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ABSTRACT:

The problem of frequency estimation of a single sinusoid observed in colored noise is addressed. Our
estimator is based on the operation of the sinusoidal digital phase-locked loop (SDPLL) which carries the
frequency information in its phase error after the noisy sinusoid has been acquired by the SDPLL. We
show by computer simulations that this frequency estimator beats the Cramer-Rao bound (CRB) on the
frequency error variance for moderate and high SNRs when the colored noise has a general low-pass
filtered (LPF) characteristic, thereby outperforming, in terms of frequency error variance, several existing
techniques some of which are, in addition, computationally demanding. Moreover, the present approach
generalizes on existing work that addresses different methods of sinusoid frequency estimation involving
specific colored noise models such as the moving average (MA) noise model. An insightful theoretical
analysis is presented to support the practical findings.

Keywords: Sinusoidal digital phase-locked loop (SDPLL); Cramer-Rao bound (CRB);
colored noise; frequency error variance; signal-to-noise ratio (SNR).
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1. INTRODUCTION

Rapid frequency estimation of a sinusoid in the
presence of noise is a problem that is frequently
encountered in  signal processing and
communications with applications varying from
radar, sonar, signal interception and detection,
carrier synchronization and many others. Many
methods of sinusoidal frequency estimation
have been developed especially for the white
noise case. The maximum likelihood (ML)
estimator involving the location of the peak of
the periodogram is  well-known. The
performance of the ML estimator in terms of
estimator error variance achieves the CRB at
high signal-to-noise ratios (SNR's), but at the
expense of a large computational complexity,
even when the fast Fourier transform (FFT) is
used (Fu H. et al, 2007). The ML estimator is
also a batch processing technique starting the
processing only after all samples have been
received (Richard Brown III D. et al, 2010).
Subsequent to the introduction of the ML
method, several fast and accurate sinusoidal
frequency estimators in the presence of white
noise have been reported (Kay S.,1989)
attaining the CRB on variance for high enough
SNR.

Frequency estimation techniques driven by a
frequency tracking loop such as the PLL have
also been reported in the literature in the context
of operation in a white noise environment
(Sithamparanathan K., 2008). The advantage of
such an approach is that the PLL acts as a
dynamic band-pass filter (BPF) to track the
frequency, which improves the SNR due to
reduced bandwidth (BW) once the signal is
acquired. This improvement in SNR certainly
leads to an improvement in the frequency error
variance for a given system. Indeed, it has been
shown that such a frequency estimator using an
arc-tan DPLL (Sithamparanathan K., 2008)
beats the CRB for low numbers of estimation
samples. The appeal of DPLLs is also evident in
that they offer low-complexity sample-by-
sample operation suitable for real-time
applications (Richard Brown III D. et al, 2010).

In this paper, we improve on the work in
(Sithamparanathan K., 2008) to include the case
where the accompanying noise is colored. This
case occurs in many applications and is
definitely more practically relevant (Stoica P. et
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al, 1997) In our work, however, we choose to
investigate the SDPLL as a frequency estimator
in colored noise. Among DPLL's, the uniform
sampling SDPLL's are particularly popular, as
they are simple to implement and suitable for
relatively wide locking ranges (Hussain Z. M. et
al, 2011). (Elasmi-Ksibi R. et al, 2010) have
recently treated the case of frequency estimation
of a sinusoid in colored noise exploiting high-
order lags of the autocorrelation function (ACF)
of the noisy sinusoid, and consequently
restricting the investigation to MA noise models
but achieving low computational complexity.
The present SDPLL-based work compares
favorably with (Elasmi-Ksibi R. et al, 2010) as
regards computational complexity, the extension
of the MA case to generally any LPF
characteristic, in addition to attaining and even
surpassing the CRB associated with the white
noise case for a wide range of SNR wvalues
extending from moderate to high values. A high-
pass filtered (HPF) characteristic of noise,
however, is shown to render the system
incapable of attaining the CRB. Obviously,
however, long settling time and the presence of
overshoot are drawbacks of PLL frequency
estimation (Saber M. et al, 2011).

