
Journal of Engineering Volume   19  January   2013        Number 1  

 

52 

 

SDPLL-Based Frequency Estimation of a Sinusoid in 
Colored Noise 

Asst. Prof. Nuha Abdul Sahib Alwan 
Department of Computer Engineering 

College of Engineering 
Baghdad University 

Email: n.alwan@ieee.org  

Asst. Lect. Zainab Hassan Fakhri 
Department of Computer Engineering 

College of Engineering 
Baghdad University 

Email: zainab.h.fakhri@gmail.com  
 

ABSTRACT: 

The problem of frequency estimation of a single sinusoid observed in colored noise is addressed. Our 
estimator is based on the operation of the sinusoidal digital phase-locked loop (SDPLL) which carries the 
frequency information in its phase error after the noisy sinusoid has been acquired by the SDPLL. We 
show by computer simulations that this frequency estimator beats the Cramer-Rao bound (CRB) on the 
frequency error variance for moderate and high SNRs when the colored noise has a general low-pass 
filtered (LPF) characteristic, thereby outperforming, in terms of frequency error variance, several existing 
techniques some of which are, in addition, computationally demanding. Moreover, the present approach 
generalizes on existing work that addresses different methods of sinusoid frequency estimation involving 
specific colored noise models such as the moving average (MA) noise model. An insightful theoretical 
analysis is presented to support the practical findings.  

Keywords: Sinusoidal digital phase-locked loop (SDPLL); Cramer-Rao bound (CRB); 
colored noise; frequency error variance; signal-to-noise ratio (SNR). 

 
تقدير التردد للموجة الجيبية في الضوضاء الملونة اعتماداً على حلقة اقفال الطورالرقمية 

 الجيبية
زينب حسن فخري. م.م  

 قسم هندسة الحاسبات
دجامعة بغدا/ آلية الهندسة   

نهى عبد الصاحب العلوان. م.أ  

 قسم هندسة الحاسبات
دجامعة بغدا / آلية الهندسة  

  :الخلاصة

ان المقدر المتبع يرتكز على عمل حلقة اقفال . هذا البحث يتناول مشكلة تقدير التردد للموجة الجيبية المفردة في وجود الضوضاء الملونة
ضاء بواسطة حلقة الطور الرقمية الجيبية التي تحمل معلومات التردد داخل خطأ الطور بعد الحصول على الموجة الجيبية المشوبة بالضو

وضحنا عن طريق برنامج محاآاة بالحاسبة ان مقدر التردد يتغلب على الحد الادنى لمحدد آريمر في خطأ التغير لنسب . اقفال الطور
الضوضاء المتوسطة والعالية عندما تكون خصائص الضوضاء الملونة تشبه الخصائص العامة لمرشح الترددات الوطئة -الى-الاشارة

اضافة الى ذلك . عن عدة تقنيات موجودة والتي يتطلب قسم منها عبأ حسابيا عاليا، مقاسا بصيغة خطأ التغير بالتردد، حسن الاداءوبذلك يت،
فان الطريقة الحالية يمكن اعتبارها تعميما للبحوث الحالية التي تتناول عدة طرق لتقدير التردد الجيبي تتضمن نماذج معينة للضوضاء 

.                                                                      نظري حدسي لدعم الننتائج العمليةوتم تقديم تحليل  .ذج المعدل المتحرك للضوضاءالملونة مثل نمو

