
Journal of Engineering Volume 22 July 2016 Number 7

164

An Adaptive Multi-Objective Particle Swarm Optimization Algorithm for

Multi-Robot Path Planning

 Dr. Nizar Hadi Abbas Jaafer Ahmed Abdulsaheb

 Department of Electrical Engineering Department of Electrical Engineering

 College of Engineering - University of Baghdad College of Engineering - University of Baghdad

 E-mail: drnizaralmsaodi@gmail.com E-mail: jaafer.almadhhachi@gmail.com

ABSTRACT

 This paper discusses an optimal path planning algorithm based on an Adaptive Multi-

Objective Particle Swarm Optimization Algorithm (AMOPSO) for two case studies. First case,

single robot wants to reach a goal in the static environment that contain two obstacles and two

danger source. The second one, is improving the ability for five robots to reach the shortest way.

The proposed algorithm solves the optimization problems for the first case by finding the

minimum distance from initial to goal position and also ensuring that the generated path has a

maximum distance from the danger zones. And for the second case, finding the shortest path for

every robot and without any collision between them with the shortest time. In order to evaluate

the proposed algorithm in term of finding the best solution, six benchmark test functions are used

to make a comparison between AMOPSO and the standard MOPSO. The results show that the

AMOPSO has a better ability to get away from local optimums with a quickest convergence than

the MOPSO. The simulation results using Matlab 2014a, indicate that this methodology is

extremely valuable for every robot in multi-robot framework to discover its own particular

proper path from the start to the destination position with minimum distance and time.

Key words: multi-robot system, path planning, multi-objective approaches, adaptive multi-

objective particle swarm optimization, danger zones.

 تطوير خوارزميح اسراب الطيور متعذدج الوظائف لتخطيط المسار لآكثر من روتوخ

 د. نسار هادي عثاش جعفر احمذ عثذ الصاحة

 لسُ إٌٙذسخ اٌىٙزثبئٍخ لسُ إٌٙذسخ اٌىٙزثبئٍخ

وٍٍخ إٌٙذسخ، خبِؼخ ثغذاد وٍٍخ إٌٙذسخ، خبِؼخ ثغذاد

حـــالخلاص

فً ٘ذا اٌجحث تُ ػزض افضً ِسبر ػٍى اسبص خٛارسٍِخ اسزاة اٌطٍٛر ِتؼذدح اٌٛظبئف اٌّؼذٌخ ٌذراسخ حبٌتٍٓ . فً

تُ تطجٍك ٚظٍفتٍٓ ٌتٌٍٛذ افضً ِسبر ِّىٓ ٌٍزٚثٛد اٌّتحزن فً ثٍئخ ثبثتخ ِغ تدٕت اٌتصبدَ ِغ اٌؼٛائك ٚ ،اٌحبٌخ الاٌٚى

ٌتحسٍٓ لذرح اٌجحث ٌٕظبَ ٌحتٛي ػٍى ػذد ِٓ اٌزٚثٛتبد ٌٍحصٛي ،ِصبدر اٌخطز اٌتً لذ تىْٛ ِٛخٛدح فً اٌجٍئخ ٚاٌثبٍٔخ

طزٌمخ الاِثٍٍخ ػٓ طزٌك تمًٍٍ داٌخ اٌٙذف ٚاٌحصٛي ػٍى اٌّسبراد ث ٛارسٍِخ اٌّمتزحخ تحً اٌّشبوًػٍى الصز ِسبر. اٌخ

ٓ اْ اٌّسبراد اٌّتٌٛذح ّضتاتجبػٗ ثٛاسطخ اٌزٚثٛد ٚاٌضبً ِٓ طٛي اٌطزٌك اٌذي ٌدت وذٌه تمًٍالاِثً ٚثذْٚ تصبدَ

رسٍِخ اٌّطٛرح ِغ ػٍى ِسبفخ إِخ ِٓ ِصبدر اٌخطز. ثؼط دٚاي الاختجبر تُ استخذاِٙب ٌٍّمبرٔخ ثٍٓ خٛدح اٌخٛا

mailto:drnizaralmsaodi@gmail.com
mailto:jaafer.almadhhachi@gmail.com

Journal of Engineering Volume 22 July 2016 Number 7

165

اٌخٛارسٌّخ الاصٍٍخ ِٓ ٔبحٍخ اٌٛصٛي اٌى افضً اٌحٍٛي. إٌتبئح اظٙزد اْ اٌخٛارسٍِخ اٌّطٛرح تّتٍه لذرح افضً ٌٍخزٚج