The rest of the paper is organized as follows:
Section 2 summarizes the SDPLL analysis and
explains the design methodology. Sections 3 and
4 focus on the SDPLL as a frequency estimator
in white and colored noise respectively,
analytically highlighting the improvement on
the error variance that is achieved with a low-
pass filtered noise characteristic. Section 5
presents simulation results of the proposed
system. Finally, Section 6 concludes the paper.

2. ANALYSIS AND DESIGN OF THE
NOISE-FREE SDPLL

SDPLLs are non-uniform sampling sinusoidal
PLLs that have the advantage of being simple to
implement and having relatively wide locking
ranges. The block diagram of this system is
shown in Fig. 1. The SDPLL consists of a
sampler-ADC unit which serves as a phase
detector, a digital LPF (DF), and a digital
voltage-controlled oscillator (DCO). The latter
provides constant-amplitude but variable-
frequency output pulses that control the
sampling instants of the sampler-ADC unit
(Hussain Z. M. et al, 2011).
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The DF output is input to the DCO to vary its
phase and hence sampling instant of the input
analog signal x(t). When the signal is absent, the
DCO runs at its free-running frequency which

we call f . When the sampler takes a sample of

x(t) at the kth sampling instant, the ADC
converts the analog value of the input into a
digital value that the DF uses at its input to yield
y(k) at its output. This digital y(k) is then input
to the DCO. As the DCO input changes, so does
the sampling period T(k) of the ADC. The
sampling process is non-uniform, i.e. the
sampling frequency is not constant. Under
certain conditions, namely, the locking
conditions, the convergence or locking occurs

such that T(k) approaches the inverse of fi , the

input sinusoid frequency. Fig. 2 shows the
waveforms associated with the SDPLL.

For the dual purpose of clarity and symbols
unification, we find it convenient to summarize
the elementary analysis of the SDPLL already
present in the literature such as in (Hussain Z.
M. et al, 2011).

Assume the sinusoidal input is given by:
X(t) = Asin(w,t + 6,) (1)

where A is the signal amplitude, @, =27f; is

the sinusoidal angular frequency, and &, is a

constant phase. The locking range of the loop is
the range of instantaneous frequencies that the
loop can track. Since the locking range is
dependent on the deviation of @ from the loop

center frequency @, , we can then write eq. (1)
as:

X(t) = Asin[ao t + ()] )
O(t) is the information-bearing phase given by:
ot)=(v, —w t+ 6, =Aat + 6,

After sampling, the input signal at the kth

sampling instant t(k) will take on the following
form:
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X(k) = Asin[a,t(k) + (k)] (3)

Now we can define the input phase at the kth
sampling instant as:

#(K) = w,t(k) + O(k)

The sampling interval of the DCO at the kth
sampling instant is given by:

T(k)y=To-y(k-1) 4)

TO is the DCO free-running period. This shows
that the kth output sample of the DF, y(k),
effectively determines the sampling period
T(k+1). Eq. (4) reveals how the DCO operates;
it decreases its period (increases its frequency)
as the DF output increases.

From the above findings, the phase difference
equation of the system is given by (Hussain Z.
M. etal, 2011):

gk +1) = (k) = Ok +1) - O(k) + 00, y (k)

Let us assume that the digital filter transfer
function is H(z)=G1 where Gl is a constant.
This yields a first-order SDPLL. Then, the
above equation is used to modify the difference
equation to:

Pk +1)=p(k) - K, sin[g(k)] + A,

where A, =27(0, - w,)/ o, and
K, =w0,G/A.

Defining K1 to be K, =@, G,A and W as the

frequency ratio W = @, / @, , then:
K, =K, (&, /®,)=K, /W .