–الطور الجيبية الرقمية؛ محدد آريمر؛ الضوضاء الملونة؛ خطأ التغير بالتردد؛ نسبة الاشارة حلقة اقفال : الكلمات الرئيسية
.الضوضاء–الى 
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1. INTRODUCTION 
Rapid frequency estimation of a sinusoid in the 
presence of noise is a problem that is frequently 
encountered in signal processing and 
communications with applications varying from 
radar, sonar, signal interception and detection, 
carrier synchronization and many others. Many 
methods of sinusoidal frequency estimation 
have been developed especially for the white 
noise case. The maximum likelihood (ML) 
estimator involving the location of the peak of 
the periodogram is well-known. The 
performance of the ML estimator in terms of 
estimator error variance achieves the CRB at 
high signal-to-noise ratios (SNR's), but at the 
expense of a large computational complexity, 
even when the fast Fourier transform (FFT) is 
used (Fu H. et al, 2007). The ML estimator is 
also a batch processing technique starting the 
processing only after all samples have been 
received (Richard Brown III D. et al, 2010). 
Subsequent to the introduction of the ML 
method, several fast and accurate sinusoidal 
frequency estimators in the presence of white 
noise have been reported (Kay S.,1989)  
attaining the CRB on variance for high enough 
SNR. 

Frequency estimation techniques driven by a 
frequency tracking loop such as the PLL have 
also been reported in the literature in the context 
of operation in a white noise environment 
(Sithamparanathan K., 2008). The advantage of 
such an approach is that the PLL acts as a 
dynamic band-pass filter (BPF) to track the 
frequency, which improves the SNR due to 
reduced bandwidth (BW) once the signal is 
acquired. This improvement in SNR certainly 
leads to an improvement in the frequency error 
variance for a given system. Indeed, it has been 
shown that such a frequency estimator using an 
arc-tan DPLL (Sithamparanathan K., 2008) 
beats the CRB for low numbers of estimation 
samples. The appeal of DPLLs is also evident in 
that they offer low-complexity sample-by-
sample operation suitable for real-time 
applications (Richard Brown III D. et al, 2010).  

In this paper, we improve on the work in 
(Sithamparanathan K., 2008) to include the case 
where the accompanying noise is colored. This 
case occurs in many applications and is 
definitely more practically relevant (Stoica P. et 

al, 1997) In our work, however, we choose to 
investigate the SDPLL as a frequency estimator 
in colored noise. Among DPLL's, the uniform 
sampling SDPLL's are particularly popular, as 
they are simple to implement and suitable for 
relatively wide locking ranges (Hussain Z. M. et 
al, 2011). (Elasmi-Ksibi R. et al, 2010) have 
recently treated the case of frequency estimation 
of a sinusoid in colored noise exploiting high-
order lags of the autocorrelation function (ACF) 
of the noisy sinusoid, and consequently 
restricting the investigation to MA noise models 
but achieving low computational complexity. 
The present SDPLL-based work compares 
favorably with (Elasmi-Ksibi R. et al, 2010) as 
regards computational complexity, the extension 
of the MA case to generally any LPF 
characteristic, in addition to attaining and even 
surpassing the CRB associated with the white 
noise case for a wide range of SNR values 
extending from moderate to high values. A high-
pass filtered (HPF) characteristic of noise, 
however, is shown to render the system 
incapable of attaining the CRB. Obviously, 
however, long settling time and the presence of 
overshoot are drawbacks of PLL frequency 
estimation (Saber M. et al, 2011). 

 The rest of the paper is organized as follows: 
Section 2 summarizes the SDPLL analysis and 
explains the design methodology. Sections 3 and 
4 focus on the SDPLL as a frequency estimator 
in white and colored noise respectively, 
analytically highlighting the improvement on 
the error variance that is achieved with a low-
pass filtered noise characteristic. Section 5 
presents simulation results of the proposed 
system. Finally, Section 6 concludes the paper.    

