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ABSTRACT 

This paper presents a hybrid energy resources (HER) system consisting of solar PV, storage, 

and utility grid. It is a challenge in real time to extract maximum power point (MPP) from 
the PV solar under variations of the irradiance strength.  This work addresses challenges in 
identifying global MPP, dynamic algorithm behavior, tracking speed, adaptability to 
changing conditions, and accuracy. Shallow Neural Networks using the deep learning 
NARMA-L2 controller have been proposed. It is modeled to predict the reference voltage 
under different irradiance. The dynamic PV solar and nonlinearity have been trained to track 
the maximum power drawn from the PV solar systems in real time. 
Moreover, the proposed controller is tested under static and dynamic load conditions. The 
simulation and models are done by using MATLAB/Simulink. The simulation results from 
the proposed NARMA-L2 controller have been compared with existing Perturb and observe 
PO-MPPT and Incremental Conductance INC -MPPT methods. 
 
Keywords: Microgrid, Solar PV, HER, Maximum power point tracking, Deep learning, PO-
MPPT, INC-MPPT. 
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لأقصى تتبع لنقطة  NARMA-L2تحكم التعلم العميق  باستخدامصغيرة المتكاملة الشبكة ال
 الطاقة

 3ميخائيل داود حبيحنان ، 2نادية قاسم محمد،*، 1ايناس حامد ابراهيم

 

 قسم الهندسة الكهربائية، كلية الهندسة، جامعة بغداد، بغداد، العراق 
 هندسة الكهرباء والحاسبات، جامعة اوكلاند، مشيغان، لولايات المتحدة الامريكية 

 
 

 الخلاصة
الكهروضوئية، ونظام التخزين، ( الذي يتكون من أنظمة الطاقة الشمسية HERيقدم هذا البحث نظام موارد الطاقة الهجين )

الخلايا الشمسية  ةلأنظمقدرة  أعظمتعتبر خوارزميات حساب  الديناميكية لوالاحما ثابتةال. يوفر النظام الأحمال كهربائيةشبكة الالو 
 إيجاد بعض التحديات في وتتلخص خلال الزمن الحقيقي من التحديات وخصوصا عندما تكون شدة الاشعاع الشمسي متغيرة.

. متغيراتمع ال الدقة والتكييف وكذلكقدرة  أعظمسرعة الحصول على مقدار  وأيضانقطة أعظم قدرة واداء الخوارزمية الديناميكي 
التي صممت من خلال  NARMA-L2الشبكات العصبية الضحلة باستخدام وحدة التحكم في هذا البحث استخدام  اقتراحتم 

الطاقة  تدريب النظام الكهروضوئي الديناميكي وغير الخطي لتتبع الشمسي تمدة الاشعاع تحديد الفولتية المرجعية اثناء تغيير ش
. لتعظيم الطاقة الناتجة من الطاقة الشمسية حقيقيالقصوى المستمدة من أنظمة الطاقة الشمسية الكهروضوئية في الوقت ال

مختلفة. تتم المحاكاة والنماذج باستخدام الكهروضوئية يتم الحصول عليها من خلال محول التعزيز وتحت ظروف تحميل 
MATLAB / Simulink تمت مقارنة نتائج المحاكاة من وحدة التحكم .NARMA-L2  المقترحة مع طرقPO-MPPT 

 .INC -MPPTوطرق 
 

- INC ، العميق التعلم، أقصى تتبع نقطة الطاقة،HER الشبكة الصغيرة، الطاقة الشمسية الكهروضوئية، :مفتاحيةالكلمات ال

MPPT، PO-MPPT. 

