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ABSTRACT 

        This paper discusses an optimal path planning algorithm based on an Adaptive Multi-

Objective Particle Swarm Optimization Algorithm (AMOPSO) for two case studies. First case, 

single robot wants to reach a goal in the static environment that contain two obstacles and two 

danger source. The second one, is improving the ability for five robots to reach the shortest way. 

The proposed algorithm solves the optimization problems for the first case by finding the 

minimum distance from initial to goal position and also ensuring that the generated path has a 

maximum distance from the danger zones. And for the second case, finding the shortest path for 

every robot and without any collision between them with the shortest time. In order to evaluate 

the proposed algorithm in term of finding the best solution, six benchmark test functions are used 

to make a comparison between AMOPSO and the standard MOPSO. The results show that the 

AMOPSO has a better ability to get away from local optimums with a quickest convergence than 

the MOPSO. The simulation results using Matlab 2014a, indicate that this methodology is 

extremely valuable for every robot in multi-robot framework to discover its own particular 

proper path from the start to the destination position with minimum distance and time. 

 

Key words: multi-robot system, path planning, multi-objective approaches, adaptive multi-

objective particle swarm optimization, danger zones. 

 

 تطوير خوارزميح اسراب الطيور متعذدج الوظائف لتخطيط المسار لآكثر من روتوخ

 د. نسار هادي عثاش                                                               جعفر احمذ عثذ الصاحة

                    لسُ إٌٙذسخ اٌىٙزثبئٍخ                                                                لسُ إٌٙذسخ اٌىٙزثبئٍخ                 

وٍٍخ إٌٙذسخ، خبِؼخ ثغذاد                                                                                        وٍٍخ إٌٙذسخ، خبِؼخ ثغذاد       

حـــالخلاص  

فً ٘ذا اٌجحث تُ ػزض افضً ِسبر ػٍى اسبص خٛارسٍِخ اسزاة اٌطٍٛر ِتؼذدح اٌٛظبئف اٌّؼذٌخ ٌذراسخ حبٌتٍٓ . فً 

تُ تطجٍك ٚظٍفتٍٓ ٌتٌٍٛذ افضً ِسبر ِّىٓ ٌٍزٚثٛد اٌّتحزن فً ثٍئخ ثبثتخ ِغ تدٕت اٌتصبدَ ِغ اٌؼٛائك ٚ  ،اٌحبٌخ الاٌٚى 

ٌتحسٍٓ لذرح اٌجحث ٌٕظبَ ٌحتٛي ػٍى ػذد ِٓ اٌزٚثٛتبد ٌٍحصٛي  ،ِصبدر اٌخطز اٌتً لذ تىْٛ ِٛخٛدح فً اٌجٍئخ ٚاٌثبٍٔخ 

طزٌمخ الاِثٍٍخ ػٓ طزٌك تمًٍٍ داٌخ اٌٙذف ٚاٌحصٛي ػٍى اٌّسبراد ث ٛارسٍِخ اٌّمتزحخ تحً اٌّشبوًػٍى الصز ِسبر. اٌخ

ٓ اْ اٌّسبراد اٌّتٌٛذح ّضتاتجبػٗ ثٛاسطخ اٌزٚثٛد ٚاٌضبً  ِٓ طٛي اٌطزٌك اٌذي ٌدت وذٌه تمًٍالاِثً ٚثذْٚ تصبدَ  

رسٍِخ اٌّطٛرح ِغ ػٍى ِسبفخ إِخ ِٓ ِصبدر اٌخطز. ثؼط دٚاي الاختجبر تُ استخذاِٙب ٌٍّمبرٔخ ثٍٓ خٛدح اٌخٛا
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اٌخٛارسٌّخ الاصٍٍخ ِٓ ٔبحٍخ اٌٛصٛي اٌى افضً اٌحٍٛي. إٌتبئح اظٙزد اْ اٌخٛارسٍِخ اٌّطٛرح تّتٍه لذرح افضً ٌٍخزٚج 

