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ABSTRUCT 
The one-dimensional, spherical coordinate, non-linear partial differential equation of 

transient heat conduction through a hollow spherical thermal insulation material of a 
thermal conductivity temperature dependent property proposed by an available empirical 
function is solved analytically using Kirchhoff’s transformation. It is assumed that this 
insulating material is initially at a uniform temperature. Then, it is suddenly subjected at 
its inner radius with a step change in temperature. Four thermal insulation materials were 
selected. An identical analytical solution was achieved when comparing the results of 
temperature distribution with available analytical solution for the same four case studies 
that assume a constant thermal conductivity. It is found that the characteristics of the 
thermal insulation material and the pressure value between its particles have a major 
effect on the rate of heat transfer and temperature profile. 
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 كرويةمادة  خلال حل تحليلي لتوصيل الحرارة المتغير مع الزمن
 توصيل حراري متغير مع درجة الحرارة اتذ مجوفة عازلة للحرارة

 
 د. مشعل عبد الأمير عبد الكريم

 مدرس في قسم الهندسة الميكانيكية
كلية الهندسة/ الجامعة المستنصرية  

 الخلاصة
المتغير مع لانتقال الحرارة  ة الأحادية البعد ذو الإحداثيات الكرويةتم حل المعادلة التفاضلية الغير خطي  

خاصية توصيل حراري متغير مع درجة الحرارة مأخوذة من  اتعازلة للحرارة ذكروية مجوفة خلال مادة  الزمن
رجة حرارة تم افتراض إن هذه المادة العازلة كانت في البداية بدمتوفرة باستخدام تحويل كرشوف. معادلة مختبريه 

الداخلي. تم اختيار  هابقيمة ثابتة عند نصف قطرفي درجة الحرارة ومنتظمة وثابتة. ثم تعرضت إلى تغير مفاجئ 
حل تحليلي مطابق عند المقارنة مع نتائج الحل التحليلي لتوزيع درجات  تم التوصل إلى .مختلفة مواد عازلة ةأربع

العازلة للحرارة ذو خاصية توصيل حراري ثابتة ولا تتغير مع درجة  المادة إنبافتراض للحالات الأربعة الحرارة 
تأثير مباشر على مقدار كمية خواص المادة العازلة للحرارة وقيمة الضغط بين جزيئاتها له  إنتم استنتاج الحرارة. 

 الحرارة المنتقلة وتوزيع درجات الحرارة.
 

 .، تحويل كرشوفمتغير مع الزمنحليلي ، توصيل حراري ، تحل غير خطية ، معادلة تفاضلية  الكلمات الرئيسية:
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1. INTRODUCTION 
The characteristics of the thermal insulating 
materials that are used in air separation 
plants, storage tanks, transfer lines and 
transport vessels for cryogenic liquids and 
liquefied hydrocarbons affect the 
performance of these applications. Most of 
these thermal insulations operate under 
atmospheric or medium vacuum pressure, 
and it use either Perlite (a loose granulated 
material of volcanic glass origin heated at 
850-900 Co to vaporize the high water 
content that is trapped in its structure and 
allowing its volume to be porous and 
expanded up to 167 −  times its original 
volume), or mineral fibers in the form of 
shells or mats (Kropschot and Burges, 
1962), (Kaganer, 1969) and (Verschoor and 
Greebler, 1952). For specific applications, 
when only a small space is available for 
thermal insulation, a system of multilayered 
foils is used in a high vacuum. It is preferred 
in the field of transfer lines of liquid 
hydrogen and liquid helium as well as 
components in the space technology and in 
the field of physical basic experimental 
research (Hoffman, 2006). A common 
property of all cryogenic thermal insulating 
materials is that it operates under high 
temperature deference between atmospheric 
air and cryogenic fluid temperatures. 
Therefore, filling it inside a vacuumed leak 
tight annular space separating the 
atmosphere from cryogenic fluid vessels is 
necessary to avoid the drop in its efficiency 
due to the penetration and freeze of water 
vapor and carbon dioxide. 