٘ذٖ إٌّٙدٍخ تجٍٓ ثأِْٓ الاِثٍٍخ اٌّحٍٍخ ٚاٌحصٛي ػٍى تمبرة اسزع ِٓ اٌخٛارسٍِخ الاصٍٍخ . ٔتبئح اٌّحبوبح ٚٔتبئح اٌتحمك

لاوتشبف اٌطزٌك اٌصحٍح اٌخبص ثٗ ِٓ ِٛلغ اٌجذاٌخ اٌى بداٌزٚثٛت حِتؼذد ِٕظِٛخ غبٌخ ٌىً رٚثٛد فً إطبرً٘ لٍّخ ٌٍ

 ِغ اٌحصٛي ػٍى اٌحذ الأدٔى ِٓ اٌّسبفخ اٌّمطٛػخ ٚاٌشِٓ. ٙذفاٌ

ِتؼذدح خٛارسٍِخ اسزاة اٌطٍٛر طزق اٌٛظبئف اٌّتؼذدح ، اٌّسبر، تخطٍظ اٌزٚثٛد، ِتؼذد ٔظبَالكلماخ الرئيسيح:

 اٌخطز. ِٕبطك اٌٛظبئف ،

1. INTRODUCTION

 The Multi Robot System (MRS) can be described as a group of robots working in the same

environment. However, robotic systems may range from simple sensors, acquiring and

processing data, to complex human like machines, able to interact with the environment in fairly

complex ways. MRS has been widely applied to rescue, industrial, exploration of outer space

areas, due to its characteristics of reliability, robustness, and economy. Path planning has been

known as one of the main problems in the MRS. The objective was to choose the optimum path

without collision among them in the specified arena, Li, et al., 2009.

 One of the most important tasks in the moving of mobile robots in static (fixed)

environments in the existence of multi-obstacles was to arrive the goal as fast as possible using

an optimal trajectory. Sometimes, the environments that the robots are working on may be

included danger zones (sensitive areas), so it must be considered in the robot path planning

(RPP) algorithms. In addition to generating the shortest path, the RPP algorithms also generate

trajectories at safe spaces from the danger zones in the arena, Gong, et al., 2011.

 A MOPSO algorithm is utilized in, Zhang, et al., 2013, to generate trajectories for mobile

robots that are working on the environments that the robots are working on and may be included

danger sources. R. Kala introduced a co-evolutionary genetic programming algorithm to produce

a comprehensive, optimal path for multi-robots in map of the maze, where every robot searching

for the shortest path in addition to that, each robot avoids the collision with other robots. The

results show that this method can find the best paths for whatever number of mobile robots in

various arenas and scenarios, Kala, 2012. Kaluder, et al.,2011, showed a modified Asano's

algorithm which is performed to locate the visibility polygons and graphs. According to the

result, a cubical complexity of the algorithm is shown, based on reflection point numbers.

 The methods that are used for solving RPP can be separated into two methods: traditional

and intelligent, the first method contains visibility graphs, configuration space (C-Space) and

artificial potential field., Jaillet, et al., 2010, addressed path planning issue to consider the cost

function defined over the C-Space. The proposed design computes minimum cost paths that

follow the valleys and saddle points of the C-Space cost map. According to the results this

method is very effective. The second method is a group of obstacles and points in the Euclidean

plane and it was applied to find the Euclidean shortest paths between a group of point (polygonal

point). The artificial intelligent path planning includes Ant Colony Optimization (ACO), Particle

Swarm Optimization (PSO), Genetic Algorithm (GA) and so on. Chung and Xu,2010,

suggested a generalized three dimensional (3D) path planning technique for robots using GA

with an adaptive evolution process. According to nearest neighbor, the authors presented a new

operator, named it a Bind-NN that is randomly separated and reconnect an elitist chromosome.

According to the results the efficiency and search effectiveness has a better improvement.

Journal of Engineering Volume 22 July 2016 Number 7

166

Chakraborty, et al., 2008, presented an alternative method for a co-operative multiple RPP

problem using parallel differential evolution algorithms. According to the experimental results

this method is very useful for each robot in multi-robot systems for searching and finding the

shortest path to target.

 In this paper, two case studies based on an Adaptive Multi-Objective Particle Swarm

Optimization Algorithm (AMOPSO) for solving RPP problem are presented the first one for

single robot and the second for multi-robot. In the first case, the AMOPSO algorithm generates

optimal paths by maximizing the distance between the generated paths and the danger zones that

exist in the arena and also minimizing the length of the path that needs by the mobile robot to

reach the target. In the second case, the AMOPSO algorithm improves the ability for multiple

robot system to reach the shortest way.