٘ذٖ إٌّٙدٍخ  تجٍٓ ثأِْٓ الاِثٍٍخ اٌّحٍٍخ ٚاٌحصٛي ػٍى تمبرة اسزع ِٓ اٌخٛارسٍِخ الاصٍٍخ . ٔتبئح اٌّحبوبح ٚٔتبئح اٌتحمك 

لاوتشبف اٌطزٌك اٌصحٍح اٌخبص ثٗ ِٓ ِٛلغ اٌجذاٌخ اٌى  بداٌزٚثٛت حِتؼذد ِٕظِٛخ غبٌخ ٌىً رٚثٛد فً إطبرً٘ لٍّخ ٌٍ

 ِغ اٌحصٛي ػٍى اٌحذ الأدٔى ِٓ اٌّسبفخ اٌّمطٛػخ ٚاٌشِٓ. ٙذفاٌ

ِتؼذدح خٛارسٍِخ اسزاة اٌطٍٛر طزق اٌٛظبئف اٌّتؼذدح ،  اٌّسبر، تخطٍظ اٌزٚثٛد، ِتؼذد ٔظبَالكلماخ الرئيسيح: 

 اٌخطز. ِٕبطك اٌٛظبئف ،

 

1. INTRODUCTION 

        The Multi Robot System (MRS) can be described as a group of robots working in the same 

environment. However, robotic systems may range from simple sensors, acquiring and 

processing data, to complex human like machines, able to interact with the environment in fairly 

complex ways. MRS has been widely applied to rescue, industrial, exploration of outer space 

areas, due to its characteristics of reliability, robustness, and economy. Path planning has been 

known as one of the main problems in the MRS. The objective was to choose the optimum path 

without collision among them in the specified arena, Li, et al., 2009.  

        One of the most important tasks in the moving of mobile robots in static (fixed) 

environments in the existence of multi-obstacles was to arrive the goal as fast as possible using 

an optimal trajectory. Sometimes, the environments that the robots are working on may be 

included danger zones (sensitive areas), so it must be considered in the robot path planning 

(RPP) algorithms. In addition to generating the shortest path, the RPP algorithms also generate 

trajectories at safe spaces from the danger zones in the arena, Gong, et al., 2011. 

        A MOPSO algorithm is utilized in, Zhang, et al., 2013, to generate trajectories for mobile 

robots that are working on the environments that the robots are working on and may be included 

danger sources. R. Kala introduced a co-evolutionary genetic programming algorithm to produce 

a comprehensive, optimal path for multi-robots in map of the maze, where every robot searching 

for the shortest path in addition to that, each robot avoids the collision with other robots. The 

results show that this method can find the best paths for whatever number of mobile robots in 

various arenas and scenarios, Kala, 2012. Kaluder, et al.,2011, showed a modified Asano's 

algorithm which is performed to locate the visibility polygons and graphs. According to the 

result, a cubical complexity of the algorithm is shown, based on reflection point numbers. 

        The methods that are used for solving RPP can be separated into two methods: traditional 

and intelligent, the first method contains visibility graphs, configuration space (C-Space) and 

artificial potential field., Jaillet, et al., 2010, addressed path planning issue to consider the cost 

function defined over the C-Space. The proposed design computes minimum cost paths that 

follow the valleys and saddle points of the C-Space cost map. According to the results this 

method is very effective. The second method is a group of obstacles and points in the Euclidean 

plane and it was applied to find the Euclidean shortest paths between a group of point (polygonal 

point). The artificial intelligent path planning includes Ant Colony Optimization (ACO), Particle 

Swarm Optimization (PSO), Genetic Algorithm (GA) and so on. Chung and Xu,2010, 

suggested a generalized three dimensional (3D) path planning technique for robots using GA 

with an adaptive evolution process. According to nearest neighbor, the authors presented a new 

operator, named it a Bind-NN that is randomly separated and reconnect an elitist chromosome. 

According to the results the efficiency and search effectiveness has a better improvement. 
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Chakraborty, et al., 2008, presented an alternative method for a co-operative multiple RPP 

problem using parallel differential evolution algorithms. According to the experimental results 

this method is very useful for each robot in multi-robot systems for searching and finding the 

shortest path to target. 