The sudden filling of an empty 
cryogenic liquid storage tank initially at 
atmospheric temperature with a cryogenic 
liquid at its saturation temperature will 
initiate a sudden high temperature difference 
between the terminals of the annular space 
containing the thermal insulating material. 
This high temperature difference is behind 
the dependence of thermal conductivity of 
the thermal insulation material on its 
temperature. In addition, it will initiate a 
potential for the evaporation of cryogenic 
liquid due to the transient heat transfer  

 
inside the cryogenic liquid storage tank. This 

energy loss is of a great economic interest 
especially when the size of cryogenic liquid 
storage tank is relatively big. 

(Zivkovic et al, 2010) have used the 
PAK-T software package, which is based on 
the finite element method using the Galerkin 
approach to solve the non-linear transient 
two-dimensional heat conduction through an 
insulation wall of tank for transportation of 
liquid aluminum. The objective was to 
optimize, under certain boundary conditions, 
the thickness of the insulation material 
which its thermal properties is a temperature 
dependent. 

(Singh, Jain and Rizwan-Uddin, 2008) 
presented an analytical double-series 
solution for transient heat conduction in 
polar coordinates (2-D cylindrical) for 
multi-layer domain in the radial direction 
with spatially non-uniform but time-
independent volumetric heat sources. 
Inhomogeneous boundary conditions of the 
third kind are applied in the direction 
perpendicular to the layers. Only 
homogeneous boundary conditions of the 
first or second kind are applicable on θ = 
constant surfaces. 

(Jain, Singh and Rizwan-uddin, 2010) 
presented an analytical series solution for 
transient boundary-value problem of heat 
conduction in θ−r spherical coordinates. 
The proposed solution is applicable in 
spherical or part-spherical multilayer 
geometries in which temperature does not 
depend upon the φ  direction such as: 
spherical cone, hemisphere, spherical wedge 
or full sphere. Spatially non-uniform, (only 

θandr -dependent), time independent 
volumetric heat sources may be present in 
the layers. Inhomogeneous, time 
independent, θ -dependent boundary 
conditions of the first, second or third kind 
may be applied on the inner and outer radial 
boundaries, and only homogenous boundary 
conditions of the first or second kind may be 
applied on the θ -direction boundary 
surfaces. 
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(Amiri, Kayhani and Norouzi, 2012) 
have investigated analytically the unsteady 
heat conduction in composite fiber winded 
cylindrical shape laminates. This solution is 
valid for the most generalized boundary 
conditions that combine the effects of 
conduction, convection and radiation both 
inside and outside the cylindrical composite 
laminates. The Laplace transformation has 
been used to change the problem domain 
from time into frequency. An appropriate 
Fourier transformation has been derived 
using the Sturm-Liouville theorem. Due to 
the difficulty of applying the inverse 
Laplace transformation, the Meromorphic 
function method is utilized to find the 
transient temperature distribution in 
laminate. 

In this paper, the one-dimensional, 
spherical coordinate, non-linear partial 
differential equation of transient heat 
conduction through a hollow spherical 
thermal insulation material of a thermal 
conductivity temperature dependent 
property proposed by an available empirical 
function ( )cbTak += , (Hoffman, 2006), is 
solved analytically using Kirchhoff’s 
transformation. This insulating material is 
initially at a uniform temperature ( )iT . Then, 
it is suddenly subjected at its internal radius 
( )1Rr =  with a constant temperature 
( )oT , ( )io TT < . Four thermal insulation 
materials were selected, (Hoffman, 2006), 
each of outside radius of ( )m1 . The first is 
Perlite of thickness ( )mm500  with a 
characteristic mean particle diameter of 
( )mmdm 5.0=  and density of 
( )3/64 mkg=ρ  at ( )Pa510  atmospheric 
pressure. The second is Perlite of thickness 
( )mm300 with a characteristic mean particle 
diameter of ( )mmdm 5.0=  and density of 
( )3/50 mkg=ρ  at a gas pressure ( )Pa1.0≤ . 
The third is Microglass spheres of thickness 
( )mm200  with a characteristic mean particle 
diameter of ( )mmdm 1.0=  and density of 
( )3/225 mkg=ρ  at a gas pressure ( )Pa1≤ . 

