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ABSTRUCT 

The Aim of this paper is to investigate numerically the simulation of ice melting in one and 
two dimension using the cell-centered finite volume method. The mathematical model is based on 
the heat conduction equation associated with a fixed grid, latent heat source approach. The fully 
implicit time scheme is selected to represent the time discretization. The ice conductivity is chosen 
to be the value of the approximated conductivity at the interface between adjacent ice and water 
control volumes. The predicted temperature distribution, percentage melt fraction, interface location 
and its velocity is compared with those obtained from the exact analytical solution. A good 
agreement is obtained when comparing the numerical results of one dimensional temperature 
distribution with the analytical results. 
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ة ــــــــــــإن الهدف من هذا البحث هو دراسة النمذجة العددية لذوبان الثلج بشكل أحادي وثنائي البعد باستخدام طريق

cell-centered finite volume method  حيث يعتمد النموذج الرياضي على معادلة التوصيل الحراري مع مبدأ الشبكة ثابتة
لتمثل التجزئة الزمنية و تم اختيار  The fully implicit time schemeوفرض الحرارة الكامنة كمصدر. تم اختيار نموذج 
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1. INTRODUCTION 
The classical Stefan problem is a mathematical 

model for ‘phase-change’ or ‘moving-boundary’ 
engineering problems involving heat and mass 
transfer in materials undergoing phase change 
during thermal processes. Such kind of processes 
can be the solidification of pure metals, melting of 
ice, freezing of water and deep freezing of food-
stuffs and so on. These materials are assumed to 
undergo a phase change with a continuously 
moving liquid-solid isothermal front ‘moving 
boundary’ that has to be tracked as part of the 
solution, (Carslaw and Jaeger, 1959). Owing to the 
nonlinear form of the thermal energy balance 
equation at the unknown location of this time-
dependent liquid-solid isothermal front ‘the phase 
change constant temperature interface’ associated 
with both, the absorption or release of latent heat 
and the abrupt discontinuity of properties. 
Analytical solutions are difficult to obtain except 
for a limited number of special cases. Therefore, 
approximate analytical methods are used in the 
analysis of phase change problems. The Picard’s 
iterative method was used in (Witula et al., 2011). 
The Lie-Group shooting method was used in 
(Chein-Shan Liu, 2011). In addition, the heat 
balance integral method (HBIM) was used in 
(Myers, 2007). The asymptotic solution for zero-
phase type problem for cases having small but 
finite Biot numbers was used in (Naaktgeboren, 
2007). On the other hand, numerical methods are 
used commonly. The explicit Finite Deference 
Method was used in (Savovic and Caldwell, 2003).  
The Faedo-Galerkin Finite Element Method with a 
Crank-Nicolson time scheme was used in (Rincon 
and Scardua, 2008). The numerical simulation of 
ice formation in one and two dimension using the 
cell-centered Finite Volume Method based on the 
latent heat source approach was investigated in 
(Prapainop and Maneeratana, 2004). An enthalpy 
transforming method with finite volume approach 
to investigate numerically the steady state natural 
convection melting process of a two-dimensional 
square ice cavity was adopted in (Al-Zubaidy, 
2006).  Several effective modeling techniques with 
approximate analytical and numerical methods 
using; Enthalpy Method, Boundary 
Immobilization Method (BIM), Perturbation 
Method, Nodal Integral Method and the (HBIM) 
for the solution of One-Dimensional Stefan 
problem have been described and compared in 
(Caldwell and Kwan, 2004). In addition, 
commercial software packages have been used to 
solve the ‘moving boundary’ problem. The 
melting of snow/ice and the effect of adding salt to 
the ice/snow has been modeled using MATLAB in 
(Patrick et al., 2008). The three-dimensional 

melting of ice around a liquid-carrying tube placed 
in an adiabatic rectangular cavity was investigated 
numerically using PHOENICS Code in (Sugawara 
et al., 2011).  

