid-solid Interface location,
X (t), and its velocity, Vinterface - TO Solve this

classical two-phase Stefan problem, the following
assumptions are considered, Ozisik (1993) and
Alexiades and Solomon (1993):

1. The thermal properties of solid are not equal to
that of liquid.

2. Neglect the volume variation for both phases
by assuming a constant and equal density (o)
for both phases.

3. The thermal properties of a single phase are
independent of the temperature.

4. The initial temperature is constant(T; ).

5. A planer and sharp surface (interface) is
separating the phases at a constant phase
change temperature (T, ) .

6. The Latent heat of fusion (hg ) is constant.

7. Neglect the surface tension and curvature
effects at the interface.
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8. No convection or radiation heat transfer at the
boundaries, only pure and isotropic conduction
is considered, and gravity effect is neglected.

9. No internal heat generation.

3. ONE DIMENSIONAL CLOSED
FORM SOLUTION
The governing equation with its Initial and

Boundary Conditions are:

aaTtL o, aaz;L for (O<x<x,(®)) (1)
Teoa Tl or<xse) @
T(x,0)=T; @)
T(0,1)=T, )
)T (5)
T (X (), 1) =Tpy ©

The energy balance at the interface yields;

oT oT dx,, (t)
[ks _Sj _(kL _Lj ZPhSL (7)
X (1) X (1)

OX OX dt

X (t kg pC

Assume: = m (1) and g =28 _SsP-L
21[Ol|_t (221 kLpCS

The general solution of the temperature

distribution for both the liquid and solid phases is
given as follows, Carslaw and Jaeger (1959):

_ .
erf
TL(XL’t)_Tm 2\at

=|1- erf (5) ®

erfc[ Xs J
Ts(xs,t)-T, _ 2yast )

=0
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Where (5) is the root of the following
transcendental equation:-

1 - B 52/2 (10)
erf (5 s t
erfc(gJe “
Ja
(Stefan Number) St = Sensibleheat _ C\ (To —Tpn)
Latent heat hs
k Tm —Ti
ﬁ = L’CS and 0= _m
kLeCL To—Tnm
And the interface velocity (\/imerface) is as
follows;
dx () o
Vi m =8, - 11
interface = dt t (11)
And the melt fraction (M, ) is as follows;
t) 20\ta
M, = Xm(t) _ L (12)
L L

Where L is a finite length of the domain needed to
validate the numerical results of the One-
Dimensional model.

4. FINITE VOLUME MODEL

4.1. Grid Generation

In the Finite Volume Method, the first step
is to divide the domain into a number of discrete
control volumes; (N,) for One-Dimensional

domain and (NxNy) for Two-Dimensional

domain. A general nodal point is identified by P.
In One-Dimensional domain, the nodes to the west
and east of P are identified by W and E
respectively. The west side boundary of the control
volume is referred to by ‘w’ and the east side of
the control volume is referred by ‘e’, Fig. 2. In
Two-Dimensional domain, the nodes to the west,
east, south and north of P are identified by W, E, S
and N respectively. The side boundaries of the
control volume is referred to by; ‘w’, ‘e’, ‘s’ and
‘n’ for the west, east, south and north sides
respectively, Fig. 3. The time domain is divided
into a number of time steps of size At. Variables at
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the previous time level are indicated by the
superscript (o, OId). In contrast, the variables at
the new time level are not superscripted, Versteeg
and Malalasekera (1995).

4.2. Discretization of One Dimensional
Model

A 0.1-m slab has initial temperatureT; = -5C°.
The boundary condition at one end of the slab is

subjected to a constant temperature T, =20C°
while the other end is kept at the value of the

initial temperature T; =-5C° as illustrated in

Fig. 4. Uniform control volumes with size Ax are
used. The governing One-Dimensional energy

equation is:
o1 j
OX

4.2.1. Single Phase Formulation (T <Tp,):

pC—=3(k

13
ot ox (13)

6H

dT 14
= at{jpcs } (14)
Substitute Eq. (14) into Eq. (13), yields;
o o(,ar
— dT |=—| k— 15
atTjipCS]ax[axJ (15)

Multiply Eq. (15) by (dV.dt),(dV = dx.(1).(1)) and
then integrate over the control volume faces,
yields;

t+Ate t+Ate

jjpcs—dxdt_ IIS[kZ—Tdedt (16)

t w

Using fully implicit scheme;
PCs (TP -Tp )AX =

”ﬂ(kg_g (x2)