 
1. INTRODUCTION 
 
Renewable energy sources such as solar PV have increased significantly, especially recently 

(Wen et al., 2019; Singh et al., 2022). However, increasing power penetration on a 
microgrid may cause problems such as voltage deviation, surges, and frequency fluctuations. 
Predicting the maximum power drawn from the PV system may enable better voltage and 
current responses (Abdul Hussain and Habbi, 2018; Kulkarni and Deshmukh, 2019). 
Therefore, extracting maximum power with good transient performance is a challenge. The 
exciting MPPT methods have disadvantages with partial shading in PV and solar 
temperature and load conditions (Chen et al., 2022; Jamil et al., 2022; Singh et al., 2022).  
MPPT algorithms had many difficulties in partial shading conditions due to obstructions 
such as buildings, cloudy weather, trees, etc. These difficulties might lead to more points of 
local maximum power, and consequently, the conventional MPPT algorithms, such as PO and 
INC, may struggle to identify accurately the global MPP. In verse, in these situations, it could 
stick in local MPPT. Another matter, partial shading causes rapid oscillations in the output 
voltage and currents of the solar PV panel. These oscillations may lead to misleading toward 
the incorrect tracking of MPP.  The voltage and current oscillations influence the microgrid 
efficiency and reduce the lifetime of the power electronic switches. Besides that, the sudden 
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and dynamic behavior of the MMPT algorithms during shading conditions made the 
conventional methods respond immediately. As some of the MPPT methods take 
significantly longer than the global MPP, this will affect reducing the energy extracted during 
the variation of the irradiance (Alcaide et al., 2022; Dagal et al., 2022; Isknan et al., 2023; 
Pervez et al., 2022). 
Some researchers studied the impact of measurement errors caused by shading conditions 
(Jane et al., 2022; Millah et al., 2022). The PV solar and nonuniform configuration design 
may induce an imbalance in power losses (Habbi and Alhamadani, 2018). Therefore, using 
an effective MPPT under partial shading limits the microgrid performance (Burlacu and 
Navrapescu, 2022; Rao and Sundaramoorthy, 2022).   
Maximum power point tracking has been used with the boost converter since the MPPT 
generates the switching pulses for the dc-to-dc converter(Zhou et al., 2016). The DC voltage 
of the inverter is independent of  (Millah et al., 2021; Gadiraju, 2022)the output voltage of 
the solar PV.  PO-MPPT had a problem with steady state oscillations near to maximum point 
and in local tracking instead of globally in partial shading conditions (Kulkarni and 
Deshmukh, 2019; Vanti et al., 2022). On the other hand, the INC-MPPT has higher accuracy 
than the PO-MPPT, but it is more complex due to its dynamic operation and selecting the 
step size, which is becoming smaller, reaching the steady-state error(Paduani et al., 2022). 
That will lead to concluding that the conventional MPPT algorithms had the demerits of 
inaccurate output power setting and oscillation because of the slow tracking of the 
calculation (Kulkarni and Deshmukh, 2019; Awan et al., 2022; Yang et al., 2023).   
A recurrent neural network has been used for load demand forecasting in smart grids. This 
scenario is accomplished based on the consumer demand pattern (Kaushal and Basak, 
2020; Nhung et al., 2022). Hybrid Fuzzy-particle swarm optimization-based grid system 
has been used to predict the model to improve the accuracy, but it has limited performance 
when the data are huge (Azeem et al., 2022).  
Addressing the challenges mentioned above and problems during the operation of solar PV 
under partial shading. This paper proposed a NARMA-L2 controller to use and obtain the 
maximum power in the microgrid-connected system during partial shading.  This controller 
depends on real-time information and tracks the global MPP accurately, even in partial 
shading conditions. The simulation results are obtained and compared with conventional 
methods such as Perturb and observe (PO-MPPT) and Incremental Conductance (INC -
MPPT) (Mohamed and Habbi, 2020; Jamil et al., 2022). Afterward, two loads (static and 
dynamic) were used to test the proposed controller. In addition, the proposed controller is 
tested with constant and variable solar irradiances.    
This paper aims to control the maximum power point of an integrated microgrid during 
partial shading conditions (i.e., variable solar irradiance). The proposed controller is Shallow 
Neural Networks using the deep learning NARMA-L2 controller. The modeling uses the 
prediction of the reference voltage under different irradiance. However, dynamic PV solar 
has been trained to track the maximum power drawn from the PV solar systems in real time. 
 
