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ABSTRACT 

Exposure to cryogenic liquids can significantly impact the petrophysical properties of rock, 

affecting its density, porosity, permeability, and elastic properties. These effects can have 

important implications for various applications, including oil and gas production and carbon 

sequestration. Cryogenic liquid fracturing is a promising alternative to traditional hydraulic 

fracturing for exploiting unconventional oil and gas resources and geothermal energy. This 

technology offers several advantages over traditional hydraulic fracturing, including 

reduced water consumption, reduced formation damage, and a reduced risk of flow-back 

fluid contamination. In this study, an updated review of recent studies demonstrates how 

the thermal shock caused by the cryogenic liquid during the fracturing process substantially 

affects the rock's physical properties. Additionally, changes in permeability, porosity, and 

pore structure brought about by cryogenic treatments are highlighted. This work aims to 

draw attention to the studies that deal with the effect of thermal shock on rock petrophysical 

properties and establish the ideal conditions for employing cryogenic liquids in these 

contexts. Simulation studies, laboratory trials, and field application cases have been 

undertaken to assess the efficacy of cryogenic liquid fracturing technology. These 

investigations have provided important insights into the physical and mechanical impacts of 

thermal shock on rock and the performance of cryogenic liquid fracturing in real-world 

situations. 
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 دة للصخور بعد تعرضها للسائل المبر نظرة عامة على كيفية تأثر الخصائص البتروفيزيائي
 

 2،*، علي البهادلي1أسامة العميدي 

 
 قسم هندسة النفط، كلية الهندسة، جامعة بغداد، بغداد، العراق                                             1

 

 ايدينبورك، بريطانيامعهد هندسة الجيوطاقة، جامعة هريوت وات،  2                                  

                                                                 

 الخلاصة
يمكن أن يكون للتعرض للسوائل المبردة تأثير كبير على الخصائص البتروفيزيائية للصخور ، مما يؤثر على كثافته ومساميته 

التأثيرات آثار مهمة على تطبيقات مختلفة ، بما في ذلك إنتاج النفط والغاز ،  ونفاذيته وخصائصه المرنة. يمكن أن يكون لهذه 
ة يوخزن الكربون. يعتبر التكسير بالسائل المبرد بديلًا واعدًا للتكسير الهيدروليكي التقليدي لاستغلال موارد النفط والغاز غير التقليد

ستهلاك لمزايا مقارنة بالتكسير الهيدروليكي التقليدي ، بما في ذلك تقليل اوالطاقة الحرارية الأرضية. تقدم هذه التقنية العديد من ا
الصدمة الحرارية الناتجة عن السائل المبرد أثناء عملية  المياه وتقليل أضرار التكوين وتقليل مخاطر تلوث السوائل المتدفقة.

ر الصخور وإنشاء الإجهاد الحراري الشديد في تكسيالتكسير لها تأثير كبير على الخصائص الفيزيائية للصخور. يمكن أن يتسبب 
شبكة تكسير أكثر تعقيدًا من تلك الناتجة عن التكسير الهيدروليكي التقليدي. يمكن أن يؤدي ذلك إلى تحسين النفاذية وإنتاج 

كل كامل وتهيئة تأثيرات بشموارد النفط والغاز.الغرض من هذا العمل هو لفت الانتباه إلى الدراسات التي يجب إجراؤها لفهم هذه ال
كانت هناك دراسات محاكاة وتجارب معملية وحالات تطبيق ميداني  الظروف المثالية لاستخدام السوائل المبردة في هذه السياقات.

كية يتم إجراؤها لتقييم فعالية تقنية تكسير السوائل المبردة. قدمت هذه التحقيقات رؤى مهمة حول التأثيرات الفيزيائية والميكان
 للصدمات الحرارية على الصخور ، بالإضافة إلى أداء تكسير السائل المبرد في مواقف العالم الحقيقي.