 The rest of this paper is organized as follows: section 2 describes a problem formulation;

Section 3 describes the theoretical background; Section 4 describes the proposed AMOPSO

algorithm and the simulation results and discussion are presented in section 5. Finally, section 6

gives the research conclusions.

2. PROBLEM FORMULATION

2.1 Single Robot with Danger Zones

 The multiple objective optimization algorithm is considered as AMOPSO algorithm, which

depends on two objectives to find the optimal paths for single mobile robots in fixed

environments that contain a number of obstacles and danger source.

 PSO algorithm using a number of the population P of particles that are taking as a random

position in the work space. Every particle has a velocity (randomized) assigned to which they

have changed its position in the work space.

 Let (R) be the robot that is used in a known environment in the task of finding the optimal

path with existing of danger zones and multi-obstacles. A population of particles (P) contains a

number of particles (N), are participating in the production of optimal path for the robot R.

 The static environment includes a group of obstacles {Ok | k =1...p} and group of danger

zones {DZk | k =1...r} that are known in advance. As described in, Gong, et al., 2011, the danger

zone can be found in the environment when the robot is moving to reach the target.

 The first objective in this case is to reach the maximum distance among each particle and

the danger zones. This means, at each iteration the AMOPSO algorithm attempt to find the

maximum Euclidean distance between the particle positions and every point for danger zones. To

achieve that, the following objective function is used:

f1i (t) =

∑ √

 , i = 1…N, (1)

where (XDZj, YDZj) are axis for the danger zone's position. When the AMOPSO algorithm reaches

the maximum number of iterations, then it eliminated agent’s trajectories which have any

collision points with any points of danger zones.

 The second objective is to find the minimum distance that is needed by the robot from the

start position (Xi(t), Yi(t)) to the goal point (Xf, Yf). The objective function which is used to

Journal of Engineering Volume 22 July 2016 Number 7

167

reach the minimum Euclidean distance between the agent current location and the goal is

formulated as,

f2i (t) = √ , i = 1…N. (2)

 Eq. (1) and Eq. (2) are brought together into a single objective function:

fi(t) = f1i (t) + f2i (t) (3)

 Therefore, every iteration finds the maximum distance between the path points and the

danger zones points in the arena and also obtain the minimum distance that is needed by the

mobile robot.

2.2 Multi-Robot System with Shortest Way

 There are three principles used to organize the robot movement in order to reach the goal

position without collision with obstacles or other robot in the arena, these principles are:

1) At first, the robot identifies the next position so as to align itself to a goal.

2) This alignment may cause a collision with another robot. This may be happening in the

case of more than one robot try to take the same position. Also the collision may be

happening with obstacles that found in the next position. To avoid such collision, the

robot has to turn left or right by changing its position by increasing x-axis and y-axis with

threshold.

3) Finally, if the robot can align itself to the goal without any collision with other robot or

obstacles, it will move to next position.

 The objective is to minimize the distance that is needed for each robot from the start

position to its goal with minimum time. The objective function that is used to minimize the

Euclidian distance between the agent current position and the goal point is formulated as:

fi (t) = √ , i = 1…N. (4)

where, (Xi(t), Yi(t)) is initial position and (Xf, Yf) is goal point.

3. THEORETICAL BACKGROUND

3.1 Path Planning

 The field of robot path planning (RPP) was begun in 1960's. The RPP problem is a very

defy challenging in the field of robotics. The main objective is to find a collision free path from

an initial position to a destination position. Robot Navigation (RN) problem has to be concerned

with three main matters: accuracy, safety and efficiency. The accuracy and safety issues deal

with finding a collision-free path and following the exactly addressed path. Efficiency means that

the algorithm searching the shortest distance with acceptable time by not letting the robot to stop

and turn many times or take needless steps, which results in squandering of time and energy

consumption. Ehlert, 1999.

Journal of Engineering Volume 22 July 2016 Number 7

168

 Depending on the environment where the robot located in; RPP can be classified into two

types:

1) RPP in static environment: if there are fixed obstacles in the arena.

2) RPP in dynamic environment: if the arena has both fixed and moving obstacles.

 Each of these two types could be further subdivided into a sub-group:

1) Global Path Planning (GPP): a total information about fixed obstacles and a path of

moving obstacles are known in advance; thus, the GPP can be planned before the robot

starts to move (offline).