The fourth is micro fine Fiberglass mats of 
thickness ( )mm100  with a mean fiber 
diameter of ( )mdm µ143.1=  and density of 
( )3/240 mkg=ρ  at a gas pressure ( )Pa1≤ . 
To validate the results, the temperature 
distribution will be compared with an 
available analytical solution for the same 
four case studies that assume a constant 
thermal conductivity. A summery table will 
present the general analytical solution for 
the history of temperature profiles and heat 
transfer rates of any size and type of thermal 
insulation material that is subjected at 
( )1Rr =  with a constant temperature ( )oT , 
( )io TT < . 
 
2. STATEMENT OF THE 

PROBLEM 
Consider a spherical storage tank of 

liquefied cryogenic fluid is thermally 
insulated with a hollow spherical super 
insulating material of temperature dependent 
thermal conductivity proposed by an 
available empirical function ( )cbTak += , 
and of inside radius ( )1R  and outside 
radius ( )2R . This insulating material is 
initially at a uniform temperature ( )iT . Then, 
it is suddenly subjected at ( )1Rr =  with a 
constant temperature ( )oT , ( )io TT <  as shown 
in Fig. 1. It is required to find the transient 
temperature distribution of the insulating 
material and the rate of heat transfer. 
 
3. ANALYTICAL SOLUTION 

To solve this problem, the following 
assumptions are considered: 

 
1. The temperature is a function of ( )tr,  

only, (Transient, One-dimensional 
solution), and no heat transfer in 
( )φθ and  directions. 
 

2. The temperature dependant thermal 
conductivity of the insulating material 
is proposed by an available empirical 
function ( )cbTak += . 
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3. The mean specific heat capacity ( )mC  
and the density ( )ρ  of the insulating 
material are temperature independent 
properties.  

4. The initial temperature of the 
insulating material is constant ( )iT . 

5. The insulating material is suddenly 
subjected at ( )1Rr =  with a constant 
temperature ( )oT  and held at its initial 
temperature value ( )iT  at its outside 
surface at ( )2Rr = . 

6. No convection or radiation heat 
transfer at the boundaries. 

7. No internal heat generation. 
 
 Since all of the thermal properties of the 
insulating material are temperature 
independent except for the thermal 
conductivity, which is a temperature 
dependent property, and there is no heat 
generation and no convection or radiation 
heat transfer at the boundaries. Therefore, 
the spherical coordinates, one-dimensional, 
non-linear transient heat conduction partial 
differential equation, with its initial and 
Dirichlet boundary condition are given as 
follows: 
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To linearize the non-linear partial 

differential equation in system (1), a 
corrected Kirchhoff’s transformation in 
accordance to the zero lower limit of the 
absolute temperature scale, as shown in Fig. 
2, is used as follows: 
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 Substituting eq. (2) into system (1) and 
rearranging yields; 
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To homogenize system (3), assume; 
 

iψψβ −=                   (4) 
 
Substitute eq. (4) into system (3) and 
rearranging, yields; 
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To eliminate the ( )2r term in system (5), 
assume; 
 

r
θβ =                    (6) 

 
Substitute eq. (6) into system (5) and 
rearranging, yields; 
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To solve system (7), assume the following: 
 
( ) ( ) ( )trrtr ,, 21 θθθ +=                  (8) 

 
( ) 211 crcr +=θ                   (9) 

 
Substitute the boundary conditions of 
system (7) into eq. (9) and rearranging, 
yields; 
 

( )
12

2
11 RR

rRRr i −
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= µθ                (10) 

 
Assume; 
 

( ) ( ) ( )trRtr τθ =,2                (11) 
 
Substituting eq. (11) into system (7) and 
using the method of separation of variables, 
then rearranging, yields; 
 
( ) ( ) ( )rcrcrR λλ sincos 21 +=               (12) 

 
( ) tmect αλτ

2
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Substitute eq. (10), (12) and (13) into eq. 
(8), yields; 
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Substitute the boundary condition of system 
(7) into eq. (14) and rearranging, yields; 
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Substitute eq. (16) and (17) into eq. (15), 
yields; 
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Since; 
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Assume; 
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To normalize eq. (18), assume the 
following: 
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Hence, substituting eq. (19) into eq. (18) and 
rearrange, yields the general analytical close 
form solution of unsteady temperature 
distribution through the spherical thermal 
insulation material as follows; 
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The unsteady heat transfer through the 
spherical thermal insulation material is 
given as: 
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Differentiating eq. (18) and rearranging, 
yields: 
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Substitute eq. (22) and (23) into eq. (21), 
and rearrange, yields: 
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To normalize eq. (24), substituting eq. (19) 
into (24) and rearrange, yields: 
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And the heat transfer at the inner surface of 
the thermal insulation material ( )0* =r  is 
given as: 
 
