(17)
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4.2.2. Two Phase Formulation(T >T,,):
The enthalpy method-latent heat source
approach is used to predict the solution of the Two

Phase problem, as follows:

Tm
oH 0 0
— == dT |—-— +
it JPCS at(phSL)
- : (18)
5 T
s IPCLdT
_Tm m
Substitute Eq. (18) into Eq. (13), yields;
) K | )
< a7 |- < +
P %[pcs a,[(/OhSL)
- - (19)
0 ! 0 oT
< a7 =2 k-
at TJ oL 6x( axj

Multiply Eg. (19) by(dv.dt),(dVv = dx.(1).(1)) and
then integrate over the control volume faces,
yields;

t+Ate t+Ate

[ pCS%dx.dt— [ J%(phSL)jx.dtJr
t w t w

(20)
t+Ate oT t+Ate 5( or
—dx.dt = —| k— (dx.dt

IIpCLﬁtX J‘J.ax( GXJX

t w tw
Using fully implicit scheme;

ACs (TP -Tp )AX—PhSLAX+

oo ~T8 ax= (21)

T,

Each of the boundary conditions is substituted,
into Eq. (17) for discretizing the Single Phase
One-Dimensional model and into Eqg. (21) for
discretizing the Two-Phase One-Dimensional
model respectively. Then divide each of the
resulting equation by Atand rearrange yields:
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apr =aETE +awTW +3.ng30 +Su (22)
ap =ag +ay +ag —Sp
AXy =AXe =AX=L/Ny

Where (aW ,ag,ap,S, ) are listed in Table 1.

4.3. Discretization of Two Dimensional
Model (Case Study 1)

Consider a (0.2cos(z/4))mx (0.2sin(z/4))m
region of area is initially at a uniform
temperature T, =-5C°. This region is suddenly
subjected at the boundaries with a constant
temperature T, =20C°. Due to summitry, only

one-fourth of the total area (shaded area) is
modeled as shown in Fig. 5 with no heat flux
across the surfaces AD and CD. Uniform control
volumes with sizeAx and Ay are used. The

governing Two-Dimensional energy equation is:

T _ 0T, 0T
A (kax)+ay{kayJ

ot oOx
4.3.1. Single Phase Formulation(T <T,):
Substitute Eq. (14) into Eq. (23), yields;

ﬂj ' i(k ﬂ} (24)
ox ) oy\ oy

(23)

]
? 5

9 dT |=-2 [«
atTIpCS 6x(
i

Multiply Eq. (24) by(dv.dt),(dV = dx.dy.()) and
then integrate over the control volume faces,
yields;

traten aT
pCs r dx.dy.dt =

t ws
t+Atn e

[ | i(k 6)—Tjdx.dy.dt +

25
oX\  OX (29)

t sw
n

ﬁ[k ﬂjolx.dy.on
oy\ oy

Ac=dy.() . Ay =dx()
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Using fully implicit scheme;

ACs (TP _TIQ)AV =

t+AL

J' (kAxa—TJ —(kAXa—T]
i OX Jq X )y |

t

T Gy or) |
j (kAy —] —(kAy —J t
L 8y n ay S |

t

o

t+ (26)

o

4.3.2. Two Phase Formulation (T >T,):

The enthalpy method-latent heat source
approach is used to predict the solution of the Two
Phase problem, as follows:

Substitute Eq. (18) into Eqg. (23), yields;
o|™ )

— dT |—— +

P %[PCS a,[(/OhSL)

.
o o( aT\ af, erT
< ar |= Lk ]y Lk
at TIPCL ax( axj 8y( ayJ

Multiply Eq. (27) by (dv.dt), where(dV = dx.dy),
and then integrate over the control volume faces,
yields;

t+.At en oT
j j pCs -yt ~
.t WS
t+.At en 5
E(phSL )dx.dy.dt +
tows
t+Aten
O o( aT
oCL de.dy.dt = (28)
s
t+.At e

ﬁ(k ﬂjdx.dy.ol ;
Jox\ ox

w

"o ( et

— (k —de.dy.dt
oy\ oy

g
—
=

S D V5 =S D = ——

w ¢

t

Using fully implicit scheme;

Numerical Simulation of Ice Melting
Using the Finite Volume Method

PCs (TP -Tp )AV - phgL AV +
pCL(TP —TF?)AV =

e ot oTY) |
kA, 2| —lka, 8]t + 29
![ xaxje [ xax]w_ (29)
t+jAt
t

(et oT ) |
(“WJ ‘(“Wj

Each of the boundary conditions is substituted,;
into Eq. (26) for discretizing the Single Phase
Two-Dimensional model and into Eq. (29) for
discretizing the Two-Phase Two-Dimensional
model respectively. Then divide each of the
resulting equation by At and rearrange yields:

o

t

apr =aETE +awTW +
00 (30)
aNTN +aSTS +aPTP +SU

ap =ag +ay +ay +ag +ap —Sp
AV = AX.Ay

Ac=ay=Ly /N,

Ay =Ax=L, /Ny

Where (aW ,ag,ag,ay ,ag ,Sp.Sy ) are listed in
Table 2.