        In this paper, two case studies based on an Adaptive Multi-Objective Particle Swarm 

Optimization Algorithm (AMOPSO) for solving RPP problem are presented the first one for 

single robot and the second for multi-robot. In the first case, the AMOPSO algorithm generates 

optimal paths by maximizing the distance between the generated paths and the danger zones that 

exist in the arena and also minimizing the length of the path that needs by the mobile robot to 

reach the target. In the second case, the AMOPSO algorithm improves the ability for multiple 

robot system to reach the shortest way. 

        The rest of this paper is organized as follows: section 2 describes a problem formulation; 

Section 3 describes the theoretical background; Section 4 describes the proposed AMOPSO 

algorithm and the simulation results and discussion are presented in section 5. Finally, section 6 

gives the research conclusions. 

 

2. PROBLEM FORMULATION  

2.1 Single Robot with Danger Zones  

        The multiple objective optimization algorithm is considered as AMOPSO algorithm, which 

depends on two objectives to find the optimal paths for single mobile robots in fixed 

environments that contain a number of obstacles and danger source. 

        PSO algorithm using a number of the population P of particles that are taking as a random 

position in the work space. Every particle has a velocity (randomized) assigned to which they 

have changed its position in the work space. 

        Let (R) be the robot that is used in a known environment in the task of finding the optimal 

path with existing of danger zones and multi-obstacles. A population of particles (P) contains a 

number of particles (N), are participating in the production of optimal path for the robot R. 

        The static environment includes a group of obstacles {Ok | k =1...p} and group of danger 

zones {DZk | k =1...r} that are known in advance. As described in, Gong, et al., 2011, the danger 

zone can be found in the environment when the robot is moving to reach the target. 

        The first objective in this case is to reach the maximum distance among each particle and 

the danger zones. This means, at each iteration the AMOPSO algorithm attempt to find the 

maximum Euclidean distance between the particle positions and every point for danger zones. To 

achieve that, the following objective function is used: 

 

f1i (t) = 
 

∑ √              
                   

 

 

        

 , i = 1…N,                                                         (1) 

 

where (XDZj, YDZj) are axis for the danger zone's position. When the AMOPSO algorithm reaches 

the maximum number of iterations, then it eliminated agent’s trajectories which have any 

collision points with any points of danger zones. 

        The second objective is to find the minimum distance that is needed by the robot from the 

start position (Xi(t), Yi(t)) to the goal point (Xf, Yf). The objective function which is used to 
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reach the minimum Euclidean distance between the agent current location and the goal is 

formulated as, 

 

f2i (t) = √                             , i = 1…N.                                                                 (2) 

         

        Eq. (1) and Eq. (2) are brought together into a single objective function: 

 

fi(t) = f1i (t) + f2i (t)                                                                                                                       (3) 

 

        Therefore, every iteration finds the maximum distance between the path points and the 

danger zones points in the arena and also obtain the minimum distance that is needed by the 

mobile robot. 

2.2 Multi-Robot System with Shortest Way 

        There are three principles used to organize the robot movement in order to reach the goal 

position without collision with obstacles or other robot in the arena, these principles are: 

1) At first, the robot identifies the next position so as to align itself to a goal. 

2) This alignment may cause a collision with another robot. This may be happening in the 

case of more than one robot try to take the same position. Also the collision may be 

happening with obstacles that found in the next position. To avoid such collision, the 

robot has to turn left or right by changing its position by increasing x-axis and y-axis with 

threshold. 

3) Finally, if the robot can align itself to the goal without any collision with other robot or 

obstacles, it will move to next position. 

        The objective is to minimize the distance that is needed for each robot from the start 

position to its goal with minimum time. The objective function that is used to minimize the 

Euclidian distance between the agent current position and the goal point is formulated as: 

 

fi (t) = √                             , i = 1…N.                                                                 (4) 

 

where, (Xi(t), Yi(t)) is initial position and (Xf, Yf) is goal point. 