2) Local Path Planning (LPP): a total information about the environment is not obtainable in

advance. So, while it moves through the environment the mobile robot obtains

information through sensors (online), Miao, 2009.

3.2 Optimization Technique

3.2.1 Standard PSO Algorithm

 Particle Swarm Optimization (PSO) algorithm was invented by Kennedy and Eberhart in

1995 is an evolutionary algorithm inspired by the motion of the fish school or bird flocks in

nature. It is used in optimizing the continuous nonlinear functions. PSO uses a population of

particles (agents) that are moving in the work space and at each iteration a particle memorized

the coordinates of the position in the work space associated with better fitness value achieved so

far. PSO also stores the position of the best value from the whole particles, Kennedy and

Eberhart,1995.

 A position vector Xi(t) and velocity vector Vi(t) for every particle in the population is, Rao,

2009:

Vi(t) = (Vi
X
(t), Vi

Y
(t)), i=1...N, (5)

Xi(t) = (Xi
X
(t), Xi

Y
(t)), i=1...N. (6)

where the super-scripts X & Y highlight the vector components in the 2-D work space where the

robot is moving. Every agent maintains the best own positions that are reached in the best

position vector Pi, best (t):

Pi, best (t) =(Pi
X
(t), Pi

Y
(t)), i=1...N. (7)

 The best positions of the whole population are maintained in the vector Pg, best (t):

Pg, best (t) =(Pg
X
(t), Pg

Y
(t)), i =1...N. (8)

 The updating velocity, which is used by the particle in the moving in search space can be

found according to:

Vi
X

(t+1) =w(t) Vi
X
(t) + c1 r1 [Pi

X
(t) - Xi

X
(t)] + c2 r2 [Pg

X
(t)-Xi

X
(t)], i=1...N. (9)

Journal of Engineering Volume 22 July 2016 Number 7

169

Vi
Y

(t+1) =w(t) Vi
Y
(t) + c1 r1 [Pi

Y
(t) - Xi

Y
(t)] + c2 r2 [Pg

Y
(t)-Xi

Y
(t)], i=1...N. (10)

where r1 and r are uniformly distributed random variables in the range of [0,1] , 0.4 ≤ w(t) ≤ 0.9

is the inertia weight, c1 and c2 are the weighting factors of the stochastic accelerations pulling

the agents towards their final positions and it rang is [0,4]. The next particle position in the

search space is obtained using the following equations:

Xi(t+1) =Xi(t)+Vi
X
(t+1). (11)

Yi(t+1) =Yi(t)+Vi
Y
(t+1). (12)

 Pseudocode that shows the steps of the standard PSO algorithm works illustrated in Fig. 1.

3.2.2 MOPSO Algorithm

 Mostly, a single condition used by researchers to generate an optimal path, such as the time

required by a mobile robot to reach the target or minimum path length. But, in practice, several

conditions must be meets to make the path feasible, such as safety, energy consumption,

smoothness, etc.

 An optimal path for single criterion does not mean that all the other criteria are satisfied,

Fujimura, 1996, As an example, an energy consumption dose not desired at the expense of

shortest path along the path.

 So, in multi-objective PSO (MOPSO) algorithm the target is to find a set of different

solutions by modifying the original scheme. Three main concepts must be considered when

extending PSO to MOPSO. These concepts are Dehuri, et al., 2008:

 How to choose the leaders from particles with a view to give priority to non-dominated

solutions over those that are dominated?

 How to keep a non-dominated solution that be found within the search process with a

view to give a report solution that is non-dominated with respect to all the past agents and

not only with respect to the current one?

 How to save the diversity in the swarm with a view to avoid convergence for a single

local solution?

 Pseudocode that shows the procedure of the standard MOPSO algorithm works presented in

Fig. 2. Italics are used in Fig. 2 to clarify the difference process between MOPSO and PSO

algorithms.

3.2.3 Multi-objective approaches

 When the optimization problem contains more than one objective function, the mission of

finding one optimal solutions or more is known as multiple objective optimization. The common

methods that are used to deal with multiple objective optimization are: weighted sum and pareto

front

1. Weighted Sum Approach

 The weighted sum method combines all multiple objective functions into one scalar,

composite objective function using the weighted sum, Yang, 2014.

Journal of Engineering Volume 22 July 2016 Number 7

170

f(x) = ∑

. (13)

 The important matter in specifying the weighting coefficient, W = (W1, W2, …, Wm) because

the strongly solution depends on the selection of W. Obviously, these weights have been positive,

satisfying ∑
 Wm ∈ [0,1].