4.4. Solver

Equations (22) and (30) are solved using the
Tri-Diagonal Matrix Algorithm TDMA, Versteeg
and Malalasekera (1995).

5. RESULTS AND DISCUSSION

5.1.  One Dimensional Model

The One-Dimensional model with the chosen
values of initial and boundary conditions is shown
in Fig. 4. Selected material properties for solid and
liquid phases are given in Table 3. A constant

phase change (Melting) temperatureT,, =0C°.
The Latent heat for fusion is
constanthy, =338kJ/kg. The value of Stefan

Number equal (0.25). As the convection of the
liquid across cell faces and the induced stress due
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to the expansion of the ice are not included in the
present work, the density of the ice is
approximated to be equal to that of water to ensure
the conservation of mass for each control volume.
The first step to validate the numerical solution
is to choose the grid and time sizes that are
adequate for obtaining the minimum error of
results. This task is accomplished through a Gird
Independency Test GIT. A grid size of Ax=1mm

equivalent to N, =100 with a time step of
At =1sec. was obtained with a maximum error of
melt fraction of less than 3% as shown in Fig. 6.

Fig. 7 shows a good agreement when the
numerical results of temperature distribution is
compared with the analytical results at time
intervals of t=1,5,20and 40min. using a fully

implicit time scheme. The ice conductivity is
chosen to be the value of the approximated
conductivity at the interface between adjacent ice
and water control volumes. The temperature
distributions show that ice cells heat up faster due
to a high diffusivity ag =kg /pCg and a high
temperature gradient of almost a linear shape.
Once a control volume is melted, its temperature
increase will be slow. This clearly illustrates that
the rate of heat transfer is predominantly
controlled by the position of the melting front as
illustrated in Fig. 8 which indicates the percentage
of melt fraction as shown in Fig. 9. As ice is a
good insulator, the melting front advances at a
decelerating rate as shown in Fig. 10.

5.2. Case Study 1:Two Dimensional Model

The Two-Dimensional model with the chosen
values of initial and boundary conditions is shown
in Fig. 5. Selected material properties for solid and
liquid phases are given in Table 3. A constant

phase change (Melting) temperature T, =0C°.
The Latent heat for fusion is
constanthy, =338kJ /kg. The value of Stefan

Number equal (0.25). As the convection of the
liquid across cell faces and the induced stress due
to the expansion of the ice are not included in the
present work, the density of the ice is
approximated to be equal to that of water to ensure
the conservation of mass for each control volume.
A grid size of (Ny =100)x(N, =100) are

used to model the domain with a time step of
At =1sec.

Volume 19 June 2013
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To validate the numerical solution of the Two-
Dimensional model, the length of the diagonal line
BD is assumed to be equal to that of the One-
dimensional domain (L=0.1 m). Fig. 11 shows the
comparisons between the predicted temperature
distribution along the diagonal line BD and the
One-Dimensional analytical solution with a fully
implicit time scheme and the ice conductivity is
chosen to be the value of the approximated
conductivity at the interface between adjacent ice
and water control volumes at time values of
t=1,5,20and 40 min. It is clear that the predicted

temperature distribution along the diagonal line
BD exceeds the One-Dimensional analytical
solution due to the area of the exposed corner of
the Two-Dimensional domain is approximately
twice of that for the One-Dimensional domain.
This clearly illustrates that the rate of heat transfer
is predominantly controlled by the position of the
melting front with a decelerating rate at the
beginning of melting process then ending with an
accelerated rate due to a decrease in the exposed
area of the solid phase of the Two-Dimensional
domain, as shown in Fig. 12. The percentage of
melt fraction is shown in Fig. 13.

Fig. 14 shows the Two-dimensional
temperature distribution of simulation with a fully
implicit time scheme and the ice conductivity is
chosen to be the value of the approximated
conductivity at the interface between adjacent ice
and water control volumes at time values of
t=1,5,20and 40 min. The temperature

distribution clearly show heat transfer through
both exposed edges, causing a parabolic
temperature profile instead of a linear one as in the
One-Dimensional temperature distribution.