The parameters K1 and W control the locking
range. The locking conditions have been derived
in (Hussain Z. M. et al, 2011). We state here the
results of the derivation in (Hussain Z. M. et al,
2011) as these results are key attributes in
SDPLL design.
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K, >27[l-W|

(5)
K, </(4+47> W3 —87°W + 47>

The above two equations specify a range of K1
that ensures that the input frequency is within
the frequency locking range of the first-order
SDPLL.

According to the above inequalities, we may
design our first-order SDPLL. For example, if

we choose a DCO with f, =1Hz and the input
frequency f, =0.83Hz, then clearly W=1.2.

And from the locking conditions of eq. (5), K1
can be safely chosen as K1=1.7.

3. THE SDPLL AS A FREQUENCY
ESTIMATOR OF A NOISY
SINUSOID

The SDPLL can detect the input frequency in

the presence of noise, even for low SNRs.

Having designed the first-order SDPLL in

Section II, we now explain the frequency

estimator driven by the SDPLL when the input

sinusoid is contaminated by additive white

Gaussian noise (AWGN). The noisy input

sinusoid may be written as:

X(k) = Asin[@(k)]+ n(k) (6)

where n(k) is additive noise. We are interested

in estimating the frequency of the noise-free

input sinusoid which we call f,. The SDPLL is
a computationally efficient sample-by-sample
method to extract f, from noisy observations.

The PLL acts as a dynamic BPF that tracks the
input frequency improving the SNR by
bandwidth reduction. The SNR improvement
leads to an improvement in frequency error
variance. Using the symbols in Section 2, the
sequence t(k) can be used to generate a

frequency sequence fn (k) by inverting the
interval between each two consecutive samples
it to f (K). The
probability density function of the instantaneous

of t(k) and assigning

frequency Pdf(f,) has a maximum at

approximately f=f,. The variance of this

frequency estimator is a function of the SNR; it
decreases as the SNR increases. Fig. 3 shows
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pdf (f,) for the design of Section 2 and for the
white noise case.

4. THE SDPLL FREQUENCY
ESTIMATOR OF A SINUSOID IN

COLORED NOISE
In this paper, we wish to investigate the colored
noise case. In (Elasmi-Ksibi R. et al, 2010), a
novel method of frequency estimation of a
sinusoid in colored noise using multiple
autocorrelation lags is presented. However, the
method is applicable only to environments
where the colored noise is of finite memory, i.e.
moving average (MA) noise models. The
method features low computational complexity
and compares favorably with its forerunners.
We show that frequency estimation in colored
noise is possible with different types of low-
pass-filtered noise, including the MA noise
model, whereas the method in (Elasmi-Ksibi R.
et al, 2010) is applicable only to the MA model.

In particular, for the SDPLL, we find that low-
pass-filtered colored noise, added to the input
sinusoid whose frequency is to be estimated,
significantly enhance the SNR when compared
to the white noise case, whereas a high-pass-
filtered noise has the adverse effect. We have
also found that this is true for any kind of low-
pass-filtered noise. We simulate the colored
noise by passing AWGN through a first-order
IIR LPF first, then a FIR LPF of a MA type. We
can explain this favorable behavior of the
SDPLL as follows: Since the output pulses from
the DCO control the sampling of the sine-plus-
colored-noise signal, the digital LPF sampling

frequency has, on average, a value of f,=0.83

Hz according to the design of Section 2.
Therefore, the folding frequency (corresponding
to the digital frequency of = radians) is

f./2=0.415 Hz. The periodic frequency transfer

function of this digital LPF has a typical form
shown in Fig. 4. It is clear that this filter has
high gain around 0.83 Hz. This means that LPF
colored noise boosts the SNR thereby improving
the frequency error variance for the SDPLL
acting as a frequency estimator. On the other
hand, a HPF for producing colored noise has the
typical transfer function shown in Fig 5. The
presence of a peak at half the input frequency,
i.e. at 0.415 Hz, results in a degradation of the
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performance of the SDPLL as a frequency
estimator and the frequency error variance
increases.

