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ABSTRACT

This paper features the modeling and design of a pole placement and output Feedback control
technique for the Active Vibration Control (AVC) of a smart flexible cantilever beam for a Single
Input Single Output (SISO) case. Measurements and actuation actions done by using patches of
piezoelectric layer, it is bonded to the master structure as sensor/actuator at a certain position of the
cantilever beam.

The smart structure is modeled based on the concept of piezoelectric theory, Bernoulli -Euler
beam theory, using Finite Element Method (FEM) and the state space techniques. The number of
modes is reduced using the controllability and observability grammians retaining the first three
dominant vibratory modes, and for the reduced system, a control law is designed using pole placement
and output feedback techniques.

The analyzed case studies concern the vibration reduction of a cantilever beam with a
collocated symmetric piezoelectric sensor/actuator pair bonded on the surface. The transverse
displacement time history, for an initial displacement field at the free end, is evaluated. Results are
compared with other works, and the control design shows that Pole Placement method is an effective
method for vibration suppression of the beam and settling time reduction.

Keywords: vibration, active vibration control, smart material, cantilever beam.
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INTRODUCTION

It is desired to design lighter mechanical
systems carrying out higher workloads at higher
speeds. However, the vibration may become
prominent factor in this case. Smart materials
and active control methods can be used to
the vibration.  This

eliminate undesired

combination of smart material and active
vibration control paid considerable attention in
the last decade especially in the space structures
application.

Since the middle of the 19th century and
due to the importance of providing a lighter,
strong and vibration resisting structures specially
in aero-structure and space application, the smart
materials and active vibration control methods
considered for

[Anna-Maria R. McGowan, 1998].

important these application

1.1. Piezoelectric Materials (Smart

Materials)

In the year 1880, the brothers Pierre and
Jacques Curie discovered the direct piezoelectric

effect at tourmaline crystals. The inverse

piezoelectric effect was predicted in 1881 by M.
G. Lippmann based

on thermodynamic

considerations and  afterwards confirmed
experimentally by the brothers Curie [R.G.
Ballas, 2007].

T.C. B.

Bandyopadhyay (2007) [T.C. Manjunath, 2007]

Manjunath and
presented the modeling and design of a (FOS)
Feedback control technique for the Active

Vibration Control of a smart flexible aluminium
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Cantilever beam for a (SISO) case. The
entire structure modeled in state space form
using the concept of piezoelectric theory, Euler-
Bernoulli beam theory and FEM techniques. The
conclusions drawn for the best performance and
for smallest magnitude of the control input
required to control the vibrations of the beam.
The MATLAB program used in results
simulations.

Tamara Nestorovic and Miroslav
Trajkov (2010) [Tamara Nestorovi¢, 2010]
studied the piezoelectric applications in active
vibration and noise attenuation in mechanical
and civil engineering involving subsequent steps
of modeling, control, simulation, experimental
verification and implementation.

Deepak Chhabra, Pankaj Chandna ,
Gian Bhushan (2011) [Deepak Chhabra, 2011]
designed the state/output feedback control by
Pole placement technique and LQR optimal
control approach achieve the desired control for

the [T.C.

vibrations

smart cantilever beam in

2007].

same
Manjunath, Sufficient
attenuation was achieved. Pole placement
technique is used to obtain the desired Eigen
values of controlled system.

Meysam Chegini, Milad Chegini and
Hadi Mohammadi (2011) [Meysam Chegini,
2011] used the PID control technique in their
paper instead of (FOS) Feedback controller in
(T.C. Manjunath and B. Bandyopadhyay (2007))
for the same smart cantilever beam, concluding
that it is possible to implement classical
controllers, such as PID and PI to control the

amplitude and time of the vibration.
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The analysis performed by Gergely
Takacs (2011) [Gergely Takacs, 2011] presents
the smart cantilever beam but with digital
feedback control loops inside ANSYS transient
simulations using the proprietary macro
language of the software package. The close
agreement of the closed-loop simulation results
and laboratory measurements indicates the
potential to use ANSYS for the preliminary
prototyping of active vibration control systems
(AVO).