5.3. Case Study 2:Two Dimensional Model

A Two-Dimensional model of an industrial ice
block is simulated with a developed version of the
computer program using a body fitted coordinate
system. It is subjected to a convection heat transfer
boundary condition. Due to summitry, only one-
fourth of the total area (shaded area) is modeled as
shown in Fig. 15. The value of the free convection
heat transfer coefficient between ambient air and

outer surface of the ice block is(h0 =5W /mZK),
and the value of the forced convection heat

transfer coefficient between the inner surface of
the ice block and the flowing fluid

is(hi:1500W/m2K), Holman (1992). The

723



Dr. Mishaal Abdulameer Abdulkareem

ambient air temperature is(Tw = 20C°) and the
fluid temperature is (Tf = 40C°), (neglecting the

pipe thickness effect on temperature). Selected
material properties for solid and liquid phases are
given in Table 3. A constant phase change

(Melting) temperature T, =0C°. The Latent heat
for fusion is constanthy =338kJ/kg. As the

induced stress due to the expansion of the ice is
not included in the present work, the density of the
ice is approximated to be equal to that of water to
ensure the conservation of mass for each control
volume. A grid size of (20X40) is used to model
the domain with a time step of At=1sec. as

shown in Fig. 16.

The percentage of melt fraction is shown in
Fig. 17.

Fig. 18 shows the Two-dimensional
temperature distribution of simulation with a fully
implicit time scheme and the ice conductivity is
chosen to be the value of the approximated
conductivity at the interface between adjacent ice
and water control volumes at time values of
t=2,4,6,8,10and12sec. The temperature

distribution clearly show that ice melting of the
Two-Dimensional model (case study 2) is faster
than the model of (case study 1).

6. CONCLUSIONS

The modeling of ice melting in one and two
dimension using the cell-centered finite volume
method of a fully implicit time scheme associated
with a fixed grid, latent heat source approach is
successfully performed. As the melting front
should be of a one control volume thickness, this
dominating restriction controls both the time
interval and the grid sizes.

The temperature distributions show that ice
cells heat up faster with a temperature gradient of
almost a linear shape. Once an ice cell is melted,
its temperature increase will be slow. This clearly
illustrates that the rate of heat transfer is
predominantly controlled by the position of the
melting front which advances at a decelerating rate
at the beginning of melting process then ending
with an accelerated rate due to a decrease in the
exposed area of the solid phase of the Two-
Dimensional domain.
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NOMENCLATURE
A Cross section area of control volume, m?
a Discretization constant
C Specific heat Capacity, ki/kg.K
H Enthalpy, kJ/kg
h Latent heat of fusion, ki/kg
k Thermal conductivity, W/m.K
L Domain length in the subscripted specified direction, m
M Melt
N Number of control volumes in the subscripted specified direction
R Radius, m
S Source term constant
St Stefan number
T Temperature, C°
t Time, second
\Y Velocity, m/s, Volume of the control volume element, m’
X Distance along the x-direction, m
y Distance along the y-direction, m
GREEK SYMBOLS
P Density, kg/m®
o Dimensionless melt layer thickness measured from outer surface
0 Dimensionless ratio of temperature difference
p Square root of dimensionless ratio of thermal diffusivity
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A
a
h

Step size

Thermal diffusivity, m%s, Dimensionless ratio of thermal diffusivity

Heat transfer coefficient, W/m?K

SUPERSCRIPTS
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Oold
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Initial
Liquid

Melt

North

Outer surface
Point

Ratio
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Solid
Solid-Liquid
West

ABREVIATIONS

Numerical Simulation of Ice Melting
Using the Finite Volume Method

BIM Boundary Immobilization Method
GIT Grid Independency Test
HBIM Heat Balance Integral Method
TDMA Tri-Diagonal Matrix Algorithm
VSGM Variable Space Grid Method
Table 1 Global discretization of one dimensional model.
Phase ag Zone ay ag Sp Sy
Internal nodes k k 0 0
AXW AXq
i West 0 k k k
Solid A -
PCs A—)t( Boundary AXq Axy 12 Axy 12 °
East ko 0 __k k 1
Boundary AXy, AXg 12 Axg 12 '
Internal nodes | _k k- 0 phg AX
AXy AXe
Solid AX AX
pCs — + pCL — West 0 ko _k k
g + - S Boundary Xe Axyl2 Axy 12 0 AL
iqui
East ko 0 __k k T, + phe Ax
Boundary AXy AXg 12 Axg 12
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Table 2 Global discretization of two dimensional model (Case Study 1).