As in any estimation problem, the idea is to
produce from a noisy observation vector f_ an

A

unbiased estimate f, of a deterministic

parameter f,. The estimation error variance is

lower-bounded by the Cramer-Rao bound
(CRB):

El(f, - f,)*]=CRB ()
The CRB is given by:

2
CRB=E %ln(p( fs 1)) ®)

[
The probability density function P(f. ;f.) of
f,, corresponding to a given value of f,, is
called the likelihood function of f,, while
In(p(f,; f;)) is the log-likelihood function of

fi. The expectation is with respect to

The CRB in our work is the lower bound of the
frequency error variance as in eq. (7). Analytical
evaluation of the CRB (Vaseghi S.V., 2006)
is usually extremely difficult, if not impossible;
therefore we resort to computer simulation to
find it (Noels N. et al, 2002).

5. SIMULATION RESULTS

The first-order SDPLL is simulated in
MATLAB 7. The program for the white noise
case is listed below in pseudo-code; the symbols
are as presented in Section 2.

SDPLL algorithm for sinusoid frequency estimation

INPUT: Noise vector n, and parameters from which to
compute sinusoid vector x, plus other loop parameters.
OUTPUT: Frequency error variance vector vs. SNR
vector.

/*Loop parameters™*/

Frequency ratio (W)=1.2
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Design Constant Value (K1)=1.7
Input phase angle ( 90 )=1rad

/*Other parameters*/

Sinusoid amplitude (A)=1

Center frequency (fo)=1 Hz

Center angular frequency (wo)=2*pi*fo rad/s

DCO period (To)=1/fo s

Input sinusoid frequency (fi)=fo/W Hz

Input sinusoid angular frequency (wi)=2*pi*fi rad/s
Constant (K2)=K1/W

Digital filter gain (G1)=K1/(wo*A)

/*Main loop*/
FOR Signal/Noise ratio (SNR)=0 to 30 step 10 DO
Standard deviation (sd)=sqrt(0.5/10°(SNR/10))

/*Initialization*/
First noisy sine sample (x0)=A*sin( 90 )
+sd*n(1)
Filter output (yo)=G1*xo0
First period T(1)=To-yo
First sampling instant t(1)=T(1)

/*For the rest of the samples™*/

FOR k=1 to 999 DO
Noisy sine sample x(k)=A*sin(wi*t(k)+

0, )+sd*n(k+1)

Filter output y(k+1)=G1*x(k)
Sampling period T(k+1)=To-y(k)
Sampling instant t(k+1)=t(k)+T(k+1)

END FOR

Frequency vector fn=1/T

Frequency variance=variance(fn)

END FOR
RETURN dB-variance vs. SNR

The corresponding MATLAB code yields the
frequency error variance versus SNR. For the
colored noise case, we pass the AWGN through
a LPF transfer function to produce colored
noise. We demonstrate two cases:

Case 1. IIR first-order LPF. The transfer
function is given by:

z
H(z)=——
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2, . .
If we assume that o is the input noise power

to the LPF, then it is straightforward to prove
that:

2

o 5 1s the output noise power.

l-a
We assume that the input noise power (variance)
is equal to unity. Therefore, to compare between
white and colored noise effects, we have to
equate the powers of the two. Thus, we multiply

the colored noise sequence by V1 — a’ before
adding it to the sine wave. If we take a=0.9, then

we have to multiply by+/0.19 . After making

the necessary modification to the above pseudo-
code and the corresponding MATLAB code, we
plot the variance versus SNR on the same graph
as that for the white noise case as in Fig. 6. The
variance versus SNR for the corresponding HPF
filtered colored noise case is also shown in the
figure.

Case II: We also test low-pass filtered noise
using a MA process. We choose the FIR MA
filter transfer function as:

H(z)=02(1+z"+z27+27 +z7").
The power relation is:

4
o, =0'i22“b|2 =0,>/5.
10

The D,'S are the impulse response values of the

FIR MA filter.
Also assuming unity input noise power, we have

to multiply the filter output by\/g for a
meaningful comparison. The resulting curve is
also included in Fig. 6, and is shown to coincide
nearly with IIR filter case. The conclusion is
that for LPFs, in general, the frequency error
variance is improved (decreased).