1.2. Smart Structures

Piezoelectric materials could be divided,
from structural viewpoint, into ceramic and
polymeric forms. The most popular piezoelectric
ceramics (or in short, piezoceramics) are
compounds of lead zirconate titanate (PZT), the
properties of which can be optimized to suit
specific applications by appropriate adjustment
of the zirconate—titanate ratio.

The polymeric form of the piezoelectric
materials as polyvinylidene fluoride (PDVF)
and electromechanical

having low stiffness

coupling coefficients (when compared to
ceramics like PZT, for instance) [Nader Jalili,
2010].

Structures with added functionality over
and above the conventional purpose of providing
strength by reinforcement or stiffness may be
regarded as smart. Smart or adaptive structures,
based on using a small change in the structure
geometry at critical locations induced by
internally generated control signals, can result in
a non-linear amplification of the shape, stiffness

or strength, and so the structure will adapt to a
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functional need. In practice, smart structures

may be classified depending on their
functionality and adaptation to the changing

situation:

1. Passive smart
2. Active smart
3. Intelligent.
2. MODELING OF SMART

CANTILEVER BEAM
The smart structure is modeled based on the
concept of piezoelectric theory, Bernoulli -
Euler beam theory, using Finite Element
Method (FEM).

2.1. Displacement Functions

A beam element is considered with two
nodes at its end. Each node is having two degree
of freedom (DOF). The shape functions of the
element are derived by considering an
approximate solution and by applying boundary
conditions. The mass and stiffness matrix is
derived using shape functions for the beam
Mass stiffness matrix of

element. and

piezoelectric  (sensor/actuator) element are
similar to the beam element. To obtain the mass
and stiffness matrix of smart beam element that
consists of two piezoelectric materials and a
beam element, all the three matrices added.

FEM assembly of beam element and
smart beam element models the cantilever beam.
The last two row’s two elements of first matrix
are added with first two row’s two element of
next matrix. The global mass and stiffness
matrix is formed. The boundary conditions are

applied on the global matrices for the cantilever
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beam. The first two rows and two columns
should be deleted as one end of the beam is
fixed. The actual response of the system, i.e., the
tip displacement u (x,t) is obtained for all the
various models of the cantilever beam with and
without the controllers[Deepak Chhabra, 2011].

A beam element of length L, with two
DOFs at each node i.e. translation and rotation is
considered[T.C. Manjunath, 2007].

W(x) =ay +a;x +azx®+ayx®, (1)
Application of the boundary condition of

the cantilever beam yields:

ay 130 0 0 Jyw,

az| 1|0 I 0 0 |&

as| = 13|31, —212 31, —i2||w2| P
*h b b b b E"

Ba 2 3 -2 pt=

Substituting the constants obtained from
(2) into (1) and by rearranging the terms, the
final form for W(x) is obtained as:

w(x) = [n]"[ql,

where [n] gives the shape function as, [Ranjan

(3)

Vepa, 2010]:
- I:.r _r.]: '.-'l.'-' 't'-l]: -
1—3 _:_ LA -
x—x)° (x—x;)
(x —x)—2 : +2 =
- o b kg .
[n] = Y — 1) (x —x.}2 (4)
3 _ 2 !
TB T
o . 4] .
(x—x)"  _(x—x)"
L B

]

and [g] is the vector of displacements and slopes

(nodal displacement vector) and is given by:

[q] =

Wy
&,
w2
B2

r

(5)
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2.2. DYNAMIC EQUATION OF THE
BEAM ELEMENT

The equation of motion of the regular
beam element is obtained by the lagrangian
equation:

ar

d [ au
dt ldg;

P

MPG+K2q= fo(p),

|=trr  ®

As:
(7)
The strain energy U and the kinetic

energy T for the beam element with uniform

cross section in bending is obtained as:

_Epl _E
“][ ] “][u GO xoldr, @
A A ) - .
— j B a-x,=‘”" * [l bieuolar, )
iy
Element in its explicit form is obtained as:
Zos8 1208
B L, B
156 221, 54 —130,] 6, 5 LM (A
Peds | 221, @3 130, Bla |, Bl 1, T, . A
320 | 5¢ 135, 156 220w |T T, | 12 6 12 6w PGS
131, -31; -—221, 42 Mg TE T, BT )le M
6 6
, * 5 ¢

where Fy and F;are the forces at the
nodes 1 and 2, M; and M; are the bending

moments acting at the nodes 1 and 2
respectively.

The piezoelectric beam element shown
in Figure (1) is obtained by sandwiching the
regular beam element between two piezoelectric

thin layers of thickness t, or £,.

The bottom layer acts as a sensor and the
upper layer acts as an actuator. Similar to the

equation (10) obtained for a regular beam
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element, the Lagrangian equation of motion of

the piezoelectric beam element is obtained as,
MPg+K?Pq= fP(t), (11)

where MFand KF¥ are the mass and stiffness

matrices of the piezoelectric element and is

obtained as, [Daniel J. Inman, 2006]:

Volume 19 January 2013

r 156 221, 54 —131,
pA| 221, 41f 131, 313,
Pl =
(M71=20] s 131, 156 —221,[ (1D
—131, -31F -221, 4}
and
r 12 i] 12 6 1
‘; b - 'ié- Ei'.'
© - ° B
EIl 1. 1.
- B o
I.I"L:’] — {l;_. 12 6 12 6 {13}
o, B s
6 6
I
- ‘b
where :
El = Epl, + 2E 1,  (14)
1o [t + )
I, = 5 btd +bt, [ > ] . (1%)
P"‘ = b(lﬂbth + ?prp}r {16}

2.3. Piezoelectric strain rate sensors and

actuators

The sensor equation is derived from the

direct piezoelectric equation. The electric
displacement developed on the sensor surface is
directly proportional to the stress acting on the
sensor. If the poling is done along the thickness
direction of the sensors with the electrodes on
the upper and the lower surfaces, the electric
displacement D is given by, [Michael R. Hatch,
2001]:

(17)

Dz =dz Ep Ex = €31 £x0
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where @3y is the piezoelectric constant, 3y is

the piezoelectric stress / charge constant, E, is

the young’s modulus and £, is the strain that is

produced.

2.3.1. Sensor equation

The total charge Q(t) developed on the

sensor surface is the spatial summation of all the
point charges developed on the sensor layer.
Thus, the expression for the current generated is

obtained as, [Ranjan Vepa, 2010]:
.?._-iEF
doit) df [
= gr = EJ €yy £y dA = Zeyy b J n'gdx,
A aj

i(t)

where, z = 2 + t., and 0y is the second spatial

derivative of the shape function given in
(Appendix 1) [T.C. Manjunath, 2007].

After converting the current i using
signal conditioning device with gain G, into
voltageV,, thus the sensor output voltage is

obtained as,:

xitly
LOF

V.(t) =G.e3; zb J ni gdx,
X

Substituting for n; and g in equation

(19) and simplifying, we get the sensor voltage

for a 2-nodes finite element as:

l-i-'i
8

1;(:’} = [G;E;izb 0 _G{-E:i_izb‘ D] [ﬁ{],{zﬂ}
é;

V(t)=pPTq  (21)

where ¢ is the time derivative of the modal

coordinate vector ¢ , P is a constant vector which

(19)

(18)
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depends on the type of sensor, its characteristics

and its location on the beam.