 
 الخصائص البتروفيزيائية ، التجميد ، المسامية ، النفاذية ، النيتروجين السائل. :مفتاحيةالكلمات ال

 

1. INTRODUCTION 
 
Liquid nitrogen fracturing technology is a rapidly expanding field of study with enormous 
potential for improving the efficiency of unconventional oil and gas resources and for 
producing geothermal energy (JPT staff, 1998b; Beck et al., 2017; Alharith et al., 2020; 
Yang et al., 2021; Sun et al., 2023). Cryogenic fracturing fluids are liquids used in cryogenic 
liquid fracturing, an alternative to traditional hydraulic fracturing (Bai et al., 2019; Kalam 
et al., 2021; Alameedy et al., 2023a). Cryogenic liquid fracturing primarily aims to create 
fractures in rock formations by inducing a thermal shock. Some common examples of 
cryogenic fracturing fluids include liquid nitrogen (-196 °C) and liquid helium (-268 °C) 

(State, Polytechnic and Kingdom, 2010; Li et al., 2022; Qu et al., 2023).  
These cryogenic liquids are known for their low temperatures, which can cause thermal 
shock in rock formations, leading to changes in their physical properties such as density, 
porosity, permeability, and elastic properties(Khalil and Emadi, 2020; Memon et al., 
2020; Wang et al., 2022a; Alameedy et al., 2023b). This can result in the formation of 
fractures, improving the flow of fluids, such as oil and gas, in the reservoir. However, using 
cryogenic liquids in down-hole conditions presents technical and economic challenges that 
need to be addressed in future research efforts(Wang et al., 2016; Fu and Liu, 2019; 
Gaurina-Međimurec et al., 2021). 
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Compared to the most conventional hydraulic fracturing fluids like water (Rassenfoss, 
2013; Al-Ameedy and A.Alrazzaq, 2022), liquid nitrogen usage has several advantages. 
This is because the rock rapidly contracts due to the low temperature of the liquid nitrogen, 
resulting in tensile stress and ultimately fracturing the rock. Furthermore, the low viscosity 
of liquid nitrogen can enable it to seep into the rock's microscopic pores and fractures, 
distributing the heat stress uniformly throughout the material (Almubarak et al., 2020). 
Liquid nitrogen's use as a fracturing fluid also decreases the total volume of fluid required 
for the process and the volume of fluid that must be recovered afterward. This lessens the 
likelihood of fluid contamination in the reservoir, and thus, it can reduce the costs associated 
with transporting and storing the fluid (Kim et al., 2014; Yang et al., 2019).   
However, some challenges are associated with using liquid nitrogen as a fracturing 
fluid(Gala et al., 2023). The low temperature of liquid nitrogen can cause a rapid decline in 
temperature in the rock formation, leading to the formation of ice and other secondary 
cracks that can affect the fracture network. Additionally, the handling and transportation of 
liquid nitrogen require specialized equipment and infrastructure, which can increase the 
costs of the fracturing process (Li et al., 2020). 
Due to its potential to address some of the limitations and environmental concerns 
associated with traditional hydraulic fracturing methods, using liquid nitrogen as a 
fracturing fluid has garnered significant attention in recent years (Cong et al., 2022). The 
impact of low temperatures on rock properties, heat transfer between the wellbore and the 
rock at the bottom hole, and the fracturing efficacy of liquid nitrogen jets as overview are 
topics of interest that we'll be cover in this research (Sahu et al., 2022). In addition to 
research and development in the lab, liquid nitrogen fracturing has also been applied in the 
field (Grundmann et al., 1998).  
 
2. EFFECTS OF LIQUID NITROGEN COOLING ON ROCK PROPERTIES 
 
Cryogenic fluids like liquid nitrogen can drastically reduce temperatures, leading to thermal 
stresses in the underlying rock (Yao et al., 2017; Ramezanian and Emadi, 2021; Longinos 
et al., 2022a; 2022b). As seen in Fig. 1, rocks are susceptible to damage from rapid cooling, 
particularly macro-cracks development (Cai et al., 2015a). Cryogenic liquids can alter 
various rock properties that contribute to fracturing Han et al., 2023; Thiyagarajan et al., 
2023; Winterfeld et al., 2023). 
 

 
Figure 1. A phenomenon where rocks break after being exposed to liquid Nitrogen 

 (Cai et al., 2015a). 
 



Journal of Engineering Number 11         November 2023 Volume 29 
 

 

4 

2.1 Modifications of Mechanical and Physical Rock Properties 
 

The effects of liquid nitrogen cooling on coal and shale as host rocks in unconventional 
reservoirs (Beier and Sego, 2009; Huang et al., 2020) and the results of this research (JPT 
staff, 1998a) showed that natural joints and beddings in these rocks act as weak planes and 
contribute to the start and spread of thermal fractures when they are subjected to liquid 
nitrogen thermal shock. Additionally, JPT staff stated that coal and shale substantially modify 
their physical and mechanical characteristics upon chilling in liquid nitrogen. Coal's 
permeability increased by 93.55 %, its P-wave velocity decreased by 10.43 %, and its 
uniaxial compression strength and peak strain decreased by 33.74 % and 20.61 %, 
respectively (Cai et al., 2015b). Nevertheless, shale permeability was improved from 8.01% 
to 74.36%, and the P-wave velocity reduced from 4.06% to 16.08% (Jiang et al., 2018a). 
Furthermore, shale cored perpendicular to the bedding planes undergoes less of a change in 
characteristics when cooled in liquid nitrogen, suggesting that the coring direction has a 
significant impact on the response of shale to liquid nitrogen freezing (Zhou et al., 2022; 
Wang et al., 2023a). 
 