The Cramer Rao bound (CRB) is a lower bound
on the error variance of any unbiased estimator
and serves as an important benchmark to
compare practical estimators (Noels N. et al ,
2002), (Vaseghi S.V,, 2006).
Fig. 6 is extended to include high SNRs. The
CRB is the asymptote to the curves as SNR
increases. Therefore, we can find it practically
as the figure shows. Fig. 7 is a zoom-in to the
moderate-to-high SNR region of Fig. 6. It can
be seen from Fig. 7 that when the additive noise
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is a low-pass-filtered one, we gain an
improvement over the white noise case as
regards the variance of the frequency estimate
for moderate and high SNRs.

6. CONCLUSIONS

An SDPLL-based single-sinusoid frequency
estimator in white and colored noise has been
simulated and tested. It has been shown that
when the additive noise to the sinusoid has a
LPF characteristic we gain an improvement of
the estimator performance in terms of reduced
frequency error variance regardless of the type
of LPF whether IIR or FIR. This work is an
extension of related PLL-based methods
reported in the literature for the white noise
case, and of specifically MA-noise-model non-
PLL-based frequency estimators. We have
shown through simulation that our estimator
beats the CRB of the white noise case for
moderate and high SNRs.
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SYMBOLS AND ACRONYMS
A the signal amplitude
b's impulse response values of
the FIR MA filter
f. frequency of the noise-free

input sinusoid

fi unbiased estimate of
f, noisy observation vector
To DCO free-running period
T(k) sampling period of the
ADC
W frequency ratio
x(t) input analog signal
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DF
DPLL
FFT
FIR
HPF
IIR
LPF
MA
ML
pdf
PLL
SDPLL

SNR
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input to the DCO

constant phase

information- bearing phase

The input noise power to the
LPF

input phase at the kth
sampling instant

sinusoidal angular frequency

loop center frequency

autocorrelation function
analog to digital converter
additive white Gaussian noise
band-pass filter

bandwidth

Cramer-Rao bound

digital voltage-controlled
oscillator

digital filter

digital phase-locked loop
fast Fourier transform
finite impulse response
high-pass filter

infinite impulse response
low-pass filter

moving average

maximum likelihood
probability density function
phase-locked loop
sinusoidal digital phase locked
loop

signal-to-noise ratio
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Input signal
“ sSamSampler & DF
X (t) =
ADCpler &
Y (k)
DCO

Output pluses

I E T

Fig. 1: A block diagram of SDPLL (Hussain Z. M. et al., 2011).
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Fig. 2: Waveforms associated with SDPLL (Hussain Z. M. et al., 2011).
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Fig. 3: Frequency tracking probability density function (PDF) for different SNRs in
AWGN. From left to right, top to bottom: SNR=0, 10, 20, 30 dB.
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Fig. 4: 1* order IIR LPF magnitude transfer function [H(z)=z/(z-0.9)]. The digital
frequency w= 7 (or 3.14 rad) corresponds to 0.415 Hz and 27 (or 6.28 rad) corresponds
to 0.83 Hz. Notice the peak is at 0 and 2z corresponding to 0.83 Hz.
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Fig. 5: 1* order IIR HPF magnitude transfer function [H(z)=2/z+0.9]. Notice the peak at 7 or
3.14 radians corresponding to 0.415 Hz.
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Fig. 6: Frequency error variance (dB) versus SNR (dB) for SPDLL estimator and for
different noise types. The CRB lower bound is shown for the white noise case.
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Fig. 7: Frequency error variance (dB) versus SNR (dB) for SDPLL estimator and for different
noise types with emphasis on the moderate-to-high SNR region. The CRB lower bound is shown for
the white noise case.
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