3. THEORETICAL BACKGROUND 

3.1  Path Planning 

        The field of robot path planning (RPP) was begun in 1960's. The RPP problem is a very 

defy challenging in the field of robotics. The main objective is to find a collision free path from 

an initial position to a destination position. Robot Navigation (RN) problem has to be concerned 

with three main matters: accuracy, safety and efficiency. The accuracy and safety issues deal 

with finding a collision-free path and following the exactly addressed path. Efficiency means that 

the algorithm searching the shortest distance with acceptable time by not letting the robot to stop 

and turn many times or take needless steps, which results in squandering of time and energy 

consumption. Ehlert, 1999. 
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        Depending on the environment where the robot located in; RPP can be classified into two 

types: 

1) RPP in static environment: if there are fixed obstacles in the arena. 

2) RPP in dynamic environment: if the arena has both fixed and moving obstacles. 

        Each of these two types could be further subdivided into a sub-group: 

1) Global Path Planning (GPP): a total information about fixed obstacles and a path of 

moving obstacles are known in advance; thus, the GPP can be planned before the robot 

starts to move (offline). 

2) Local Path Planning (LPP): a total information about the environment is not obtainable in 

advance. So, while it moves through the environment the mobile robot obtains 

information through sensors (online), Miao, 2009. 

 

3.2  Optimization Technique 

3.2.1 Standard PSO Algorithm  

        Particle Swarm Optimization (PSO) algorithm was invented by Kennedy and Eberhart in 

1995 is an evolutionary algorithm inspired by the motion of the fish school or bird flocks in 

nature. It is used in optimizing the continuous nonlinear functions. PSO uses a population of 

particles (agents) that are moving in the work space and at each iteration a particle memorized 

the coordinates of the position in the work space associated with better fitness value achieved so 

far. PSO also stores the position of the best value from the whole particles, Kennedy and 

Eberhart,1995. 

        A position vector Xi(t) and velocity vector Vi(t) for every particle in the population is, Rao, 

2009: 

 

Vi(t) = (Vi
X
(t), Vi

Y
(t)), i=1...N,                                                                                                       (5) 

 

Xi(t) = (Xi
X
(t), Xi

Y
(t)), i=1...N.                                                                                                       (6) 

 

where the super-scripts X & Y highlight the vector components in the 2-D work space where the 

robot is moving. Every agent maintains the best own positions that are reached in the best 

position vector Pi, best (t): 

 

Pi, best (t) =(Pi
X
(t), Pi

Y
(t)), i=1...N.                                                                                                 (7) 

 

        The best positions of the whole population are maintained in the vector Pg, best (t): 

 

Pg, best (t) =(Pg
X
(t), Pg

Y
(t)), i =1...N.                                                                                               (8) 

 

        The updating velocity, which is used by the particle in the moving in search space can be 

found according to: 

 

Vi
X 

(t+1) =w(t) Vi
X
(t) + c1 r1 [Pi

X
(t) - Xi

X
(t)] + c2 r2 [Pg

X
(t)-Xi

X
(t)], i=1...N.                             (9) 
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Vi
Y 

(t+1) =w(t) Vi
Y
(t) + c1 r1 [Pi

Y
(t) - Xi

Y
(t)] + c2 r2 [Pg

Y
(t)-Xi

Y
(t)], i=1...N.                            (10) 

 

where r1 and r are uniformly distributed random variables in the range of [0,1] , 0.4 ≤ w(t) ≤ 0.9 

is the inertia weight, c1 and c2 are the weighting factors of the stochastic accelerations pulling 

the agents towards their final positions and it rang is [0,4]. The next particle position in the 

search space is obtained using the following equations: 

 

Xi(t+1) =Xi(t)+Vi
X
(t+1).                                                                                                              (11) 

 

Yi(t+1) =Yi(t)+Vi
Y
(t+1).                                                                                                              (12) 

        Pseudocode that shows the steps of the standard PSO algorithm works illustrated in Fig. 1.  

3.2.2 MOPSO Algorithm  

        Mostly, a single condition used by researchers to generate an optimal path, such as the time 

required by a mobile robot to reach the target or minimum path length. But, in practice, several 

conditions must be meets to make the path feasible, such as safety, energy consumption, 

smoothness, etc. 