2. THE PROPOSED METHODOLOGY 

 
It’s a challenge to extract the controller for obtaining the maximum power from a PV solar 
with variations of solar irradiance and temperature (Jamil et al., 2022). The plant 
identification process lets training a neural network to model the grid. It should identify the 
grid before training the controller whenever it is unsatisfied. The controller needs to be 
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identified (Wen et al., 2019; Saadaoui et al., 2023). The proposed microgrid consists of 
solar PV, a utility grid, an energy storage system, and a load, as shown in Fig. 1. 
 

 

Figure 1. Microgrid system diagram 

 
3. THE SYSTEM MODELING 

 

The system is implemented with MATLAB/Simulink, as shown in Fig. 2. 
 

 
 

Figure 2. Proposed NARMA-L2 controller with microgrid MATLAB/Simulink 
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3.1 Load Model 
 

The loads consist of static and dynamic, as given in Table 1. 
 

Table 1.  Load specifications 
 

Load type Parameters 
RL load 10 kW active power and reactive 

power of 5 kVar 
Induction motor 3-phase,5HP, 400V,50Hz 

 
3.2 PV Solar System Model 

 
The equivalent circuit of the PV cell is shown in Fig. 3. The mathematical equations are given 
as the following equations (Pendem and Mikkili, 2018; Rao and Sundaramoorthy, 2022) 

D1

Iph
ID Ish

I

Rsh

Rs +

-

V

 
Figure 3. PV cell equivalent circuit (Chauhan and Singh, 2022) 

 

𝐼𝑜 = 𝐼𝑠ℎ/[exp (
𝑞𝑉𝑇

𝑁𝑠𝑘𝑛𝑇
) − 1                                           (1) 

 

𝐼𝑠ℎ =
𝑉×

𝑁𝑝
𝑁𝑠

⁄ +𝐼𝑅𝑠

𝑅𝑠ℎ
                     (2) 

 
The I/V and P/V characteristics are shown in Fig. 4 under different irradiance and specified 
temperatures of 25 oC. The solar PV parameters for the simulation are presented as follows: 
MPP is 10100W at 25Co, a current of 42A, and a voltage of 390V. The DC voltage will decrease 
when the temperature increases when the irradiance is 1000W/m2.  
Fig. 5 gives the PV specification. Fig. 6 shows the block diagram for the solar PV model based 
on the MPPT boost converter. The two conventional MPPT, P&O and INC -MPPT algorithms, 
have been used. The codes are given in Appendix A for both methods (Abdul Hussain and 
Habbi, 2018; Kulkarni and Deshmukh, 2019; Ahmed et al., 2022).  
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Figure 4. I/V and P/V characteristics of the PV cell 

 

 
 

Figure 5. MATLAB/Toolbox PV Panel Specification  
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Figure 6. Solar PV with boost converter based on MPPT 
 

The proposed MPPT method is based on a deep learning toolbox NARMA-L2 controller. The 
required parameters that need to be identified are: 

 Hidden layer size requires to use number of neurons in the hidden layer of the neural 
network grid system. 

 Train the neural network grid system. 
 Controller outputs are overdue to serve the neural network grid system. 
 Sampling time is used to collect data for the training process. 
 The identification process requires a training function. 
 The identification process started with importing the training data entered from the 

training grid. 
 The training samples generate the training data depending on the limits of input and 

output data. 
 The range of input-output data will be within 0-1. 
 Selecting the number of epochs during training. 
 A quarter of the training data will be used for testing and validation. 

The flow chart for implementing deep learning NARMA-L2 is shown in Fig. 7. 
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Figure 7. NARAMA-L2 flowchart 
 
The schematic of the NARMA-L2 controller is shown in Fig. 8. The plant identification is 
shown in Fig. 9. 
 