+








−











−= ∑∫

∞

=









−

−

1

1
1

2

21
2)(4

n

FonT

T
o edTTkRq

o

i

ξ
π

ξ
ξ

π

 
The general analytical close form solution of 
unsteady heat transfer through the spherical 
thermal insulation material is given as 
follows: 
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3.1 Case study (1): mkTk =)(  
 
3.1.1 Temperature profile: 
 Substitute the value of ( )mk  into eq. 
(20) and rearranging, yields; 
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3.1.2 Heat transfer: 
 Substitute the value of ( )mk  into eq. 
(25) and rearranging, yields; 
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3.2 Case study (2): cbTaTk +=)(  
 
3.2.1 Temperature profile: 
 Substitute the value of 
( )cbTaTk +=)(  into eq. (20) and 
rearranging, yields; 
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Where: 
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To solve eq. (26), assume; 
 

( ) 1

1
+

+
+= cT

c
baTTg  

 
( ) ( )[ ] ( ) ( )[ ]ioi TgTgTgTgf −−−= η        (27) 

 
The root T of eq. (27) is found using the 
approximate numerical iterative Newton 
Method, (Gerald, 1989); 
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3.2.2 Heat transfer: 
 Substitute the value of 
( )cbTaTk +=)(  into eq. (25) and 
rearranging, yields; 
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4. THERMAL CONDUCTIVITY 
 The dependence of thermal 
conductivity on temperature is suggested by 
the empirical function ( )cbTak += , 
(Hoffman, 2006). The values of ( )cba ,,  for 
the four selected thermal insulation 
materials are given in Table 1. This 
empirical function is valid in a temperature 
rang of ( )K40077 − . The thermal 
conductivity of the first insulation material, 
Perlite in air at ( )Pa510  atmospheric 
pressure, is linearly dependent on 
temperature, (Perlite Institute Thermal Data 
Sheet, 1970). In the literatures (Christiansen 
and Hollingworth, 1958) and (Christiansen, 
Hollingworth and Marsh, 1959), 
measurements of the thermal conductivity of 
micro fine Fiberglass mats are published. 
This material consists of fibers type ‘AA’ of 
Owens-Corning Fiberglass Corporation. The 
behavior of the thermal conductivity and its 
mean value for each of these thermal 
insulating materials for a temperature range 
of ( )K30077 −  is shown in Fig. 3. 
 
 
 

 
5. SPECIFIC HEAT CAPACITY 

Each of the four selected thermal 
insulation materials is originally made from  

 
Quartz glass. Therefore, the temperature 
dependence of specific heat capacity of 
Quartz glass for a temperature range of 
( )K30077 −  is given in Table 2, (Corruccini 
and Gniewek, 1960). In order to evaluate the 
mean value of specific heat capacity ( )mC  of 
Quartz glass, its relation with temperature is 
represented using a 4th Degree polynomial fit 
as shown in Table 3 and it is plotted with its 
mean value in Fig. 4. 

 
6. THERMAL DIFFUSIVITY 
 The behavior of thermal diffusivity 
and its mean value for each of the four 
selected thermal insulation materials for a 
temperature range of ( )K30077 −  is shown 
in Fig. 5. 
 