        An optimal path for single criterion does not mean that all the other criteria are satisfied, 

Fujimura, 1996, As an example, an energy consumption dose not desired at the expense of 

shortest path along the path. 

        So, in multi-objective PSO (MOPSO) algorithm the target is to find a set of different 

solutions by modifying the original scheme. Three main concepts must be considered when 

extending PSO to MOPSO. These concepts are Dehuri, et al., 2008: 

 How to choose the leaders from particles with a view to give priority to non-dominated 

solutions over those that are dominated? 

 How to keep a non-dominated solution that be found within the search process with a 

view to give a report solution that is non-dominated with respect to all the past agents and 

not only with respect to the current one? 

 How to save the diversity in the swarm with a view to avoid convergence for a single 

local solution? 

        Pseudocode that shows the procedure of the standard MOPSO algorithm works presented in 

Fig. 2. Italics are used in Fig. 2 to clarify the difference process between MOPSO and PSO 

algorithms. 

3.2.3 Multi-objective approaches   

       When the optimization problem contains more than one objective function, the mission of 

finding one optimal solutions or more is known as multiple objective optimization. The common 

methods that are used to deal with multiple objective optimization are: weighted sum and pareto 

front 

1. Weighted Sum Approach 

       The weighted sum method combines all multiple objective functions into one scalar, 

composite objective function using the weighted sum, Yang, 2014. 
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f(x) = ∑         
 

    
.                                                                                                           (13) 

 

       The important matter in specifying the weighting coefficient, W = (W1, W2, …, Wm) because 

the strongly solution depends on the selection of W. Obviously, these weights have been positive, 

satisfying ∑      
       Wm ∈ [0,1]. 

2. Pareto Dominance and Pareto Optimality 

       In a pareto set, a solution back to the pareto set, if there is no other solution can improve at 

least one objective without degrading on any other one from the objective. In the context of 

Multi-Objective Optimization (MOO), formally, a decision vector  ⃗  ∈ Ω is said to pareto 

dominate vector    ∈ Ω, in a minimization context, if and only if: 

111111 

   ∈ {      }     ⃗             

       ∈  {      }      ⃗                                                                                                               (14)                                                    

 
       In the context of Multi-Objective Optimization MOO, Pareto dominance is used to compare 

and rank decision vectors:   ⃗  dominating    in the Pareto sense means that  ⃗   ⃗   is either the same 

or better than  ⃗      for all objectives, and there is at least one objective function for which  ⃗   ⃗   

is strictly better than  ⃗      Yang, 2014. 

4. PROPOSED AMOPSO ALGORTHIM 

       In this paper, an adaptive approach is proposed to adjust the particles velocity and position 

to overcome the slow convergence problem that emerged in Standard PSO (SPSO) algorithm. 

       Thus, in the APSO, the particle position is updated such that the highly fitted particle moves 

slowly when compared to the lowly fitted particle. Therefore, in order to achieve the promising 

updating, the following particles' parameters should be adapted according to their objective 

function values, Humadi, et al., 2013: 

1. The adaptive inertia weight factor (AIWF) wi
t
, is proposed to find out a compromised 

AIWF that satisfies both exploration (global search) and exploitation (local search). The 

AIWF is determined as in Eqs. (15 & 16). 

2. The adaptive acceleration coefficients (AACs) c
t
1,i and c

t
2,i they are used to award the 

efficient particle that has high fitness and punishes the not competent one. These AACs 

are formulated as in Eqs. (17, 18, 19, 20, 21 & 22). 

3. The adaptive random numbers (ARNs) r
t
1,i and r

t
2,i, are proposed to increase the 

movement impact on the third term (swarm) and decrease the movement influence on the 

second term (individual) of  Eqs. (9) and (10). These ARNs are written as in Eqs. 

(23&24). 