2. ANALYSIS AND DESIGN OF THE 
      NOISE-FREE SDPLL 
SDPLLs are non-uniform sampling sinusoidal 
PLLs that have the advantage of being simple to 
implement and having relatively wide locking 
ranges. The block diagram of this system is 
shown in Fig. 1. The SDPLL consists of a 
sampler-ADC unit which serves as a phase 
detector, a digital LPF (DF), and a digital 
voltage-controlled oscillator (DCO). The latter 
provides constant-amplitude but variable-
frequency output pulses that control the 
sampling instants of the sampler-ADC unit 
(Hussain Z. M. et al, 2011). 
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The DF output is input to the DCO to vary its 
phase and hence sampling instant of the input 
analog signal x(t). When the signal is absent, the 
DCO runs at its free-running frequency which 
we call of . When the sampler takes a sample of 
x(t) at the kth sampling instant, the ADC 
converts the analog value of the input into a 
digital value that the DF uses at its input to yield 
y(k) at its output. This digital y(k) is then input 
to the DCO. As the DCO input changes, so does 
the sampling period T(k) of the ADC. The 
sampling process is non-uniform, i.e. the 
sampling frequency is not constant. Under 
certain conditions, namely, the locking 
conditions, the convergence or locking occurs 
such that T(k) approaches the inverse of if , the 
input sinusoid frequency. Fig. 2 shows the 
waveforms associated with the SDPLL. 

For the dual purpose of clarity and symbols 
unification, we find it convenient to summarize 
the elementary analysis of the SDPLL already 
present in the literature such as in (Hussain Z. 
M. et al, 2011). 

Assume the sinusoidal input is given by: 

)sin()( oitAtx θω +=                                 (1) 

where A is the signal amplitude, ii fπω 2=  is 

the sinusoidal angular frequency, and oθ  is a 
constant phase. The locking range of the loop is 
the range of instantaneous frequencies that the 
loop can track. Since the locking range is 
dependent on the deviation of ω  from the loop 
center frequency oω , we can then write eq. (1) 
as: 

)](sin[)( ttAtx o θω +=                               (2) 

)(tθ  is the information-bearing phase given by: 

oooi ttt θωθωωθ +∆=+−= )()(  

After sampling, the input signal at the kth 
sampling instant t(k) will take on the following 
form: 

)]()(sin[)( kktAkx o θω +=                          (3) 

Now we can define the input phase at the kth 
sampling instant as: 

)()()( kktk o θωφ +=  

The sampling interval of the DCO at the kth 
sampling instant is given by: 

)1()( −−= kyTokT                                    (4) 

To  is the DCO free-running period. This shows 
that the kth output sample of the DF, y(k), 
effectively determines the sampling period 
T(k+1). Eq. (4) reveals how the DCO operates; 
it decreases its period (increases its frequency) 
as the DF output increases. 

From the above findings, the phase difference 
equation of the system is given by (Hussain Z. 
M. et al, 2011): 

)()()1()()1( kykkkk oωθθφφ +−+=−+  
Let us assume that the digital filter transfer 
function is H(z)=G1 where G1 is a constant. 
This yields a first-order SDPLL. Then, the 
above equation is used to modify the difference 
equation to: 

okKkk Λ+−=+ )](sin[)()1( 2 φφφ  

where ooio ωωωπ /)(2 −=Λ   and  
AGK i 12 ω= .  

Defining K1 to be AGK o 11 ω=  and W as the 

frequency ratio ioW ωω /= , then: 

WKKK i /)/( 1012 == ωω . 

The parameters K1 and W control the locking 
range. The locking conditions have been derived 
in (Hussain Z. M. et al, 2011). We state here the 
results of the derivation in (Hussain Z. M. et al, 
2011) as these results are key attributes in 
SDPLL design. 
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The above two equations specify a range of K1 
that ensures that the input frequency is within 
the frequency locking range of the first-order 
SDPLL.  

According to the above inequalities, we may 
design our first-order SDPLL. For example, if 
we choose a DCO with Hzfo 1=  and the input 
frequency Hzf i 83.0= , then clearly W=1.2. 
And from the locking conditions of eq. (5), K1 
can be safely chosen as K1=1.7. 