2. Pareto Dominance and Pareto Optimality

 In a pareto set, a solution back to the pareto set, if there is no other solution can improve at

least one objective without degrading on any other one from the objective. In the context of

Multi-Objective Optimization (MOO), formally, a decision vector ⃗ ∈ Ω is said to pareto

dominate vector ∈ Ω, in a minimization context, if and only if:

111111

 ∈ { } ⃗

 ∈ { } ⃗ (14)

 In the context of Multi-Objective Optimization MOO, Pareto dominance is used to compare

and rank decision vectors: ⃗ dominating in the Pareto sense means that ⃗ ⃗ is either the same

or better than ⃗ for all objectives, and there is at least one objective function for which ⃗ ⃗

is strictly better than ⃗ Yang, 2014.

4. PROPOSED AMOPSO ALGORTHIM

 In this paper, an adaptive approach is proposed to adjust the particles velocity and position

to overcome the slow convergence problem that emerged in Standard PSO (SPSO) algorithm.

 Thus, in the APSO, the particle position is updated such that the highly fitted particle moves

slowly when compared to the lowly fitted particle. Therefore, in order to achieve the promising

updating, the following particles' parameters should be adapted according to their objective

function values, Humadi, et al., 2013:

1. The adaptive inertia weight factor (AIWF) wi
t
, is proposed to find out a compromised

AIWF that satisfies both exploration (global search) and exploitation (local search). The

AIWF is determined as in Eqs. (15 & 16).

2. The adaptive acceleration coefficients (AACs) c
t
1,i and c

t
2,i they are used to award the

efficient particle that has high fitness and punishes the not competent one. These AACs

are formulated as in Eqs. (17, 18, 19, 20, 21 & 22).

3. The adaptive random numbers (ARNs) r
t
1,i and r

t
2,i, are proposed to increase the

movement impact on the third term (swarm) and decrease the movement influence on the

second term (individual) of Eqs. (9) and (10). These ARNs are written as in Eqs.

(23&24).

Wi = (Wmax - Wmin) * (

 * logTmax (Ti + 1)) + Wmin. (15)

Wi = (Wmax-Wmin) * L * logTmax (Ti +1) + Wmin. (16)

Journal of Engineering Volume 22 July 2016 Number 7

171

C1 decrease from 1.5 ~ 0.5, C2 increase from 1.5 ~ 2.5

C1 = Z + L *

 (17)

C2 = Z + L *

. (18)

C1 decrease from 1.5 ~ 0.5, C2 decrease from 1.5 ~ 0.5

C1 = Z - L *

. (19)

C2 = Z - L *

 (20)

C1 decrease from 1.5 ~ 0.5, C2 increase from 1.5 ~ 2.5

C1 = Z - L *

 . (21)

C2 = Z + L *

. (22)

r1 = rand1 * L *

. (23)

r2 = rand2 * L *

. (24)

where, Wi must be between (0.4 and 0.9)

 0.4 when the first part of the Eqs. (15 & 16) equal to zero

 0.9 when the (

 * logTmax (Ti + 1)) equal to one

 0.9 when the L * logTmax (Ti +1) equal to one

 0.4 ~ 0.9 when (

 * logTmax (Ti + 1)) not equal to zero or one

 0.4 ~ 0.9 when L * logTmax (Ti +1) not equal to zero or one

Z = Constant = 1.5

Ti = Current iteration

Tmax = Maximum number of iterations

L must be in this range 0 ≤ L ≤ 1

 M =

 * ∑

 V
2
 =

 * ∑

 2

 Y =

 L =

Journal of Engineering Volume 22 July 2016 Number 7

172

rand1 & rand2 = random number between (0 ~ 1)

So, in this paper four AMOPSO cases are simulated, these cases are listed in Table 1.

5. SIMULATION RESULTS AND DISCUSSION

5.1 Simulation Parameter Settings

 The following parameters of the AMOPSO path planning algorithm have been used in the

experiment: N = 8, maximum number of iterations tmax=120, initial velocities vx
i
= random and

vy
i
 = random, acceleration constants 0.5 ≤ c1 ≤ 2.5 and 0.5 ≤ c2 ≤ 2.5 and inertia weight wmin ≤ w

≤ wmax, wmin = 0.4 and wmax = 0.9.

 The Matlab2014a programming language used to implement the simulation code for path

planning and executing on the system with 2.60GHz CPU and 2.0G RAM.