2.2 Rocks' Deterioration After Cooling 

 
Thermal stress is the main culprit, and it's produced by two different factors: a temperature 
gradient and uneven deformation of nearby minerals (Wang et al., 1989).The LN2 boils 
when it comes into contact with the rock. This boiling heating transfer of LN2 may cause a 
sharp temperature gradient, which causes differential deformations in various rock areas. 
Due to deformation mismatches between adjoining mineral particles during the LN2 chilling 
process, the rock comprises several distinct mineral particles with various thermophysical 
and mechanical characteristics (Li et al., 2020). Local thermal stresses are created at the 
mineral borders as a result of this, and when the thermal stress is too great compared to the 
cementation strength, the cementation structure between the particles breaks, and 
intergranular fractures are produced (Wu et al., 2019). They also pointed out that some 
minerals may exhibit intragranular deformation mismatch because of various 
crystallographic axes' varying thermal expansion coefficients. This may result in 
intragranular fractures, which are less frequent and smaller than intergranular cracks. 
(Xu et al., 2017) presented a study to alter the coalbed's permeability and increase pore 
volume by using the freezing-thawing process. This was accomplished by putting forward a 
technique known as "cyclical liquid carbon dioxide injection" which would involve regularly 
injecting liquid carbon dioxide into the coalbed (Yang et al., 2023). The study's findings 
implied that the various coal samples had varying degrees of deterioration due to the 
freezing-thawing cycles, as shown in Fig. 2. The temperature was not uniformly distributed 
due to elements such as core anisotropy and metamorphism. The fracture formation varied 
amongst the coal samples as well, and it seemed that petrophysical properties (Almalichy 
et al., 2022), ice extrusion, thermal stress, and axial compression were all factors in its 
development. 
Fig. 3 depicts the development of fractures in coal samples with increasing freeze-thaw 
cycles (Qin et al., 2017). The front and bottom of the coal sample are shown in Fig. 3a at 
various points throughout the testing (Yang et al., 2019a). The coal sample's surface was 
smooth before testing, with just a few noticeable early fractures. After many freeze-thaw 
cycles, a surface major fracture was created. A crisscrossing pattern of secondary fractures 
developed towards the top end of the primary crack after 20 freeze-thaw cycles. The fissures 
eventually grew and joined to create a crack network after several freeze-thaw cycles, 
seriously harming the coal sample. These findings demonstrate the significance of 
considering the cumulative effects of freeze-thaw cycles on coal and rock samples in 
engineering and geotechnical applications by showing that the damage to the coal samples 
increased with the number of freeze-thaw cycles. 
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Figure 2. Varying degrees of deterioration as a consequence of the freezing-thawing cycles 

(Xu et al., 2017) 
 
A microscopic view of the coal samples after passing through multiple freeze-thaw cycles is 
shown in the SEM picture in Fig. 3b. Before the examination, the coal sample's surface 
seemed smooth with a few visible particles and thin fractures. The cleats, on the other hand, 
developed rectangular frost-heaving fractures during the first freeze-thaw cycles. Following 
the second stage of freeze-thaw cycles, these fissures widened even further, with secondary 
cracks developing alongside the primary frost-heaving cracks. Long freeze-thaw cycles 
formed crack networks along the cleats, with the biggest crack being the largest. These 
networks included both extensional and shear fractures. 
Extensional fractures were created as a result of the expansion of water during the transition 
between the water-ice phase and freezing and thawing processes (Jiang et al., 2018b). 
Tensile-shear cracks were also created due to the coal substrate material contracting as it 
cooled. As the number of freeze-thaw cycles grew, additional particles also spalled off the 
surface of the coal due to the ultralow temperature of liquid nitrogen (Han et al., 2022; 
Alameedy et al., 2023d). When these particles entered the fractures, they prevented them 
from closing. This made removing the methane from the ground simpler. 