3. THE SDPLL AS A FREQUENCY 
      ESTIMATOR OF A NOISY 
      SINUSOID 
The SDPLL can detect the input frequency in 
the presence of noise, even for low SNRs. 
Having designed the first-order SDPLL in 
Section II, we now explain the frequency 
estimator driven by the SDPLL when the input 
sinusoid is contaminated by additive white 
Gaussian noise  (AWGN). The noisy input 
sinusoid may be written as: 

)()](sin[)( knkAkx += φ                             (6) 

where n(k) is additive noise. We are interested 
in estimating the frequency of the noise-free 
input sinusoid which we call if . The SDPLL is 
a computationally efficient sample-by-sample 
method to extract if  from noisy observations. 
The PLL acts as a dynamic BPF that tracks the 
input frequency improving the SNR by 
bandwidth reduction. The SNR improvement 
leads to an improvement in frequency error 
variance. Using the symbols in Section 2, the 
sequence t(k) can be used to generate a 
frequency sequence )(kfn   by inverting the 
interval between each two consecutive samples 
of t(k) and assigning it to )(kfn . The 
probability density function of the instantaneous 
frequency )( nfpdf  has a maximum at 

approximately f= if . The variance of this 
frequency estimator is a function of the SNR; it 
decreases as the SNR increases. Fig. 3 shows 

)( nfpdf  for the design of Section 2 and for the 
white noise case.  

4. THE SDPLL FREQUENCY  
      ESTIMATOR OF A SINUSOID IN 
      COLORED NOISE 
In this paper, we wish to investigate the colored 
noise case. In (Elasmi-Ksibi R. et al, 2010), a 
novel method of frequency estimation of a 
sinusoid in colored noise using multiple 
autocorrelation lags is presented. However, the 
method is applicable only to environments 
where the colored noise is of finite memory, i.e. 
moving average (MA) noise models. The 
method features low computational complexity 
and compares favorably with its forerunners. 
We show that frequency estimation in colored 
noise is possible with different types of low-
pass-filtered noise, including the MA noise 
model, whereas the method in (Elasmi-Ksibi R. 
et al, 2010) is applicable only to the MA model. 

In particular, for the SDPLL, we find that low-
pass-filtered colored noise, added to the input 
sinusoid whose frequency is to be estimated, 
significantly enhance the SNR when compared 
to the white noise case, whereas a high-pass-
filtered noise has the adverse effect. We have 
also found that this is true for any kind of low-
pass-filtered noise. We simulate the colored 
noise by passing AWGN through a first-order 
IIR LPF first, then a FIR LPF of a MA type. We 
can explain this favorable behavior of the 
SDPLL as follows: Since the output pulses from 
the DCO control the sampling of the sine-plus-
colored-noise signal, the digital LPF sampling 
frequency has, on average, a value of if =0.83 
Hz according to the design of Section 2. 
Therefore, the folding frequency (corresponding 
to the digital frequency of π radians) is 

if /2=0.415 Hz. The periodic frequency transfer 
function of this digital LPF has a typical form 
shown in Fig. 4. It is clear that this filter has 
high gain around 0.83 Hz. This means that LPF 
colored noise boosts the SNR thereby improving 
the frequency error variance for the SDPLL 
acting as a frequency estimator. On the other 
hand, a HPF for producing colored noise has the 
typical transfer function shown in Fig 5. The 
presence of a peak at half the input frequency, 
i.e. at 0.415 Hz, results in a degradation of the 
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performance of the SDPLL as a frequency 
estimator and the frequency error variance 
increases.  

As in any estimation problem, the idea is to 
produce from a noisy observation vector nf  an 

unbiased estimate if̂  of a deterministic 

parameter if . The estimation error variance is 
lower-bounded by the Cramer-Rao bound 
(CRB): 

CRBffE ii ≥− ])ˆ[( 2                                    (7) 

The  CRB is given by: 

2

));(ln( ⎥
⎦

⎤
⎢
⎣

⎡
= in

i

ffp
df
dECRB                     (8) 

The probability density function );( in ffp  of 

nf , corresponding to a given value of if , is 

called the likelihood function of if , while 

));(ln( in ffp  is the log-likelihood function of 

if . The expectation is with respect to 

);( in ffp . 

The CRB in our work is the lower bound of the 
frequency error variance as in eq. (7). Analytical 
evaluation of the CRB (Vaseghi S.V., 2006)                                                                        
is usually extremely difficult, if not impossible; 
therefore we resort to computer simulation to 
find it (Noels N. et al, 2002). 