Basically, there are two main approaches for 
the solution of the Stefan problem. One is the 
front-tracking method, where the position of the 
phase boundary is continuously tracked in every 
time step. Sadoun et al. (2012), has used the 
Goodman (HBIM) which explicitly tracks the 
motion of the isothermal liquid-solid front with an 
explicit finite difference method including 
modified boundary immobilization scheme in 
transformed coordinates based on front-tracking 
and referred to as variable space grid method 
(VSGM). Hence, this method does not require the 
discontinuity approximation for isothermal 
problems and it is poorly suited to multi-
dimensional problems due to the difficulties with 
algorithms of implementations and large 
computational cost. Zhaochun et al. (2011) 
presented the moving interface locations and used 
these location coordinates as the grid points to find 
out the arrival time of moving interface 
respectively. Through this approach, the difficulty 
in mesh generation was avoided completely. 
Another approach is to use a fixed-grid method, 
which implicitly contains the moving interface 
condition within the mathematical model. This 
method is more flexible than the front-tracking and 
is suitable for multi-dimensional problems. For the 
second method, the latent heat is accounted for by 
either the temperature-based or the enthalpy-based 
method. The temperature-based approach 
considers the temperature as the only dependent 
variable in the governing equation. In order to 
avoid the discontinuity in isothermal problems, an 
approximate numerical smoothing must be used 
and a special integration is needed to compute the 
latent heat. On the other hand, the enthalpy-based 
method is further divided into basic enthalpy, 
apparent heat capacity and latent heat source. In 
the basic enthalpy scheme, enthalpy is used as the 
primary variable and the temperature is calculated 
from a previously defined enthalpy-temperature 
relation. This method gives reasonably accurate 
results for metallic solidifying over mushy ranges, 
but it is complex and computationally expensive 
and it performs poorly for isothermal problems. In 
the apparent heat capacity method, the latent heat 
is calculated from the integration of heat capacity 
with respect to temperature. As the relationship 
between heat capacity and temperature in 
isothermals involves sudden changes, the zero-
width phase change interval must be approximated 
by a narrow range of phase change temperature. 
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Thus, the size of time step must be small enough 
that this temperature range is captured in the 
calculation. In the latent heat source method, the 
latent heat is included in the source term of the 
governing differential equation, which is obtained 
from a prescribed relation between latent enthalpy 
and temperature.  

The aim of this paper is to predict the 
temperature distribution, the percentage melt 
fraction, the liquid-solid interface location and its 
velocity in one and two dimension using the Finite 
Volume Method based on the fixed grid, latent 
heat source approach. The fully implicit time 
scheme is selected to represent the time 
discretization. The ice conductivity is chosen to be 
the value of the approximated conductivity at the 
liquid-solid interface between adjacent ice and 
water control volumes. To validate the predicted 
numerical results, it will be compared with those 
obtained from the exact analytical solution.  
 
2. MATHEMATICAL MODEL 

Consider a semi-infinite ice body with 
( )∞≤≤ x0  is initially at a uniform temperature iT . 
This body is suddenly subjected ( )0=xat  with a 
constant temperature oT  and ( )imo TTT >>  as 
shown in Fig. (1). It is required to find: The 
temperature distribution of the solid phase (Ice), 

ST  and liquid phase (Water), LT  , the Melt 
fraction, rM , the Liquid-solid Interface location,  

( )txm , and its velocity, erfaceVint . To solve this 
classical two-phase Stefan problem, the following 
assumptions are considered, Ozisik (1993) and 
Alexiades and Solomon (1993): 
 
1. The thermal properties of solid are not equal to 

that of liquid. 
2. Neglect the volume variation for both phases 

by assuming a constant and equal density ( )ρ  
for both phases. 

3. The thermal properties of a single phase are 
independent of the temperature. 

4. The initial temperature is constant ( )iT . 
5. A planer and sharp surface (interface) is 

separating the phases at a constant phase 
change temperature ( )mT  . 

6. The Latent heat of fusion ( )SLh  is constant. 
7. Neglect the surface tension and curvature 

effects at the interface. 

8. No convection or radiation heat transfer at the 
boundaries, only pure and isotropic conduction 
is considered, and gravity effect is neglected. 