Phase ag Zone ay ag ay as Sp S,
Internal | kA | kKA | kA, | kA, 0 0
nodes Mo | A% | Ay, | Ay
West 0 | KAC | kA, | KA kA kA
Boundary M | Ay, | Ay Axy 12 Axy /2 °
(A-B)
East kA 0 | kA, | kA 0 0
Boundary | Ax, Ay, | Ays
(C-D)
South kKA | KAC | kA, | O 0 0
Boundary | Ax, | A% | ay,
(A-D)
Solid av | North | kA | kA [ 0 [ kA kAy kty -
Pes T | Boundary | ax, | ax, Ay Ay, 12 Ay, /2 °
(B-C)
CornerA | 0 | kA | kA 0 kA KA -
Me | Ay, Ay 12 Axy 12 °
CornerB | 0 | KA | O | kA kA, KA kA -, kA
Axe Ay Axy 12 Ay, 12 Axy 12 ° Aypl2°
Corner C | kA 0 0 kA, kA, kA, T
Axy Ay, Ay, 12 Ay 12 °
Corner D | kA 0 kA, 0 0 0
AXW Ayn
Internal kA, KA | kA, | kA 0 phg AV
nodes M | A% | ay, | Ay
West 0 | KAC | kA | KAy kA kA T, + phy AV
Boundary M | Ay, | Ay AXy 12 Axy, 12
(A-B)
East KA, 0 kA, kA, 0 phg AV
Boundary | ax, Ay, | Ay,
(C-D)
South KA | KA | kA 0 0 Phg AV
Ay | Boundary | ax, | Ax | ay,
Solid | 7 ar (A_Dr)1 -
Nort KA KA, KA KA kA
. + . - — —>% _y - y y TO + mSLAV
Liquid [ . av Boundary | Ax, | Ax AYs Ay /2 Ay, 12
LAt (B-6)
CornerA | 0 | kKA | kA, | O LN T, + phg AV
AXg Ay, AXy 12 Axy 12
Corner B 0 KA 0 kA, KA, KA,
—X -y — kAX — y kAX To + Y To +PhSLAV
Axe AYs Axyl2 Aypl2 | Axy /2 ° Ay,/2
Corner C | kA 0 0 kA kA kA
- — -— —T, + phg AV
Axy AYq Ay, 12 Ay, 12
Corner D | kA 0 kA, 0 0 Phg AV
AXW Ayn
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Table 3 Thermal properties.

Properties Solid Liquid
k (W/m.K) 2.22 0.556

C (kJ/kg.K) 1.762 4.22
0 (kg / ms) 1000 1000

Liquid : Solid

(a) Initial condition : i o
t=0 (b)e =0

Fig. 1 Mathematical model

Control volume boundaries

Control volume Nodal points
By dxpp |
| Fixw! ._4&..{
L fEmmEn e T T 1
* e e t
W w P e E
Ax =8x,,

.“ " 1} f’ [ & ,|r

‘_T ar., T ax

L= = T -

Fig. 3 A typical two dimensional control volume (shaded area).
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Fig. 4 One dimensional model
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Fig. 5 Case Study 1: Two dimensional model
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Fig. 6 One dimensional GIT test.
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Fig. 7 One dimensional temperature profiles at 1, 5, 20 and 40 min.
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Fig. 8 One dimensional interface location as function of time.
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Fig. 9 One dimensional melt fraction as function of time.
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Fig. 10 One dimensional interface velocity

as function of time.

Fig. 11 Predicted temperature profiles (Case Study 1)

at the diagonal line BD compared with the one
dimensional analytical solution at 1, 5, 20 and 40 min.
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Fig. 12 Predicted velocity (Case Study 1)
for a particle at the interface moving along
the diagonal line BD compared with

the one dimensional analytical solution

as function of time.

Melt fraction, %

Solid phase

Liquid phase

o 10 20 30 40

Time, min

Fig. 13 Case Study 1: Two dimensional melt
fraction as function of time.
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Fig. 14 Case Study 1: Two dimensional temperature profile.
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Fig. 16 Case Study 2: Grid Resolution (20X40).
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Fig. 18 Case Study 2: Two dimensional temperature profile.
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Fig. 18 Case Study 2: Two dimensional temperature profile.
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