 
 

Figure 8. NARAMA-L2 controller scheme  
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Figure 9. Plant Identification deep learning toolbox NARMA-L2 controller 
 

The identification of the NARMA-L2 controller model is contained in the deep learning 
toolbox. This controller will change the nonlinear dynamic system into a linear one (Nhung 
et al., 2022). The mathematical identification neural network model is derived as follows: 
 
𝑦{𝑡 + 𝑑) = 𝐹[𝑦(𝑡), 𝑦(𝑡 − 1), … , 𝑦(𝑡 − 𝑛 + 1), 𝑢(𝑡), 𝑢(𝑡 − 1), … , 𝑢(𝑡 − 𝑛 + 1)]       (3) 

 

where u(t) is the system input, and y(t) is the system output. The neural network is trained 
in the nonlinear function F. Then, the system output is 
 
𝑦{𝑡 + 𝑑) = 𝑦𝑚(𝑡 + 𝑑)              (4) 

 

The nonlinear controller is developed as follows: 
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𝑢{𝑡) = 𝐴[𝑦(𝑡), 𝑦(𝑡 − 1), … , 𝑦(𝑡 − 𝑛 + 1), 𝑦(𝑡 + 𝑑), 𝑢(𝑡 − 1), … , 𝑢(𝑡 − 𝑟 + 1)]      (5) 
 

Creating the function (A) was a problem that minimizes the mean square error. The 
controller model will be: 
 
𝑦{𝑡 + 𝑑) = 𝑔[𝑦(𝑡), 𝑦(𝑡 − 1), … , 𝑦(𝑡 − 𝑛 + 1), … , 𝑢(𝑡 − 𝑛 + 1)] + 𝑓[𝑦(𝑡), 𝑦(𝑡 − 1), … , 𝑦(𝑡 −
𝑛 + 1), 𝑢(𝑡 − 1), … 𝑢(𝑡 − 𝑟 + 1)] ∙ 𝑢(𝑡)                              (6) 

 

 

The next controller input, u(t), does not contain the nonlinearity. Then the system output 
follows the reference y(t + d) = ym(t+ d).  
The model results in: 
𝑢{𝑡) = 𝑦𝑚(𝑡 + 𝑑) − 𝑔[𝑦(𝑡), 𝑦(𝑡 − 1), … , 𝑦(𝑡 − 𝑛 + 1), … , 𝑢(𝑡 − 𝑛 + 1)] + 𝑓[𝑦(𝑡), 𝑦(𝑡 −
1), … , 𝑦(𝑡 − 𝑛 + 1), 𝑢(𝑡 − 1), … 𝑢(𝑡 − 𝑛 + 1)]                        (7) 

 

Determine the control input u(t) based on the output at the same time y(t). Therefore, the 
following model was used. 
 
 𝑦(𝑡 + 𝑑) = 𝑔[𝑦(𝑡), 𝑦(𝑡 − 1), … , 𝑦(𝑡 − 𝑛 + 1), … , 𝑢(𝑡 − 𝑛 + 1)] + 𝑓[𝑦(𝑡), 𝑦(𝑡 − 1), … , 𝑦(𝑡 −
𝑛 + 1), 𝑢(𝑡 − 1), … 𝑢(𝑡 − 𝑛 + 1)] ∙ 𝑢(𝑡 + 1)                        (8) 

 

3.3 Battery Storage Model 
 
The battery storage system is concerned with the microgrid to compensate for the 
fluctuations in the renewable energy penetration. This system depends on the microgrid's 
charging and discharging requirements(Asadi et al., 2023; He et al., 2023).  
The constraints of the state of charge equation are given as follows: 
 
𝑆𝑂𝐶𝑚𝑖𝑛 < 𝑆𝑂𝐶 < 𝑆𝑂𝐶𝑚𝑎𝑥                            (9) 

 
The battery’s SOC is limited to 30% and 70% of its power in ampere-hour capacity. It 
prevents the battery life from undercharging or overcharging.  
The limits of the charging battery power are  
 
𝑃𝑏𝑎𝑡𝑡𝑚𝑖𝑛 < 𝑃𝑏𝑎𝑡𝑡𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔  < 𝑃𝑏𝑎𝑡𝑡𝑚𝑎𝑥                         (10) 

 
The limits of the discharging battery power are 
 
𝑃𝑏𝑎𝑡𝑡𝑚𝑖𝑛 < 𝑃𝑏𝑎𝑡𝑡𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔  < 𝑃𝑏𝑎𝑡𝑡𝑚𝑎𝑥                        (11) 

 