7. RESULTS AND DISCUSSION 
 Consider four empty spherical storage 
tanks of liquid nitrogen for instance. Each of 
these tanks is thermally insulated with a 
hollow spherical super insulating material of 
outside radius ( )mR 12 =  and initially 
at ( )KTi 300= . The first thermal insulation 
material is Perlite of thickness ( )mm500  
with a characteristic mean particle diameter 
of ( )mmdm 5.0=  and density of 
( )3/64 mkg=ρ  at ( )Pa510  atmospheric 
pressure. The second is Perlite of thickness 
( )mm300 with a characteristic mean particle 
diameter of ( )mmdm 5.0=  and density of 
( )3/50 mkg=ρ  at a gas pressure ( )Pa1.0≤ . 
The third is Microglass spheres of thickness 
( )mm200  with a characteristic mean particle 
diameter of ( )mmdm 1.0=  and density of 
( )3/225 mkg=ρ  at a gas pressure ( )Pa1≤ . 
The fourth is micro fine Fiberglass mats of 
thickness ( )mm100  with a mean fiber 
diameter of ( )mdm µ143.1=  and density of 
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( )3/240 mkg=ρ  at a gas pressure ( )Pa1≤ . 
The thermal conductivity of the four 
selected thermal insulation materials is 
temperature dependent and is proposed by 
an available empirical function 
( )cbTak += , (Hoffman, 2006). The values 
of ( )cba ,,  are given in Table 1. Then, each 
of these tanks is suddenly filled with 
saturated liquid nitrogen at ( )KTo 77= . 
Therefore, each of the four selected thermal 
insulation materials is subjected at ( )1Rr =  
with a constant temperature of ( )KTo 77= . 
 Fig. 6 shows the temperature profiles for 
each of the four selected thermal insulation 
materials for two case studies. The first 
considers a constant mean value of thermal 
conductivity ( )mk  for the temperature 
range ( )K30077 − . The general analytical 
close form solution of the first case study is 
identical to the solution of (Carslaw and 
Jaeger, 1959) using the same assumptions. 
Therefore, the validation of the analytical 
solution is accomplished perfectly. The 
second case study is for a temperature 
dependent thermal conductivity proposed by 
an available empirical function 
( )cbTak += , (Hoffman, 2006). Each 
profile of the second case study was 
converged after a maximum of 5 iterations 
for a temperature residual value of 
( )oC6101 −× . Table 4 shows the summery of 
the present work analytical solutions for 
both case studies. 
 Fig. 7 shows the heat transfer profiles 
for each of the four selected thermal 
insulation materials. It is clear that the 
thermal insulation material that has the 
lowest value of thermal conductivity has the 
lowest heat transfer value. Table 4 shows 
the summery of the present work analytical 
solutions. 
 For both Fig. 6 and 7, it is clear that the 
characteristics of the thermal insulation 
material and the pressure value between its 
particles have a major effect on the rate of 
heat transfer and consequently the 
temperature profile. For instance, the 

dominant heat transfer mode when choosing 
Perlite at ( )Pa510  atmospheric pressure is 
by heat conduction of the interstitial gas 
between the particles, whereas the heat 
transfer by radiation is negligible. When the 
pressure within a thermal insulation material 
is lowered to a value, the percentage of heat 
transfer by heat conduction of the interstitial 
gas between the particles becomes 
negligibly small when compared with the 
percentage heat transfer by radiation and 
conduction over the bulk material. The gas 
pressure, at which this is reached, depends 
on the characteristic diameter of the thermal 
insulation material. For Perlite with a 
characteristic mean particle diameter 
of ( )mmdm 5.0= , a gas pressure 
of ( )Pa1.0≤  is sufficient, for Microglass 
spheres with a characteristic mean particle 
diameter of ( )mmdm 1.0=  and for micro fine 
Fiberglass with a mean fiber diameter of 
( )mdm µ143.1= , it is ( )Pa1≤  respectively. 
 Figures 8 and 9 shows the time history 
of temperature profiles and rate of heat 
transfer for each of the four selected thermal 
insulation materials for a temperature 
dependent thermal conductivity proposed by 
an available empirical function 
( )cbTak += , (Hoffman, 2006). 
 The general analytical solution for the 
history of temperature profiles and heat 
transfer rates of any size and type of thermal 
insulation material that is subjected to the 
assumptions that are listed in article (3) is 
given in Table 4 and is plotted in Fig. 10 
and 11 respectively. 
 