9. No internal heat generation. 
 
3. ONE DIMENSIONAL CLOSED 
FORM SOLUTION 
The governing equation with its Initial and 
Boundary Conditions are: 
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The energy balance at the interface yields; 
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The general solution of the temperature 
distribution for both the liquid and solid phases is 
given as follows, Carslaw and Jaeger (1959): 
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Where ( )δ  is the root of the following 
transcendental equation:- 

( ) St

eerfc
eerf

πδ

α
δ

βθ

δ
α
δδ

=










−










 22
1              (10)  

( ) ( )
SL

moL
h

TTC
heatLatent
heatSensibleStNumberStefan

−
==  

   

LL

SS
Ck
Ck
ρ
ρ

β =           and          
mo

im
TT
TT

−
−

=θ  

 
And the interface velocity ( )erfaceVint  is as 
follows; 
 

( )
tdt

tdxV Lm
erface

αδ==int                             (11)  

 
And the melt fraction ( )rM  is as follows; 
 

( )
L
t

L
tx

M Lm
r

αδ2
==                                   (12) 

 
Where L is a finite length of the domain needed to 
validate the numerical results of the One-
Dimensional model. 
 
4. FINITE VOLUME MODEL 
 
4.1. Grid Generation 

In the Finite Volume Method, the first step 
is to divide the domain into a number of discrete 
control volumes; ( )xN  for One-Dimensional 
domain and ( )yx NN  for Two-Dimensional 
domain. A general nodal point is identified by P. 
In One-Dimensional domain, the nodes to the west 
and east of P are identified by W and E 
respectively. The west side boundary of the control 
volume is referred to by ‘w’ and the east side of 
the control volume is referred by ‘e’, Fig. 2. In 
Two-Dimensional domain, the nodes to the west, 
east, south and north of P are identified by W, E, S 
and N respectively. The side boundaries of the 
control volume is referred to by; ‘w’, ‘e’, ‘s’ and 
‘n’ for the west, east, south and north sides 
respectively, Fig. 3. The time domain is divided 
into a number of time steps of size t∆ . Variables at 

the previous time level are indicated by the 
superscript (o, Old). In contrast, the variables at 
the new time level are not superscripted, Versteeg 
and Malalasekera (1995). 
 
4.2. Discretization of One Dimensional 

Model 
A 0.1-m slab has initial temperature o

i CT 5−= . 
The boundary condition at one end of the slab is 
subjected to a constant temperature o

o CT 20=  
while the other end is kept at the value of the 
initial temperature o

i CT 5−=  as illustrated in 
Fig. 4. Uniform control volumes with size x∆  are 
used. The governing One-Dimensional energy 
equation is: 
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4.2.1. Single Phase Formulation ( )mTT < : 
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Substitute Eq. (14) into Eq. (13), yields; 
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Multiply Eq. (15) by ( )dtdV . , ( ))1).(1.(dxdV =  and 
then integrate over the control volume faces, 
yields; 
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4.2.2. Two Phase Formulation ( )mTT ≥ : 
The enthalpy method-latent heat source 

approach is used to predict the solution of the Two 
Phase problem, as follows: 
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Substitute Eq. (18) into Eq. (13), yields; 
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Multiply Eq. (19) by ( )dtdV . , ( ))1).(1.(dxdV =  and 
then integrate over the control volume faces, 
yields; 
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Using fully implicit scheme; 
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Each of the boundary conditions is substituted; 
into Eq. (17) for discretizing the Single Phase 
One-Dimensional model and into Eq. (21) for 
discretizing the Two-Phase One-Dimensional 
model respectively. Then divide each of the 
resulting equation by t∆ and rearrange yields: 

u
o
P

o
PWWEEPP STaTaTaTa +++=              (22) 

P
o
PWEP Saaaa −++=  

xew NLxxx /=∆=∆=∆  

Where ( )u
o
PEW Saaa ,,,  are listed in Table 1. 