 

Wi = (Wmax - Wmin) * (     
 
            

           * logTmax (Ti + 1)) + Wmin.                    (15) 

 

Wi = (Wmax-Wmin) * L * logTmax (Ti +1) + Wmin.                                                     (16) 
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C1 decrease from 1.5 ~ 0.5, C2 increase from 1.5 ~ 2.5 

 

C1 = Z + L * 
  

    
                                                                                                (17) 

 

C2 = Z + L * 
  

    
.                                                                                                (18) 

 

C1 decrease from 1.5 ~ 0.5, C2 decrease from 1.5 ~ 0.5 

 

C1 = Z - L * 
  

    
.                                                                                                 (19) 

 

C2 = Z - L * 
  

    
                                                                                                   (20) 

 

C1 decrease from 1.5 ~ 0.5, C2 increase from 1.5 ~ 2.5 

 

C1 = Z - L * 
  

    
 .                                                                                                 (21) 

 

C2 = Z + L * 
  

    
.                                                                                                 (22) 

 

r1 = rand1 * L * 
  

    
.                                                                                            (23) 

 

r2 = rand2 * L * 
  

    
.                                                                                            (24) 

 

where, Wi must be between (0.4 and 0.9)  

 0.4 when the first part of the Eqs. (15 & 16) equal to zero 

 0.9 when the (     
 
            

           * logTmax (Ti + 1)) equal to one 

 0.9 when the L * logTmax (Ti +1) equal to one 

 0.4 ~ 0.9 when (     
 
            

           * logTmax (Ti + 1)) not equal to zero or one 

 0.4 ~ 0.9 when L * logTmax (Ti +1) not equal to zero or one 

Z = Constant = 1.5 

Ti = Current iteration 

Tmax = Maximum number of iterations  

L must be in this range 0 ≤ L ≤ 1 

 M = 
 

 
 * ∑        

    

 V
2
 = 

 

   
 * ∑        

 

   
   2

 

 Y = 
          

 
 

 L =       
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rand1 & rand2 = random number between (0 ~ 1) 

So, in this paper four AMOPSO cases are simulated, these cases are listed in Table 1. 

5. SIMULATION RESULTS AND DISCUSSION 

5.1 Simulation Parameter Settings 

       The following parameters of the AMOPSO path planning algorithm have been used in the 

experiment: N = 8, maximum number of iterations tmax=120, initial velocities vx
i 
= random and 

vy
i
 = random, acceleration constants 0.5 ≤ c1 ≤ 2.5 and 0.5 ≤ c2 ≤ 2.5 and inertia weight wmin ≤ w 

≤ wmax, wmin = 0.4 and wmax = 0.9. 

       The Matlab2014a programming language used to implement the simulation code for path 

planning and executing on the system with 2.60GHz CPU and 2.0G RAM. 

 

5.2 Benchmark Test Functions 

       Several unimodal and multimodal benchmark functions have been adopted from, 

Vesterstrom and Thomsen, 2004. The list of the test functions and some of their characteristics 

can be seen in Table 2 and Table 3. In the Table 2, the “Range” column gives the defined range 

of the parameter and the “dim” column shows the number of dimensions used for each function 

and in the Table 3 “Min. & Av.” column, the first value represents the minimum of optimal 

solution and the second one represents the average of optimal solution that obtained over 100 

runs are given. Functions f1 ~ f3 are unimodal and f4 ~ f6 multimodal.  

       The function f1 is the Sphere function: 

f1(x) = ∑   
     i

2
.                                                                                                                      (25) 

       The function f2 is the Quadric function: 

f2(x) = ∑  
 

     
∑   
     j

2 
)
2
.
        

                                                                                            
     

 (26) 

       The function f3 is the Quadric Noise function: 

f3(x) = ∑    
     i

4
 + random (0,1).                                                                                           (27) 

       The function f4 is the Rastrigin function: 

f4(x) =  ∑   
 

     i
2
 – 10 cos (2πxi) +10].                                                                                 (28) 

       The function f5 is the Ackley function: 

f5(x) =            √
 

 ∑   
 

     
 
       (

 

    ∑   
           

)                                     (29) 

       The function f6 is the Griewank function: 

f6(x) = 1/4000 ∑   
     i

2 
- ∏     

     (xi/√  ) +1.                                                                      (30)   

 

       The initialization equation for x in the range of search space: 

 

x = (b – a) * random (0,1) + a.                                                                                               (31) 
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where a is the maximum limit in the search space and b is the minimum limit in the search space. 