5.2 Benchmark Test Functions

 Several unimodal and multimodal benchmark functions have been adopted from,

Vesterstrom and Thomsen, 2004. The list of the test functions and some of their characteristics

can be seen in Table 2 and Table 3. In the Table 2, the “Range” column gives the defined range

of the parameter and the “dim” column shows the number of dimensions used for each function

and in the Table 3 “Min. & Av.” column, the first value represents the minimum of optimal

solution and the second one represents the average of optimal solution that obtained over 100

runs are given. Functions f1 ~ f3 are unimodal and f4 ~ f6 multimodal.

 The function f1 is the Sphere function:

f1(x) = ∑
 i

2
. (25)

 The function f2 is the Quadric function:

f2(x) = ∑

∑
 j

2
)
2
.

 (26)

 The function f3 is the Quadric Noise function:

f3(x) = ∑
 i

4
 + random (0,1). (27)

 The function f4 is the Rastrigin function:

f4(x) = ∑

 i
2
 – 10 cos (2πxi) +10]. (28)

 The function f5 is the Ackley function:

f5(x) = √

 ∑

 (

 ∑

) (29)

 The function f6 is the Griewank function:

f6(x) = 1/4000 ∑
 i

2
- ∏

 (xi/√) +1. (30)

 The initialization equation for x in the range of search space:

x = (b – a) * random (0,1) + a. (31)

Journal of Engineering Volume 22 July 2016 Number 7

173

where a is the maximum limit in the search space and b is the minimum limit in the search space.

 In SPSO, c1=c2=2, r1=random (0,1), r2=random (0,1), wmin = 0.4 and wmax = 0.9, the inertia

weight equation, Rao, 2009:

w(i)=

 (32)

5.3 Simulation Results and Discussion

5.3.1 Case study 1: environment with 2 obstacles and 2 danger zones

 In this section, the environment used for the planning is a 11*11 meter, all obstacle positions

are listed in Table 4 and result in Table 5. Starting point is (0,0) and target point is (10,10). The

experiment has achieved a feasible solution; the best trajectory achieved by AMOPSO1 is

illustrated in Fig. 3, best trajectory achieved by AMOPSO2 is shown in Fig. 4, best trajectory

achieved by AMOPSO3 is depicted in Fig. 5. While the best trajectory achieved by AMOPSO4

is shown in Fig. 6. A best distance achieved by Hybrid PSO-GSA in, Purcaru, et al., 2013, is

illustrated in Fig. 7. By comparing the results achieved in Figs. 3, 4, 5, 6 and Fig. 7 the

AMOPSO1, AMOPSO2, AMOPSO3 and AMOPSO4 has a maximum distance from the danger

zone and minimum length to reach the target than Hybrid PSO-GSA, according to this if multi

robot used in the arena the AMOPSO give better results than Hybrid PSO-GSA. The results

obtained from Pareto are better than the results obtained from weighted sum. In pareto, the

average of maximum distance from danger zone is 40.04 and the average for minimum path is

14.72 while in weighted sum, the average of maximum distance from danger zone is 35.1 and the

average for minimum path is 14.44.

5.3.2 Case study 2: Multi-robot in environment with 5 obstacles

 In this section, the environment used for the planning is a10*10 meters, all results are listed

in Table 6. The experiment has achieved a feasible solution; the global path was achieved by

AMOPSO is illustrated in Fig. 8, In the graph, the start point of robot 1 is [0,0] and the stop point

is [10, 10], the start point of robot 2 is [2.5, 0] and the stop point is [2.5, 10], the start point of

robot 3 is [7.5, 0] and the stop point is [2.5, 10], the start point of robot 4 is [0, 2.5] and the stop

point is [7.5, 10], the start point of robot 5 is [0, 7.5] and the stop point is [10,0]. Best distances

achieved by Immune Ant Colony Optimization Network Algorithm in, Hao, and Xu, 2014, are

listed in Table 7. By comparing the results achieved in Tables 6 and 7 the AMOPSO1 has a

minimum time to reach the target than Immune Ant Colony Optimization Network Algorithm

and pareto reach the target in 44.8 times less than weighted sum and 562 times less than Immune

Ant Colony Optimization Network Algorithm.

6. CONCLUSION

 In this paper, two case studies for path planning model based on AMOPSO is developed to

enhance the performance of the multi-robot path planning. In the first case, the algorithm

generates an optimal collision free trajectory in static environments that can contain known

multiple obstacles and multiple danger zones and the second case improve the ability of multiple

robot system to reach the shortest way. The algorithm achieved by Matlab 2014a and has been

applied on two maps, first map, including two obstacles and two danger zones and the second

including different barriers. The result of first case shows that the AMOPSO generates an

Journal of Engineering Volume 22 July 2016 Number 7

174

optimal path by maximizing the distance between the generated paths and the danger zones that

exist in the environment and also minimizing the length of the path that needs by the mobile

robot to reach the target, these results are better than the results achieved by Hybrid PSO-GSA.