 
4.3. Discretization of Two Dimensional 

Model (Case Study 1) 
Consider a ( )( ) ( )( )mm 4/sin2.04/cos2.0 ππ ×  

region of area is initially at a uniform 
temperature o

i CT 5−= . This region is suddenly 
subjected at the boundaries with a constant 
temperature o

o CT 20= . Due to summitry, only 
one-fourth of the total area (shaded area) is 
modeled as shown in Fig. 5 with no heat flux 
across the surfaces AD and CD. Uniform control 
volumes with size x∆  and y∆  are used. The 
governing Two-Dimensional energy equation is: 
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4.3.1. Single Phase Formulation ( )mTT < : 
Substitute Eq. (14) into Eq. (23), yields; 
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Multiply Eq. (24) by ( )dtdV . , ( ))1.(.dydxdV =  and 
then integrate over the control volume faces, 
yields; 
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Let            )1.(dyAx =   ,        )1.(dxAy =  
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Using fully implicit scheme; 
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4.3.2. Two Phase Formulation ( )mTT ≥ : 

The enthalpy method-latent heat source 
approach is used to predict the solution of the Two 
Phase problem, as follows: 

Substitute Eq. (18) into Eq. (23), yields; 
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Multiply Eq. (27) by ( )dtdV . , where ( )dydxdV .= , 
and then integrate over the control volume faces, 
yields; 
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Using fully implicit scheme; 

( )
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                (29) 

Each of the boundary conditions is substituted; 
into Eq. (26) for discretizing the Single Phase 
Two-Dimensional model and into Eq. (29) for 
discretizing the Two-Phase Two-Dimensional 
model respectively. Then divide each of the 
resulting equation by t∆ and rearrange yields: 

u
o
P

o
PSSNN

WWEEPP

STaTaTa

TaTaTa

+++

++=
                            (30) 

P
o
PSNWEP Saaaaaa −++++=  

yxV ∆∆=∆ .  

yyx NLyA /=∆=  

xxy NLxA /=∆=       

Where ( )uP
o
PNSEW SSaaaaa ,,,,,,   are listed in 

Table 2. 
 
4.4. Solver 

Equations (22) and (30) are solved using the 
Tri-Diagonal Matrix Algorithm TDMA, Versteeg 
and Malalasekera (1995). 
 
5. RESULTS AND DISCUSSION 
 
5.1. One Dimensional Model 

The One-Dimensional model with the chosen 
values of initial and boundary conditions is shown 
in Fig. 4. Selected material properties for solid and 
liquid phases are given in Table 3. A constant 
phase change (Melting) temperature o

m CT 0= . 
The Latent heat for fusion is 
constant kgkJhSL /338= .  The value of Stefan 
Number equal (0.25). As the convection of the 
liquid across cell faces and the induced stress due 
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to the expansion of the ice are not included in the 
present work, the density of the ice is 
approximated to be equal to that of water to ensure 
the conservation of mass for each control volume. 

The first step to validate the numerical solution 
is to choose the grid and time sizes that are 
adequate for obtaining the minimum error of 
results. This task is accomplished through a Gird 
Independency Test GIT. A grid size of mmx 1=∆  
equivalent to 100=xN  with a time step of 

.sec1=∆t  was obtained with a maximum error of 
melt fraction of less than 3% as shown in Fig. 6. 

Fig. 7 shows a good agreement when the 
numerical results of temperature distribution is 
compared with the analytical results at time 
intervals of .min4020,5,1 andt =  using a fully 
implicit time scheme. The ice conductivity is 
chosen to be the value of the approximated 
conductivity at the interface between adjacent ice 
and water control volumes. The temperature 
distributions show that ice cells heat up faster due 
to a high diffusivity SSS Ck ρα /=   and a high 
temperature gradient of almost a linear shape. 
Once a control volume is melted, its temperature 
increase will be slow. This clearly illustrates that 
the rate of heat transfer is predominantly 
controlled by the position of the melting front as 
illustrated in Fig. 8 which indicates the percentage 
of melt fraction as shown in Fig. 9. As ice is a 
good insulator, the melting front advances at a 
decelerating rate as shown in Fig. 10. 

5.2. Case Study 1:Two Dimensional Model 
The Two-Dimensional model with the chosen 

values of initial and boundary conditions is shown 
in Fig. 5. Selected material properties for solid and 
liquid phases are given in Table 3. A constant 
phase change (Melting) temperature 

o
m CT 0= . 

The Latent heat for fusion is 
constant kgkJhSL /338= . The value of Stefan 
Number equal (0.25). As the convection of the 
liquid across cell faces and the induced stress due 
to the expansion of the ice are not included in the 
present work, the density of the ice is 
approximated to be equal to that of water to ensure 
the conservation of mass for each control volume.  