       In SPSO, c1=c2=2, r1=random (0,1), r2=random (0,1), wmin = 0.4 and wmax = 0.9, the inertia 

weight equation, Rao, 2009: 

 

w(i)=       
          

    
                                                                                                    (32) 

 

5.3 Simulation Results and Discussion 

5.3.1 Case study 1: environment with 2 obstacles and 2 danger zones 

       In this section, the environment used for the planning is a 11*11 meter, all obstacle positions 

are listed in Table 4 and result in Table 5. Starting point is (0,0) and target point is (10,10). The 

experiment has achieved a feasible solution; the best trajectory achieved by AMOPSO1 is 

illustrated in Fig. 3, best trajectory achieved by AMOPSO2 is shown in Fig. 4, best trajectory 

achieved by AMOPSO3 is depicted in Fig. 5. While the best trajectory achieved by AMOPSO4 

is shown in Fig. 6. A best distance achieved by Hybrid PSO-GSA in, Purcaru, et al., 2013, is 

illustrated in Fig. 7. By comparing the results achieved in Figs. 3, 4, 5, 6 and Fig. 7 the 

AMOPSO1, AMOPSO2, AMOPSO3 and AMOPSO4 has a maximum distance from the danger 

zone and minimum length to reach the target than Hybrid PSO-GSA, according to this if multi 

robot used in the arena the AMOPSO give better results than Hybrid PSO-GSA. The results 

obtained from Pareto are better than the results obtained from weighted sum. In pareto, the 

average of maximum distance from danger zone is 40.04 and the average for minimum path is 

14.72 while in weighted sum, the average of maximum distance from danger zone is 35.1 and the 

average for minimum path is 14.44. 

5.3.2 Case study 2: Multi-robot in environment with 5 obstacles 

       In this section, the environment used for the planning is a10*10 meters, all results are listed 

in Table 6. The experiment has achieved a feasible solution; the global path was achieved by 

AMOPSO is illustrated in Fig. 8, In the graph, the start point of robot 1 is [0,0] and the stop point 

is [10, 10], the start point of robot 2 is [2.5, 0] and the stop point is [2.5, 10], the start point of 

robot 3 is [7.5, 0] and the stop point is [2.5, 10], the start point of robot 4 is [0, 2.5] and the stop 

point is [7.5, 10], the start point of robot 5 is [0, 7.5] and the stop point is [10,0]. Best distances 

achieved by Immune Ant Colony Optimization Network Algorithm in, Hao, and Xu, 2014, are 

listed in Table 7. By comparing the results achieved in Tables 6 and 7 the AMOPSO1 has a 

minimum time to reach the target than Immune Ant Colony Optimization Network Algorithm 

and pareto reach the target in 44.8 times less than weighted sum and 562 times less than Immune 

Ant Colony Optimization Network Algorithm. 

 

6. CONCLUSION 

       In this paper, two case studies for path planning model based on AMOPSO is developed to 

enhance the performance of the multi-robot path planning. In the first case, the algorithm 

generates an optimal collision free trajectory in static environments that can contain known 

multiple obstacles and multiple danger zones and the second case improve the ability of multiple 

robot system to reach the shortest way. The algorithm achieved by Matlab 2014a and has been 

applied on two maps, first map, including two obstacles and two danger zones and the second 

including different barriers. The result of first case shows that the AMOPSO generates an 
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optimal path by maximizing the distance between the generated paths and the danger zones that 

exist in the environment and also minimizing the length of the path that needs by the mobile 

robot to reach the target, these results are better than the results achieved by Hybrid PSO-GSA. 

And the result for the second one shows that AMOPSO could be suit for a multi-robot system to 

find the shortest path and without collision between them. These results show that the AMOPSO 

has shortest time compared with time achieved by Immune Ant Colony Optimization Network 

Algorithm. 
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Figure 1. Pseudocode of the standard PSO algorithm. 