 
3. CRYOGENIC EXPERIMENTATION TECHNIQUES 

 
The experimental procedure for cryogenic cooling with petrophysical characterization 
typically involves the following steps (Xu et al., 2017; Huang et al., 2020; Memon et al., 
2020; Ayala et al., 2023): 

1. Sample preparation: The rocks or coal samples are drilled from the underground 
reservoirs and cut into cylindrical core samples of appropriate size. The samples 
should be well sealed to prevent water or air exchange (McPhee et al., 2015). 
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Figure 3. Demonstrate images of the evolution of coal cracks using LN2 (a) on the optical 

macroscopic scale and (b) on the SEM microcosmic scale (Qin et al., 2017).  
 

 

2. Sample characterization: Before the cryogenic cooling experiment, the sample 
should be characterized to obtain its initial petrophysical properties, such as porosity, 
permeability, density, and mineral composition (Corbett and Potter, 2004; 
Alameedy, 2023). Nuclear magnetic resonance (NMR) and infrared thermal imaging 
(ITI) are two methods that are often used for this (Xu et al., 2017). 

3. Cryogenic cooling: The core samples are placed in a container, and liquid nitrogen 
(LN2) is used to cool the samples. During the cooling process, the temperature of the 
sample has been monitored, and the cooling rate can be changed as needed (Huang 
et al., 2019). The experimental setup for LN2 fracturing shown in Fig. 4 was designed 
to create controlled conditions for investigating the effects of cryogenic cooling on 
rocks. Researchers can use this setup to study how rocks behave mechanically under 
different conditions, like temperature and confining pressure. They can also figure 
out how thermal stress and other factors affect rock damage.  

4. Crack observation: After the cryogenic cooling process, the sample is inspected to 
determine the extent of damage caused by thermal stress (Song et al., 2016). The 
naked eye, scanning electron microscopy (SEM), and other imaging methods can 
detect cracks in the samples. 

5. Post-test petrophysical characterization: After the cryogenic cooling experiment, 
the sample should be characterized again to determine the changes in its 
petrophysical properties. NMR and ITI can be used to track how pores change and 
how surface temperatures vary (Xu et al., 2017). 

6. Fracture analysis: Look for cracks, fractures, and other types of mechanical damage 
in the cores, and use imaging techniques like X-ray computed tomography 
(CT)(Shirani et al., 2010; Tudisco, 2013; Butt, 2019) or optical microscopy to 
study where the cracks are and how they relate to other petrophysical parameters 
(Jin et al., 2019). 
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7. Data analysis: The data collected during the experiment is analyzed to understand 
the influence of cryogenic cooling on the sample's petrophysical properties. The 
results can be compared to the first characterization data to determine how big the 
changes are. 

Figure 4. A conceptual illustration of the LN2F configuration (Huang et al., 2019). 

 
4. PERMEABILITY AND POROSITY STRUCTURE CHANGES CAUSED BY CRYOGENIC 

TREATMENTS 
 

The permeability test results indicate that cooling with liquid nitrogen substantially 
impactshe connectivity of the rock pore structure (Wang et al., 2022b; 2023b; Soykan et 
al., 2023). This may impact various industries, including petroleum engineering, where 
increased permeability may make it simpler to extract hydrocarbons from the earth 
(Alameedy et al., 2023c). As explained in the literature, the enhanced connectedness of the 
rock pore structures is shown by the higher permeability after liquid nitrogen cooling (Cai 
et al., 2015a). According to Fig. 5, the increase in permeability varied amongst the various 
samples and ranged from 11.55% to 177.27%. The thermal stress brought on by the 
shrinking of the rock matrix during contact with liquid nitrogen resulted in the formation of 
new micro-cracks and the enlargement of pre-existing cracks, which improved the 
connectedness of the rock pore structure. It's crucial to keep in mind that the permeability 
test results rely on various factors, including the kind of rock, the minerals present, the pore 
structure, and the cooling time (Khalil and Emadi, 2020).  
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Figure 5. A Comparison of various permeability samples before and after being cooled in 
liquid nitrogen (Cai et al., 2015a). 