The proposed bidirectional controller for the battery storage is modeled with 
Matlab/Simulink, as shown in Fig. 10. It is clear that the battery will charge or /discharge 
depending on the degradation between the power generation and the load demands. 
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Figure 10. Bidirectional converter for battery storage system 

 

4. SIMULATION RESULTS 
 

It has been employed using MATLAB/Simulink to verify the proposed algorithm's 
performance. A 10kW grid connected with solar PV. The PV system consists of 5 modeled 
parallel and 10 PV strings in series. The solar PV specifications are illustrated in Fig. 5. A DC-
DC boost converter relates to solar PV to energize the three-phase inverter. Two inverter 
control loops have been used for current and voltage control loops. The PO-MPPT and INC-
MPPT achieve the MP drain from the PV system during the partial shading. The irradiance 
variation is shown in Fig. 11. The PV power, DC PV voltage, and the PV current responses for 
static and dynamic load are shown in Figs. 12 and 13, respectively. There is an oscillation in 
the obtained responses. Figs. 14 and 15 show the PV power, voltage, and current for the INC-

MPPT method for static and dynamic loads, respectively. It can be observed that significant 

oscillation appeared in the responses. 

 
Figure 11. Irradiance variation 
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Figure 12. PO-MPPT for the static load (a) Ppv, (b)Vpv, and (c) Ipv  

 

 

  

 

Figure 13. PO-MPPT for the dynamic load (a) Ppv, (b)Vpv, and (c)Ipv 
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Figure 14. INC-MPPT for the static load (a) Ppv, (b)Vpv, and (c) Ipv  

 

 

  

 

Figure 15. INC-MPPT for the dynamic load (a) Ppv, (b)Vpv, and (c)Ipv  
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Due to the drawbacks of the oscillation for the two MPPT methods (PO and INC), the NARMA-
L2 has been used. The NARMA-L2 MPPT is utilized to control the boost converter to extract 
the MP by obtaining the desired output voltage of solar PV. The parameters of the proposed 
controller are shown in Fig. 9.  
The simulation model has been approved for constant and variable irradiance profiles. The 
output power with and without the NARMA-L2 controller is shown in Figs. 16 and 17 with 
constant irradiance (1000W/m2) and variable irradiance profile respectively. Table 2 
tabulates the comparison of the performance of the MPPT strategies used in this paper. 
The system is tested without NARMA-L2 MPPT and with NARMA-L2 for static load. The 
simulation results of the PV output power without and with NARMA-L2 MPPT output power 
for constant irradiance profile are shown in Fig. 16. It can be observed that the MPPT for 
NARMA-L2 controller had low steady-state error (low oscillation).  
The simulation results of the PV output power without the NARMA-L2 controller and with 
NARMA-L2 MPPT output power with variable irradiance profile are shown in Fig. 17. It can 
be observed that the NARAM-L2 reaches MPPT with low oscillation and is softly adaptable 
to the irradiance variations. However, it is slower to reach the MPP than the conventional 
MPPT.  
 

 

 

Figure 16. NARMA-L2 MPPT output for the static load (a) Ppv, (b)Vpv, and (c)Ipv  

 
The system is tested under different types of loads (static and dynamic loads) to verify the 
proposed system's effectiveness and performance. Fig. 18 shows the performance of the 
load voltage and current with the static load. Fig. 19 shows the load voltage and load current 
under dynamic load. It is observed that the proposed system behavior does not influence the 
load type. The proposed MPPT algorithm optimizes the generation and demand powers.  
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Figure 17. NARMA-L2 MPPT output for the dynamic load (a) Ppv, (b)Vpv, and (c)Ipv 
 

Table 2.  MPPT Strategies Comparison 

MPPT strategy Performance 

P&O 

Slow tracking speed, oscillations around 
MPPT, used with uniform solar array 

configuration and may struggle to 
handle complexity, slow convergence. 

INC 
Complex computations, unstable under 

partial shading 

NARMA-L2 

It is adaptive to track MPP, handling 
complex and nonlinearities, robust to 

weather variations and shading profiles, 
resilient to load dynamics, and fast 

response.  
 