5. SIMULATION RESULTS 
The first-order SDPLL is simulated in 
MATLAB 7. The program for the white noise 
case is listed below in pseudo-code; the symbols 
are as presented in Section 2. 

SDPLL algorithm for sinusoid frequency estimation 
 
INPUT: Noise vector n, and parameters from which to 
compute sinusoid vector x, plus other loop parameters. 
OUTPUT: Frequency error variance vector vs. SNR 
vector.  
/*Loop parameters*/ 
Frequency ratio (W)=1.2 

Design Constant Value (K1)=1.7 

Input phase angle ( oθ )=1 rad 
 
/*Other parameters*/ 
Sinusoid amplitude (A)=1 
Center frequency (fo)=1 Hz   
Center angular frequency (wo)=2*pi*fo rad/s 
DCO period (To)=1/fo s 
Input sinusoid frequency (fi)=fo/W Hz 
Input sinusoid angular frequency (wi)=2*pi*fi rad/s  
Constant (K2)=K1/W  
Digital filter gain (G1)=K1/(wo*A)  
 
/*Main loop*/ 
 
FOR Signal/Noise ratio (SNR)=0 to 30 step 10 DO 
     
        Standard deviation (sd)=sqrt(0.5/10^(SNR/10)) 
      
          /*Initialization*/ 

        First noisy sine sample (xo)=A*sin( oθ )  
        +sd*n(1)  
         Filter output (yo)=G1*xo 
         First period T(1)=To-yo  
         First sampling instant t(1)=T(1) 
 
         /*For the rest of the samples*/ 
     
         FOR k=1 to 999 DO 
                  Noisy sine sample x(k)=A*sin(wi*t(k)+  

                   oθ )+sd*n(k+1) 
                  Filter output y(k+1)=G1*x(k) 
                  Sampling period T(k+1)=To-y(k) 
                  Sampling instant t(k+1)=t(k)+T(k+1) 
          END FOR 
          Frequency vector fn=1/T 
          Frequency variance=variance(fn) 
 
END FOR 
RETURN dB-variance vs. SNR 
 
The corresponding MATLAB code yields the 
frequency error variance versus SNR. For the 
colored noise case, we pass the AWGN through 
a LPF transfer function to produce colored 
noise. We demonstrate two cases: 
 
Case I: IIR first-order LPF. The transfer 
function is given by: 

az
zzH
−

=)(   
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If we assume that 2
iσ is the input noise power 

to the LPF, then it is straightforward to prove 
that: 

2

2
2

1 a
i

o −
=

σ
σ  is the output noise power. 

We assume that the input noise power (variance) 
is equal to unity. Therefore, to compare between 
white and colored noise effects, we have to 
equate the powers of the two. Thus, we multiply 

the colored noise sequence by 21 a−  before 
adding it to the sine wave. If we take a=0.9, then 
we have to multiply by 19.0 . After making 
the necessary modification to the above pseudo-
code and the corresponding MATLAB code, we 
plot the variance versus SNR on the same graph 
as that for the white noise case as in Fig. 6. The 
variance versus SNR for the corresponding HPF 
filtered colored noise case is also shown in the 
figure.  

Case II: We also test low-pass filtered noise 
using a MA process. We choose the FIR MA 
filter transfer function as: 

)1(2.0)( 4321 −−−− ++++= zzzzzH . 
The power relation is: 

∑
=

==
4

0

2222 5/
l

ilio b σσσ . 