2.3.2. Actuator equation

The actuator strain is derived from the
converse piezoelectric equation. The strain

developed a £, on the actuator layer is given by
£q =dz Ep, (22)
where ds; and E; are the piezoelectric strain

constant and the electric field respectively. When

the input to the piezoelectric actuator V,(t), is
applied in the thickness direction £, the electric
field, E; which is the voltage applied V. (t)
divided by the thickness of the actuator £, ; and
the stress, @, which is the actuator strain
multiplied by the young’s modulus E, of the

piezoelectric actuator layer are given by

Vot
E, = ﬁ, (23)
4 I-E
A
g = Ep dyy t (24)

Z
The strain developed on the actuator
layer is directly proportional to the electric field

E;, The resultant moment M, acting on the beam

is thus determined by integrating the stress
through the structural thickness as, [T.C.
Manjunath, 2007]:

M, = E, d3; ZV,(t), (25)

where z = g is the distance between the

neutral axis of the beam and the piezoelectric
layer [T.C. Manjunath, 2007]. Finally, the
control force applied by the actuator is obtained

as:
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xitly

feeri=Epdsp bz J ny dx V, (), (26)
i
.Li.ri

. g a
V() =[0 0 0 ~Eydsb2]| 1 |, (27)

8,
frm=hVo(t)=hu(t), (28)

2.4. Formulation

The dynamic equation of the smart
structure is obtained by using both the
regular and piezoelectric beam elements
given by equations (10, 12 and 13), the mass
and stiffness of the bonding or the adhesive
between the master structure and the sensor /
actuator pair is neglected.

After assembling the general mass
and stiffness matrices and including the
generalized structural damping matrix
[C]=a=[M]+ B = K], where & and £ are
the frictional damping constant and the
structural damping constant, and applying
the cantilever beam boundary condition, the
system equation of motion for the 4-eclement

cantilever beam is:
[M]Bxs G(t) + [C]sxs g(t) + [ﬁ-]sxs q(t) = £,(29)
and
f = fﬂ'.‘[!‘ T fr::r!’ {3':”
for free vibration condition f.., equal to

zero, so the remaining applied force on the
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system is the controlling force exerted by the

controller.

2.5. State Space model of the smart

cantilever beam

The equation (29) could be written in
state space form as follows, Let the states of the
system be defined as,

(31)

q=x,

a=[g) =[] @
sms=[-[ @
=[] e

Substituting equations (31 — 34) in (29),

we get,:

e [2]+ @[] + ) [22] = feon 39
[5] = ~paia) 7]
~) K] []+ Mo (36)

and finally written in state equation form as:

X4
] - [—.-uqi K —Mf‘i c] [;3
E. X4
* [M?i n] u(e),

(38)

(37)

i=Ax(t) + Bult),

The output equation (sensor equation)

for a SISO case is given by:

() =V(t)=PT ¢ = Pr[:i]
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X1

yo =l prfl @0
e

¥(t) = € x(t) + Dult), (41)

The SISO state space model (state
equation and output equation (41)) of the smart
cantilever beam finally is given by equations

(38) and (41), with,

0 I :
4= [—:‘f_iﬁ' —M_if]m: 15’1‘42)
_[ 0 .

B = [11'.!‘-1]:1]15)@’ L43)
C=[o PThxis (44)
D=0, (45)

3. ACTIVE VIBRATION CONTROL

Active vibration control (AVC) is an
important problem in structures. One of the ways
to tackle this problem is to make the structure
smart, intelligent, adaptive and self-controlling

by making use of the smart material.
3.1 Output Feedback Control

The vibrations of many structures and
devices are controlled by sophisticated control
methods. Examples of the use of feedback
control to remove vibrations range from machine
tools to tall buildings and large spacecraft. This
method considered, as one of most popular way
to control the vibrations of a structure by
measuring the position and velocity vectors of
the structure and to use that information to drive
the system in direct proportion to its positions
and velocities [Daniel J. Inman, 2006].
the

Consider following  dynamical

system form,
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Mg(t) + (C+G)g(e) + Kq(e) = £(t), (46)

Where, represent a generalized

q
coordinate that may not be an actual physical

coordinate or position but is related, M = MTis
the mass, or inertia, matrix, C = 7is the viscous
damping matrix, G = GTis gyroscopic matrix,
K = KTis stiffness matrix, and The # vector
f= fit, represents applied external forces and is
also time varying.