And the result for the second one shows that AMOPSO could be suit for a multi-robot system to

find the shortest path and without collision between them. These results show that the AMOPSO

has shortest time compared with time achieved by Immune Ant Colony Optimization Network

Algorithm.

REFRENCES

 Chakraborty, J., Konar, A., Chakraborty and U. K. and Jain, L. C., 2008, Distributed

Cooperative Multi-robot Path Planning using Differential Evolution, In Proceeding of

IEEE World Congress on Computational Intelligence, Hong Kong, pp.718-725.

 Chung, W. K., and Xu, Y., 2010, A Generalized 3-D Path Planning Method for Robots

Using Genetic Algorithm with an Adaptive Evolution Process, In Proceeding of 8
th

 World

Congress on Intelligent Control and Automation, Jinan, China, pp.1354-1360.

 Dehuri, S., Ghosh, A., and Cho, S-B., 2008, Particle Swarm Optimised Polynomial

Neural Network for Classification: A Multi-Objective View, International Journal of

Intelligent Defence Support Systems, vol. 1, no. 3, pp.225-253.

 Ehlert, P. A. M., 1999, The Use of Artificial Intelligence Robots, Report on research

project, Delft University of Technology, Netherlands.

 Fujimura, K., 1996, Path Planning with Multiple Objectives, IEEE Robotics and

Automation Magazine, vol. 3, no.1, pp. 33-38.

 Gong, D. W., Zhang, J. H., and Zhang, Y., 2011, Multi-Objective Particle Swarm

Optimization for Robot Path Planning in Environment with Danger Sources, Journal of

Computers, vol. 6, no. 8, pp. 1554–1561.

 Hao, W., and XU, X., 2014, Immune Ant Colony Optimization Network Algorithm for

Multi-Robot Path Planning, In Proceedings of the 5
th

 IEEE International Conference on

Software Engineering and Service Science (ICSESS), Beijing, China, pp. 1118-1121.

 Humadi, R. A., Abbas, N. H., and Hammadi, W., 2013, PID Parameters Optimization

Using Adaptive PSO Algorithm for a DCSM Position Control, International Journal of

Electrical Engineering and Technology, vol. 4, Issue 4, pp. 1-13.

 Jaillet, L., Cortés, J., and Siméon, T., 2010, Sampling-based Path Planning on

Configuration-Space Costmaps, IEEE Transactions on Robotics, vol. 26, no. 4, pp.635-

646.

 Kala, R., 2012, Multi-robot Path Planning Using Co-evolutionary Genetic Programming,

Expert Systems with Applications, vol.39, no. 3, pp.3817-3831.

Journal of Engineering Volume 22 July 2016 Number 7

175

 Kaluder, H., Brezak, M., and Petrovic, I., 2011, A Visibility Graph based Method for

Path Planning in Dynamic Environments, In Proceeding of 34
th

 International Convention

on MIPRO, Opatija , Croatia, pp.717-721.

 Kennedy, J., and Eberhart, R. C., 1995, Particle Swarm Optimization, In Proceedings of

IEEE International Conference Neural Networks, NJ, USA, pp. 1942–1948.

 Li, H., Yang, S. X., and Seto, M. L., 2009, Neural Network based Path Planning for a

Multirobot System with Moving Obstacles, In IEEE Transactions on Systems, Man, and

Cybernetics, Part C: Applications and Reviews, vol. 39, no. 4, pp. 410-419.

 Miao, H., 2009, Robot Path Planning in Dynamic Environments Using a Simulated

Annealing Based Approach, Master thesis, Queensland University of Technology,

Queensland, Australia.

 Purcaru, C., Precup, R.-E., Iercan, D., Fedorovici, L.O., and David, R.-C., 2013, Hybrid

PSO-GSA Robot Path Planning Algorithm in Static Environments with Danger Zones, In

Proceedings of the 17
th

 International Conference on System Theory, Control and

Computing, Sinaia, Romania, pp. 434-439.

 Rao, S. S., 2009, “Engineering Optimization: Theory and Practice”, 4
th

 Edition, Wiley.