However, an optimal balance between the generated power from the PV solar and the 
demand power impacts the overall system efficiency and energy utilization. However, the 
dynamic load adds challenges to energy utilization. The simulation results illustrated the fast 
response, and the NARAM-L2 had more agile adjustments to track the varying MPP and 
verify the dynamic load requirements. It can figure out the implementation of deep learning 
NARAM-L2 controller MPPT for different loads, as given in Table 3. 
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Figure 18. (a) load voltage and (b) current responses (with static load) 
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Figure 19. (a) load voltage and (b) current responses (with dynamic load) 

Table 3.  MPPT based on NARMA-L2 controller with different loads Comparison. 
 

Type of load Performance 

static 
constant power consumption,  

stable and efficient in partial shading 
conditions 

dynamic 

Unpredictable power changes,  
Deep learning MPPT adapts the power 

extraction, system efficiency, and 
energy utilization. 

 
5. CONCLUSIONS 

 
This paper presents MPPT algorithms under partial shading. Although the conventional 
MPPT methods, such as PO-MPPT and INC-MPPT. These methods are simple and easy to 
implement, but they have limitations in addressing challenging conditions such as irradiance 
variations and dynamic load. Therefore, a deep learning toolbox NARMA-L2 controller is 
proposed and used to track PV solar MPP.  This controller can effectively handle the dynamic 
behavior of PV solar in real-time. As well as it has an advantage in adapting the changing 
irradiance to enhance the system performance and is capable of harvesting the energy while 
balancing the generated and consumed powers.  Moreover, the NARMA-L2 controller is 
tested for dynamic load. The simulation results demonstrate the effectiveness of the NARMA-
L2 in tracking the global MPP under different irradiance profiles, and it achieves a good 
response of load voltage and current for static and dynamic loads.  
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List of symbols 
 

Symbol definition Symbo
l 

definition 

Io 
reverse saturation current of the 
diode 

Ppv output PV power (W) 

Iph photocurrent created by the cell Iabc load current (A) 

K 
Boltzmann’s constant (1.3805x10-23 
J/K). 

Vabc load voltage (V) 

n ideality factor of the diode 
Abreviations 

q charge of the electron (1.6x10-19C) HER  

 

Hybrid energy renewable 

Rs series resistance in PV cell 
MPPT Maximum power point 

tracking 

Rsh shunt resistance in PV cell SOC State of charge 

T temperature of the cell PO Perturb and observe 

VT thermal tension of PV cell INC Increment conductance 

Vpv PV voltage (V) PV Photovoltaic 

Ipv PV current (A)   
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Appendix A  

PO-MPPT and INC-MPPT algorithms 
di=i-io; 
d=0.00055; 
if du==0 
    if di==0 
    s=D; 
    else 
        if di>0 
            s=D-d; 
        else 
            s=D+d; 
        end 
    end 
else 
    if di/du== -(i/u) 
    s=D; 
    else 
        if di/du> -(i/u) 
        s=D-d; 
        else 
            s=D+d; 
        end 
    end 
end 
f = s; 
end 

S.P=P; 
end 
function D = MPPT 
(V,v,P,p,d) 
d=0.58; 
dv=V-v; 
dp=P-p; 
if(dp>0) 
    if(dv<0) 
        D=d+0.05; 
    else 
        D=d-0.05; 
    end 
else 
    if(dv<0) 
        D=d-0.05; 
    else 
        D=d+0.05; 
    end 
end 
     
Matlab function for INC-
MPPT algorithm 
function y = 
MYMPP(u,i,uo,io,D) 
s=0.4; 
du=u-uo; 

Matlab function for PO-
MPPT 
function D = 
fcn(V,I,dD,Dini) 
%% Memory Storage 
persistent S 
if isempty(S) 
    S.D=Dini; % Initial 
Duty Cycle 
    S.V=0; 
    S.P=0; 
end 
 
%% PnO Algorithm 
P=V*I; 
dV=V-S.V; 
dP=P-S.P; 
dPV=dV*dP; 
if dPV>0 
    D=S.D-dD; 
else 
    D=S.D+dD; 
end 
 
%% Update Memory 
S.D=D; % Initial Duty 
Cycle 
S.V=V; 

 

 
 