The sbl '  are the impulse response values of the 
FIR MA filter. 
Also assuming unity input noise power, we have 
to multiply the filter output by 5  for a 
meaningful comparison. The resulting curve is 
also included in Fig. 6, and is shown to coincide 
nearly with IIR filter case. The conclusion is 
that for LPFs, in general, the frequency error 
variance is improved (decreased).  
The Cramer Rao bound (CRB) is a lower bound 
on the error variance of any unbiased estimator 
and serves as an important benchmark to 
compare practical estimators (Noels N. et al , 
2002), (Vaseghi S.V., 2006).                                                         
Fig. 6 is extended to include high SNRs. The 
CRB is the asymptote to the curves as SNR 
increases. Therefore, we can find it practically 
as the figure shows. Fig. 7 is a zoom-in to the 
moderate-to-high SNR region of Fig. 6. It can 
be seen from Fig. 7 that when the additive noise 

is a low-pass-filtered one, we gain an 
improvement over the white noise case as 
regards the variance of the frequency estimate 
for moderate and high SNRs.  

6. CONCLUSIONS 
An SDPLL-based single-sinusoid frequency 
estimator in white and colored noise has been 
simulated and tested. It has been shown that 
when the additive noise to the sinusoid has a 
LPF characteristic we gain an improvement of 
the estimator performance in terms of reduced 
frequency error variance regardless of the type 
of LPF whether IIR or FIR. This work is an 
extension of related PLL-based methods 
reported in the literature for the white noise 
case, and of specifically MA-noise-model non-
PLL-based frequency estimators. We have 
shown through simulation that our estimator 
beats the CRB of the white noise case for 
moderate and high SNRs.    
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SYMBOLS AND ACRONYMS 

A              the signal amplitude  

sbl '           impulse response values of  

                  the FIR MA filter  

if              frequency of the noise-free  

                 input sinusoid  

if̂             unbiased estimate of if  

nf             noisy observation vector  

To            DCO free-running period 

T(k)          sampling period of the 

                   ADC 

 W             frequency ratio          

  x(t)          input analog signal  

  y(k)         input to the DCO 

 oθ             constant phase 

)(tθ          information- bearing phase 

2
iσ           The input noise power to the 

                  LPF    

 )(kφ        input phase at the kth 

                  sampling instant 

iω             sinusoidal angular frequency 

oω             loop center frequency 

ACF         autocorrelation function 

ADC         analog to digital converter  

AWGN     additive white Gaussian noise 

BPF          band-pass filter 

BW           bandwidth 

CRB         Cramer-Rao bound 

DCO         digital voltage-controlled 

                  oscillator 

DF            digital filter 

DPLL       digital phase-locked loop 

FFT          fast Fourier transform  

FIR          finite impulse response 

HPF          high-pass filter 

IIR            infinite impulse response 

LPF          low-pass filter 

MA           moving average 

ML           maximum likelihood  

 pdf           probability density function 

PLL          phase-locked loop 

SDPLL     sinusoidal digital phase locked  

                  loop 

SNR          signal-to-noise ratio 
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Fig. 1: A block diagram of SDPLL (Hussain Z. M. et al., 2011). 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

 

 

 

 

 

Fig. 2: Waveforms associated with SDPLL (Hussain Z. M. et al., 2011).   
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Fig. 3: Frequency tracking probability density function (PDF) for different SNRs in 
AWGN. From left to right, top to bottom: SNR=0, 10, 20, 30 dB. 
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Fig. 4: 1st order IIR LPF magnitude transfer function [H(z)=z/(z-0.9)]. The digital 
frequency w= π (or 3.14 rad) corresponds to 0.415 Hz and 2π (or 6.28 rad) corresponds 

to 0.83 Hz. Notice the peak is at 0 and 2π corresponding to 0.83 Hz. 
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Fig. 5: 1st order IIR HPF magnitude transfer function [H(z)=z/z+0.9]. Notice the peak at π or 
3.14 radians corresponding to 0.415 Hz. 
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Fig. 6: Frequency error variance (dB) versus SNR (dB) for SPDLL estimator and for 
different noise types. The CRB lower bound is shown for the white noise case. 
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Fig. 7: Frequency error variance (dB) versus SNR (dB) for SDPLL estimator and for different 
noise types with emphasis on the moderate-to-high SNR region. The CRB lower bound is shown for 

the white noise case. 