 Vesterstrom, J., and Thomsen, R., 2004, A Comparative Study of Differential Evolution,

Particle Swarm Optimization, and Evolutionary Algorithms on Numerical Benchmark

Problems, IEEE Congress on Evolutionary Computation, Portland, USA, vol.2, pp. 1980-

1987.

 Yang, X., 2014, Nature-Inspired Optimization Algorithms, 1
st

Edition, Elsevier.

 Zhang, Y., Gong, D.-W., and Zhang, J.-H., 2013, Robot Path Planning in Uncertain

Environment Using Multi-Objective Particle Swarm Optimization, Neurocomput., vol.

103, pp. 172–185.

Journal of Engineering Volume 22 July 2016 Number 7

176

Figure 1. Pseudocode of the standard PSO algorithm.

Figure 2. Pseudocode of the standard MOPSO algorithm.

Journal of Engineering Volume 22 July 2016 Number 7

177

Figure 3. Best results achieved by AMOPSO1.

Figure 4. Best results achieved by AMOPSO2.

Journal of Engineering Volume 22 July 2016 Number 7

178

Figure 5. Best results achieved by AMOPSO3.

Figure 6. Best results achieved by AMOPSO4.

Journal of Engineering Volume 22 July 2016 Number 7

179

Figure 7. Best results achieved by Hybrid PSO-GSA, Purcaru, et al., 2013.

Figure 8. Best results achieved for case study 2.

Journal of Engineering Volume 22 July 2016 Number 7

180

Table1. AMOPSO cases

Name W Equation C1 & C2 Equation r1 & r2 Equation

AMOPSO1 15 17 & 18 23 & 24

AMOPSO2 15 19 & 20 23 & 24

AMOPSO3 16 19 & 20 23 & 24

AMOPSO4 16 21 & 22 23 & 24

Table 2. Different benchmark functions on the SPSO and AMOPSO have been tested.

Benchmark fun. Dim Range

f1 30 [-100,100]
 D

f2 30 [-100,100]
 D

f3 30 [-1.28,1.28]
 D

f4 30 [-5.12,5.12]
 D

f5 30 [-32,32]
 D

f6 30 [-600,600]
 D

Table 3. Results for benchmark functions based on the SPSO and AMOPSO1, AMOPSO2,

AMOPSO3 and AMOPSO4 algorithms.

f SPSO AMOPSO1 AMOPSO2 AMOPSO3 AMOPSO4

 Min. & Av. Min. & Av. Min. & Av. Min. & Av. Min. & Av.

f1 0.16239

0.26797

0.020316

0.020322

0.022755

0.02276

0.020315

0.020318

0.021744

0.021748

f2 0.61426

0.71556

0.063806

0.063186

0.066616

0.066639

0.060719

0.060745

0.06022

0.060259

f3 0.20384

8.4377

0.07885

0.087416

0.065096

0.070362

0.072637

0.081607

0.031205

0.048147

f4 0.16376

2.1796

0.044989

0.080379

0.078139

0.09372

0.020808

0.02131

0.019634

0.021526

f5 0.21717

0.30033

0.018962

0.019161

0.020767

0.020981

0.021648

0.02187

0.021819

0.022042

f6 0.20413

0.36459

0.027966

0.028254

0.027475

0.0281

0.028591

0.028887

0.028807

0.029154

Journal of Engineering Volume 22 July 2016 Number 7

181

Table 4. Coordinates of obstacles and danger zone for the case study 1.

Table 5. Result for case study 1.

Algorithm
Max. distance from danger

zone

Min. distance from start to target

position

 Pareto Weighted Sum Pareto Weighted Sum

AMOPSO1 46.251 39.963 14.725 14.437

AMOPSO2 38.472 33.893 14.72 14.431

AMOPSO3 37.867 33.38 14.729 14.439

AMOPSO4 37.576 33.165 14.724 14.436

Table 6. Result for case study 2.

Robot number
Min. distance from start to

target position
Time

 Pareto Weighted Sum Pareto Weighted Sum

Robot 1 14.7 14.7

0.0011602

0.051955
Robot 2 10.041 10.041

Robot 3 10.308 10.308

Robot 4 10.889 10.889

Robot 5 12.571 12.571

Table 7. Result for Immune Ant Colony Optimization Network Algorithm, Hao, and Xu, 2014.

Robot number
Min. distance from start to

target position
Time

Robot 1 14.1728

0.6525
Robot 2 10.0423

Robot 3 10.3078

Robot 4 10.9045

Robot 5 12.5720

Obstacles Center Position

1 1.2,1

2 5.5,5.5

Danger zone Position

1 1,4

2 2,5.5