 It is commonly accepted that there is a clear correlation between increased porosity and the 
amount of pressurizing during cryogenic treatments. In other words, When the pressure 
rises, the rate of fracture propagation within the core samples also rises, increasing porosity; 
Fig. 6 depiction of the direct link between the two components, lends credence to this 
relationship. According to the findings of (Khalil and Emadi, 2020), cryogenic treatments 
involving higher pressures may result in a bigger increase in porosity. However, it's crucial 
to remember that this connection is complex and subject to variations depending on the 
mechanical and thermal characteristics of the rock, the temperature of the cryogenic fluid, 
and the duration of the treatment (Carpenter, 2017). 

 
Figure 6. Due to cryogenic treatments, the core samples' porosity has increased (Khalil 

and Emadi, 2020). 
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According to the investigations, the freeze-thaw treatment with liquid nitrogen (FTTLN) 
process significantly affected the structural changes in coal mass, as shown in Fig. 7. The 
breadth of the surface fissures widens, and the ultrasonic wave velocity decreases as the 
moisture content of the coal bulk rises (Lin et al., 2020). The coal mass's pore structure 
changes from micropores and tiny pores to mesopores and macropores while producing 
new micropores and small ones. The damage factor, which is determined by several factors 
including fracture width, longitudinal wave velocity, the fractal dimension of surface 
fractures, and porosity (Qin et al., 2018), was found to have a positive correlation with 
moisture content, suggesting that the more severely damaged the coal mass is, the higher 
the moisture content(Cai et al., 2015b). 
 

 
Figure 7. Pore and fracture structures in coal samples frozen and thawed with liquid 

nitrogen changed over time (Lin et al., 2020). 
 

5. IMPACT OF CRYOGENICS ON ROCK PORE STRUCTURE 
 

The interesting experiments (Cai et al., 2014; 2015b) showed that the main cause of pore 
structure damage in sandstone and coal specimens that resulted from freezing by the liquid 
nitrogen for dry (Sw=0%) and wet (Sw=100%) samples was the development of micro-
pores or micro-fissures. This was evident by the increase in T2 amplitude, which indicated 
the generation of new micro-pores or micro-fissures. The T2 amplitudes rose after freezing 
in the NMR test for a dry coal specimen (Sw = 0.0%) shown in Fig. 8a. T2 values larger than 
32 𝜇s exhibited a more pronounced increase for a sample that was completely saturated with 
water (Sw = 100%), as shown in Fig. 8b; they climbed from 260 𝜇s to 931 𝜇s. These findings 
showed that freezing caused damage to the pore structure, with T2 > 32 𝜇s-corresponding 
pores often suffering more severe damage. It was shown in Fig. 8c for a dry sandstone 
specimen (Sw = 0.0%) that the amplitude of the whole T2 distribution reduced post-freezing 
because the sandstone's pore structure was not tightly packed and some pore space was 
occupied by tiny silts that had separated from other bigger grains. As demonstrated in Fig. 
8d, the amplitudes of T2 behavior for a completely saturated (Sw = 100%) specimen, on the 
other hand, tend to grow dramatically from 369 to 2,781 𝜇s, particularly when T2 > 32 𝜇s. 
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Figure 8. T2 distributions of specimens before and after freezing with liquid nitrogen: (a) 

coal sample with Sw=0, (b) coal sample with Sw=100, (c) sandstone sample with Sw=0, and 
(d) sandstone sample with Sw=100 (Cai et al., 2015b). 

 
6. CONCLUSION 
 
The significance of comprehending the alterations in rock properties caused by thermal 
shock is emphasized in this review, highlighting the necessity of determining the most 
favorable conditions for utilizing cryogenic liquids in such scenarios. Numerous simulation, 
laboratory, and field studies have contributed significantly to our understanding of the 
mechanical and physical effects of thermal shock on rocks and the practical effectiveness of 
cryogenic liquid fracturing technology. Cryogenic liquid fracturing is a promising technology 
for exploiting unconventional oil and gas resources and geothermal energy. Further research 
is needed to fully understand the effects of thermal shock on rock and address this 
technology's limitations. One major limitation of this technology is the excessive cost and the 
technical difficulties associated with handling and transporting cryogenic liquids. In 
addition, there are concerns about the environmental impact of this technology, including 
the release of greenhouse gases and the potential for groundwater contamination.  
 

 

 

 

 

NOMENC LATURE 
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Symbol Description Symbol Description 
CT  = X-ray computed tomography LN2  =Liquid nitrogen 

FTTLN  = Freeze-thaw treatment with 
liquid nitrogen 

NMR  =Nuclear magnetic resonance 
SEM =Scanning electron microscopy 

ITI = Infrared thermal imaging T2  = Relaxation time (𝜇s) 
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