8. CONCLUSIONS 
 The optimum selection of thermal 
insulating material for a specific spherical 
storage tank of liquefied cryogenic fluid is 
that with a minimum heat leakage 
(minimum boil off rate of cryogenic fluid), a 
minimum amount of insulating material 
(minimum cost) and a maximum storage 
capacity of the storage tank (minimum 
thickness of the thermal insulating material). 
This optimum selection is accomplished 
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when choosing the micro fine Fiberglass 
mats when compared with the three other 
thermal insulating materials. On the other 
hand, it is found that the characteristics of 
the thermal insulation material and the 
pressure value between its particles have a 
major effect on the rate of heat transfer and 
temperature profile. The dominant mode of 
heat transfer when choosing a specific 
thermal insulation material at atmospheric 
pressure is by heat conduction of the 
interstitial gas between its particles, whereas 
the heat transfer by radiation is negligible. 
When the pressure within a thermal 
insulation material is lowered to a vacuum 
level, the percentage of heat transfer by heat 
conduction of the interstitial gas between its 
particles becomes negligibly small when 
compared with the percentage heat transfer 
by radiation and conduction over the bulk 
material.  
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NOMENCLATURE 
A Cross section area, m2 
C Specific heat Capacity, kJ/kg.K 
d Particle diameter, mm 
Fo Fourier number 
k Thermal conductivity, W/m.K 
q Rate of heat transfer, W 
r Distance along the r-direction, m 
R1, R2 Inner, outer radius, respectively, m 
T Temperature, K 

t Time, second 
 
GREEK SYMBOLS 
α Thermal diffusivity, m2/s 
β Area under the Kirchhoff’s 

transformation curve, W/m 
φ Dimensionless parameter 
η Dimensionless parameter 
λn Root values of equation (16), m-1 
µ Area under the Kirchhoff’s 

transformation curve, W/m 
θ Parameter, W 
ρ Density, kg/m3 
ξ Ratio of outer to inner radius 
ψ Area under the Kirchhoff’s 

transformation curve, W/m 
 
SUBSCRIPTS 
i   Initial 
m  Mean 
o  Inner surface 
 
SUPERSCRIPTS 
* Dimensionless sign 
** Arbitrary
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Table 1 Suggested empirical function and constant values for the selected thermal 

insulation materials, (Hoffman, 2006). 
 

 
Insulating material 

Empirical function ( )cbTak += , ( )KmW ./  
a  b  c  

Perlite in air 
Papmmdmkg m

53 10,5.0,/64 ===ρ  
 

31025.8 −×  
 

410165.1 −×  
 
0.1  

Perlite - vacuum 
Papmmdmkg m 1.0,5.0,/50 3 ≤==ρ  

 
4109112.1 −×  

 
12104757.3 −×  

 

 
678.3  

Microglass spheres – vacuum 
Papmmdmkg m 1,1.0,/225 3 ≤==ρ  

 
4107037.3 −×  

 
11104041.7 −×  

 
0158.3  

Fiberglass – vacuum 
Papmdmkg m 1,143.1,/240 3 ≤== µρ  

 
4107074.2 −×  

 
1110083.3 −×  

 
0.3  

 
 

Table 2 Data values of specific heat capacity for Quartz glass with temperature, 
(Corruccini and Gniewek, 1960). 

 
T (K) 50 100 150 200 250 300 

C (J/g.K) 0.095 0.21 0.41 0.54 0.65 0.745 
 
 

Table 3 Data values for a 4th degree polynomial fit of specific heat capacity for 
quartz glass with temperature. 

 

( ) ( )KkgJTTC n

n
n ./,

4

0
∑
=

= β  

0β  1β  2β  3β  4β  
2102.16667×  6.485582-  -2109.92778×  -4103.9926- ×  -7105.333×  
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Table 4 Summery of analytical solutions. 
Case 
study 

Thermal 
conductivity 

]./[ KmW  

Temperature profile 
][, KT  

Heat transfer 
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Fig. 8 History of temperature profiles. 
 
 

 
 
 
 
 
 
 
 
 



Mishaal Abdulameer Abdulkareem                  Analytical Solution of Transient Heat Conduction  
                                                                              Through a Hollow Spherical Thermal Insulation            

                                                               Material of a Temperature Dependant Thermal  
   Conductivity 

95 
 

 
 
 

 
 

 
 
 

Fig. 9 History of heat transfer profiles. 
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Fig. 10 History of temperature profiles. 
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Fig. 11 History of heat transfer profiles. 
 