A condition to ensure stability, M, C and K is
positive definite, such that (x7A4 x < 0) for all
nonzero real vectors x, and (x7Ax = 0) if and
only if X is zero.

When Output Feedback Control done for
the above system, Equation (46) becomes

Mg(t) + (C+G)glt) + Kqlt) =

-K,q(t) - K, q(t)—f(t), (47)

Here, K, and K, are called feedback gain

matrices [Daniel J. Inman, 2006].

3.2 Model Order Reduction

It is necessary to reduce the order of a
model before performing a control analysis and
designing.

The approach taken for reduction the
order of a given model based on deleting the
coordinates, or modes, that are the Ileast
controllable and observable. The idea here is that
controllability and observability of a state
(coordinate) are indications of the contribution
of that state (coordinate) to the response of the

structure, as well as the ability of that coordinate
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to be excited by an external disturbance[Daniel
J. Inman, 2006].

A useful measure is provided for
asymptotically stable system of the form given
by Equations (38) and (41) by defining the

controllability grammian, denoted by W, as
W7 :j e* BBTeA'tdr,  (48)
]

and the observability grammian, denoted by W,

as:
wg=J et CTCedt,  (49)
o
If the system is controllable (or
observable), the matrix Wy (or Wp) is

nonsingular. These grammians characterize the
degree of controllability and observability by
quantifying just how far away from being

singular the matrices W and Wy are. This is

equivalent to quantifying rank deficiency. The
most reliable way to quantify the rank of a
matrix is to examine the singular values of the
matrix. [Daniel J. Inman, 2006]

Let the matrix P denote a linear

similarity transformation, which when applied to

Equations (38) and (41) yields the equivalent

system
T=A"x'+Bw,  (50)
y=C"x, (51)
These two equivalent systems are related
by
¥ =Px, (52)
A=P14AP (53)
B'=P71B, (54)
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€'=CP, (55)

Here, matrix P can be chosen such that

the new grammians defined by
W, =P W, P, (56)
and,
W, =P 1 W, P, (57)
are equal and diagonal. That is,
Wfr = I-I-’Gf =Ay = diag[c:1 «:7;---::-:,,]
where the numbers @; are the singular values of

the grammians and are ordered such that

g; 7 O;s1, i=12...2n—1

The MATLAB program offer a good
algorathems for the system order reduction using
the controllability and observability gramians
called Control System Toolbox. The command
(balreal) used to perform the balanced relization
based on controllability and observability
gramians, where the command (modred) used for
system order reduction [Michael R. Hatch,

2001].

3.3 Controller Design using Pole Placement

and output feedback techniques

Stability of a system are closely related
to the location of poles or eigenvalues of the
system. Pole placement can be achieved by
feedback control. The poles of this system are
eigenvalues of A.

Using the state feedback
u=-K.mx (58)

Where (K,,,4 x) is linear state feedback.
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Under this feedback control, the

controlled closed loop is

by[Deepak Chhabra, 2011]:
i = A x(t) + Er(t),

system given
(59)
Where:

Ay = (A— EKNH’}J (60)
To find out the value of feedback gain

matrix K_;4, A characteristic equation of the

system is considered as:
‘F{Sj =s5"+ ﬂr:—].sﬂ_i + ar:—lsﬂ_z +

+ay5 + ap, (61)

The poles of the controlled system is in
the desired locations represented by the desired
characteristic equation as:
pls)=s5"+a, ;5" +a, 24

(62)

This can be achieved by letting the

:5.‘:

! F
+ay5 +ag,

feedback matrix be:

Krtf-i = [kﬂ ki ;‘:n—l]

=[apg—ay a; —a,

1 Qpq— ﬂ:q_—j_].l' [63)
The MATLAB command (place) in

Control System Toolbox could be used to

computes the feedback gain matrix K. that

achieves the desired closed-loop pole locations.
The algorathem used in this command uses the
extra degrees of freedom to find a solution that
minimizes the sensitivity of the closed-loop

poles to perturbations in A or 5 matrices, and it

optimizes the choice of eigenvectors for a robust

solution.
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4. NUMERICAL SIMULATION AND
RESULTS

Figure (2) illusterate the smart canteliver
beam with the embaded sensor and actuator
layers, showing the devisions considered in the
FEM solution.