 

 
Figure 2. Pseudocode of the standard MOPSO algorithm. 



Journal of Engineering Volume   22  July    2016 Number 7 
 

 

177 

 

 

Figure 3. Best results achieved by AMOPSO1. 

 

Figure 4. Best results achieved by AMOPSO2. 
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Figure 5. Best results achieved by AMOPSO3. 

 

 

Figure 6. Best results achieved by AMOPSO4. 
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Figure 7. Best results achieved by Hybrid PSO-GSA, Purcaru, et al., 2013. 

 

Figure 8. Best results achieved for case study 2. 
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Table1. AMOPSO cases 

Name W Equation C1 & C2 Equation r1 & r2 Equation 

AMOPSO1 15 17 & 18 23 & 24 

AMOPSO2 15 19 & 20 23 & 24 

AMOPSO3 16 19 & 20 23 & 24 

AMOPSO4 16 21 & 22 23 & 24 

 

Table 2. Different benchmark functions on the SPSO and AMOPSO have been tested. 

Benchmark fun. Dim Range 

f1 30 [-100,100]
 D

 

f2 30 [-100,100]
 D

 

f3 30 [-1.28,1.28]
 D

 

f4 30 [-5.12,5.12]
 D

 

f5 30 [-32,32]
 D

 

f6 30 [-600,600]
 D

 

 

Table 3. Results for benchmark functions based on the SPSO and AMOPSO1, AMOPSO2, 

AMOPSO3 and AMOPSO4 algorithms. 

f SPSO AMOPSO1 AMOPSO2 AMOPSO3 AMOPSO4 

 Min. & Av. Min. & Av. Min. & Av. Min. & Av. Min. & Av. 

f1 0.16239 

0.26797 

0.020316 

0.020322 

0.022755 

0.02276 

0.020315 

0.020318 

0.021744 

0.021748 

f2 0.61426 

0.71556 

0.063806 

0.063186 

0.066616 

0.066639 

0.060719 

0.060745 

0.06022 

0.060259 

f3 0.20384 

8.4377 

0.07885 

0.087416 

0.065096 

0.070362 

0.072637 

0.081607 

0.031205 

0.048147 

f4 0.16376 

2.1796 

0.044989 

0.080379 

0.078139 

0.09372 

0.020808 

0.02131 

0.019634 

0.021526 

f5 0.21717 

0.30033 

0.018962 

0.019161 

0.020767 

0.020981 

0.021648 

0.02187 

0.021819 

0.022042 

f6 0.20413 

0.36459 

0.027966 

0.028254 

0.027475 

0.0281 

0.028591 

0.028887 

0.028807 

0.029154 
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Table 4. Coordinates of obstacles and danger zone for the case study 1. 

 

 

 

 

 

Table 5. Result for case study 1. 

Algorithm 
Max. distance from danger 

zone 

Min. distance from start to target 

position 

 Pareto Weighted Sum Pareto Weighted Sum 

AMOPSO1 46.251 39.963 14.725 14.437 

AMOPSO2 38.472 33.893 14.72 14.431 

AMOPSO3 37.867 33.38 14.729 14.439 

AMOPSO4 37.576 33.165 14.724 14.436 

 

Table 6. Result for case study 2. 

Robot number 
Min. distance from start to 

target position 
Time 

 Pareto Weighted Sum Pareto Weighted Sum 

Robot 1 14.7 14.7  

 

0.0011602 

 

 

 

0.051955 
Robot 2 10.041 10.041 

Robot 3 10.308 10.308 

Robot 4 10.889 10.889 

Robot 5 12.571 12.571 

 

Table 7. Result for Immune Ant Colony Optimization Network Algorithm, Hao, and Xu, 2014. 

Robot number 
Min. distance from start to 

target position 
Time 

Robot 1 14.1728  

 

0.6525 
Robot 2 10.0423 

Robot 3 10.3078 

Robot 4 10.9045 

Robot 5 12.5720 

 

 

 

 

Obstacles Center Position 

1 1.2,1 

2 5.5,5.5 

Danger zone Position 

1 1,4 

2 2,5.5 