A grid size of ( ) ( )100100 =×= yx NN   are 
used to model the domain with a time step of 

.sec1=∆t  

To validate the numerical solution of the Two-
Dimensional model, the length of the diagonal line 
BD is assumed to be equal to that of the One-
dimensional domain (L=0.1 m). Fig. 11 shows the 
comparisons between the predicted temperature 
distribution along the diagonal line BD and the 
One-Dimensional analytical solution with a fully 
implicit time scheme and the ice conductivity is 
chosen to be the value of the approximated 
conductivity at the interface between adjacent ice 
and water control volumes at time values of 

.min4020,5,1 andt =  It is clear that the predicted 
temperature distribution along the diagonal line 
BD exceeds  the One-Dimensional analytical 
solution due to the area of the exposed corner of 
the Two-Dimensional domain is approximately 
twice of that for the One-Dimensional domain. 
This clearly illustrates that the rate of heat transfer 
is predominantly controlled by the position of the 
melting front with a decelerating rate at the 
beginning of melting process then ending with an 
accelerated rate due to a decrease in the exposed 
area of the solid phase of the Two-Dimensional 
domain, as shown in Fig. 12. The percentage of 
melt fraction is shown in Fig. 13. 

Fig. 14 shows the Two-dimensional 
temperature distribution of simulation with a fully 
implicit time scheme and the ice conductivity is 
chosen to be the value of the approximated 
conductivity at the interface between adjacent ice 
and water control volumes at time values of 

.min4020,5,1 andt =  The temperature 
distribution clearly show heat transfer through 
both exposed edges, causing a parabolic 
temperature profile instead of a linear one as in the 
One-Dimensional temperature distribution. 
 
5.3.  Case Study 2:Two Dimensional Model 

A Two-Dimensional model of an industrial ice 
block is simulated with a developed version of the 
computer program using a body fitted coordinate 
system. It is subjected to a convection heat transfer 
boundary condition. Due to summitry, only one-
fourth of the total area (shaded area) is modeled as 
shown in Fig. 15. The value of the free convection 
heat transfer coefficient between ambient air and 
outer surface of the ice block is ( )KmWho

2/5= , 
and the value of the forced convection heat 
transfer coefficient between the inner surface of 
the ice block and the flowing fluid 
is ( )KmWhi

2/1500= , Holman (1992). The 
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ambient air temperature is ( )oCT 20=∞  and the 
fluid temperature is ( )o

f CT 40= , (neglecting the 
pipe thickness effect on temperature). Selected 
material properties for solid and liquid phases are 
given in Table 3. A constant phase change 
(Melting) temperature 

o
m CT 0= . The Latent heat 

for fusion is constant kgkJhSL /338= . As the 
induced stress due to the expansion of the ice is 
not included in the present work, the density of the 
ice is approximated to be equal to that of water to 
ensure the conservation of mass for each control 
volume. A grid size of (20X40) is used to model 
the domain with a time step of .sec1=∆t  as 
shown in Fig. 16. 

The percentage of melt fraction is shown in 
Fig. 17. 

Fig. 18 shows the Two-dimensional 
temperature distribution of simulation with a fully 
implicit time scheme and the ice conductivity is 
chosen to be the value of the approximated 
conductivity at the interface between adjacent ice 
and water control volumes at time values of 

.sec1210,8,6,4,2 andt =  The temperature 
distribution clearly show that ice melting of the 
Two-Dimensional model (case study 2) is faster 
than the model of (case study 1). 

 
6. CONCLUSIONS 

The modeling of ice melting in one and two 
dimension using the cell-centered finite volume 
method of a fully implicit time scheme associated 
with a fixed grid, latent heat source approach is 
successfully performed. As the melting front 
should be of a one control volume thickness, this 
dominating restriction controls both the time 
interval and the grid sizes.  