The dimensions of the piezoelectric
patch are given in Table (1) and Table (2).

The bode plot of the original system and
the balanced reduced system is shown if
figure(3)

The resulted natural frequencies (N.F)
from the numerical simulation is matching the
reference N.F, also A complete match was found
between the original system model and the
reduced system model for the first three modes.

The tip response of smart cantilever
beam for free vibration case with initial tip
displacement of (1 cm) is shown in figure (4) for
the case at which the sensor/actuator patches
placed onto position of element 2. In addition,
the free vibration tip response for the case at

which the patches placed onto element 4
is shown in figure(5).

After applying the control law the new
closed loop system bode plot is shown in
figure(6) for the case of the patches onto element
2, also the effect of the control action on the
cantilever response for the case of the patches
onto element 2 is represented in figure(7).
Moreover, for the case of the patches onto
element 4 is represented in figure (8).

The patches position affects the free
response of the beam as shown in figures (4) and
(5). in which the

In addition, the case
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piezoelectric patches placed onto the position of
element (2) is better than the position of element
(4) in vibration suppression using the proposed

control law.

5. Conclusions

In conclusion, it could be said that
the vibration suppressed successfully for the

cantilever beam using 2 piezoelectric

patches of piezoelectric material as sensor
and actuator.

It is found out that, the Pole

Placement method is an applicable way for
the active vibration control vibration

The reduction method used was very
effective.

On the other hand, it is possible to
implement optimal control techniques to
control the amplitude and time of the
vibration.
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Table (1) properties of the flexible cantilever

beam when the beam is divided into 4 elements

Journal of Engineering

Table (3) shows the natural frequency in (Hz)

and verification with the reference paper

[B.Bandyopadhyay, 2007] . N.F.
Numerical
Ref. [B. Error
N.F. | result by o
Numerical MATLAB Bandyopadhyay, | (%)
Parameter Symbol 2007]
Value
Length (m) I 0.03 o} 4.738 4.73 0.00
Width (m) b 0.03 o | 27429 27.43 0.00
Thickness (mm) i 0.5
Young’s Modulus 3 81.868 -- --
(Gpa) E, 193.06
Density (kg/m3) Py 8030 o
Damping constant g 0.001, Table(4) Symbols Description
: o,
used in (C) 0.0001 Syb. Description Unit
& | Fractional damping constant
T able (2) properties of the piezoelectric element B | Structural damping constant
when the beam is divided into 4 elements [B. ¢ | Stain
Band dh 2007 £, | Mechanical normal strain
ancdyopadyay, I Poisson’s ratio
Numerical &, | Density of the beam Kg/m’
Parameter Symbol Value 5. | Density of the piezoelectric Kg/m’
Length (m) I, 0.075 | patch
Width (m) b 0.03 gA | Mass / unit length
Thickness (mm) t, 0.35 o. | Stress in the actuator
Young’s Modulus E 68 o | Stress N/m’
.(Gpa) 7 w | Natural frequency Hz
Density (kg/m3) Py 7700 ¢ | Damping ratio
Piezoelectric Stain 12
constant (m/V) d3s 125x10
Piezoelectric Stress 3
constant (V.m/N) €31 10.5x10
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Appendix - 1 -

Spatial  Derivative

of The

Function of Bernoulli-Euler Beam,

Vibration Control Analysis of a Smart Flexible
Cantilever Beam Using Smart Material
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