The temperature distributions show that ice 
cells heat up faster with a temperature gradient of 
almost a linear shape. Once an ice cell is melted, 
its temperature increase will be slow. This clearly 
illustrates that the rate of heat transfer is 
predominantly controlled by the position of the 
melting front which advances at a decelerating rate 
at the beginning of melting process then ending 
with an accelerated rate due to a decrease in the 
exposed area of the solid phase of the Two-
Dimensional domain. 
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NOMENCLATURE 
A   Cross section area of control volume, m2 

a   Discretization constant 
C   Specific heat Capacity, kJ/kg.K 
H   Enthalpy, kJ/kg 
h   Latent heat of fusion, kJ/kg 
k   Thermal conductivity, W/m.K 
L   Domain length in the subscripted specified direction, m  
M   Melt 
N   Number of control volumes in the subscripted specified direction 
R  Radius, m 
S    Source term constant 
St   Stefan number 
T   Temperature, Co 

t   Time, second 
V   Velocity, m/s, Volume of the control volume element, m3 

x   Distance along the x-direction, m 
y   Distance along the y-direction, m 

 
GREEK SYMBOLS 
ρ   Density, kg/m3 
δ   Dimensionless melt layer thickness measured from outer surface 
θ   Dimensionless ratio of temperature difference 
β   Square root of dimensionless ratio of thermal diffusivity 
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∆   Step size 
α   Thermal diffusivity, m2/s, Dimensionless ratio of thermal diffusivity 
h  Heat transfer coefficient, W/m2K 
 
SUPERSCRIPTS 
o   Old 
 
SUBSCRIPTS 

eE,   East 
i   Initial 
L   Liquid 
m   Melt 

nN ,   North 
o   Outer surface 
P   Point 
r   Ratio 

sS ,   South 
S   Solid 
SL   Solid-Liquid 

wW ,   West 
 
ABREVIATIONS 
BIM  Boundary Immobilization Method 
GIT  Grid Independency Test 
HBIM  Heat Balance Integral Method 
TDMA  Tri-Diagonal Matrix Algorithm 
VSGM  Variable Space Grid Method 

 
 

Table 1 Global discretization of one dimensional model. 
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Table 2 Global discretization of two dimensional model (Case Study 1). 
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Table 3 Thermal properties. 

Properties Solid Liquid 
k (W/m.K) 2.22 0.556 
C (kJ/kg.K) 1.762 4.22 

( )3/ mkgρ  1000 1000 

 

        
Fig. 1 Mathematical model 

 

 
 

 
Fig. 2 A typical one dimensional control volume (shaded area) 

 

 
Fig. 3 A typical two dimensional control volume (shaded area). 
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Fig. 4 One dimensional model 

 

Fig. 5  Case Study 1: Two dimensional model 

 

Fig. 6 One dimensional GIT test. 

 

Fig. 7 One dimensional temperature profiles at 1, 5, 20 and 40 min. 
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Fig.  8 One dimensional interface location as function of time. 

 

Fig. 9 One dimensional melt fraction as function of time. 

   

Fig. 10  One dimensional interface velocity       Fig. 11 Predicted temperature profiles (Case Study 1) 
              as function of time.                                  at the diagonal line BD compared with the one    
                                                                                 dimensional analytical solution at 1, 5, 20 and 40 min. 
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Fig. 12 Predicted velocity (Case Study 1)                   Fig. 13 Case Study 1: Two dimensional melt  
for a particle at the interface moving along                fraction as function of time. 
the diagonal line BD compared with  
the one dimensional analytical solution 
as function of time. 

     

(a) 1 min.                                                                           (b) 5 min. 

      
 

   (c)  20 min.                                                                        (d)   40 min. 

Fig. 14 Case Study 1: Two dimensional temperature profile. 
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Fig. 15 Case Study 2: Two dimensional model. 

 

 
 

Fig. 16 Case Study 2: Grid Resolution (20X40). 
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Fig. 17 Case study 2: Two dimensional melt fraction as function of time.Fig. 17 Case study 2: Two dimensional melt fraction as function of time.  
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                                      (a) 2 sec.                                                                     (b) 4 sec. 
Fig. 18 Case Study 2: Two dimensional temperature profile. 

 
 

           
 

                                     (c) 6 sec.                                                                       (d) 8 sec. 

           
 

                                     (e) 10 sec.                                                                     (f) 12 sec. 
 
 

Fig. 18 Case Study 2: Two dimensional temperature profile. 


