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ABSTRACT 

This paper features the modeling and design of a pole placement and output Feedback control 
technique for the Active Vibration Control (AVC) of a smart flexible cantilever beam for a Single 
Input Single Output (SISO) case. Measurements and actuation actions done by using patches of 
piezoelectric layer, it is bonded to the master structure as sensor/actuator at a certain position of the 
cantilever beam. 

The smart structure is modeled based on the concept of piezoelectric theory, Bernoulli -Euler 
beam theory, using Finite Element Method (FEM) and the state space techniques. The number of 
modes is reduced using the controllability and observability grammians retaining the first three 
dominant vibratory modes, and for the reduced system, a control law is designed using pole placement 
and output feedback techniques. 

 The analyzed case studies concern the vibration reduction of a cantilever beam with a 
collocated symmetric piezoelectric sensor/actuator pair bonded on the surface. The transverse 
displacement time history, for an initial displacement field at the free end, is evaluated. Results are 
compared with other works, and the control design shows that Pole Placement method is an effective 
method for vibration suppression of the beam and settling time reduction. 

Keywords: vibration, active vibration control, smart material, cantilever beam. 

 :الخلاصة

رجѧѧاع للمتغيѧѧرات هѧѧذا البحѧѧث يѧѧصف التمثيѧѧل الرياضѧѧي والتѧѧصميم لطريقѧѧة الѧѧسيطرة الخاصѧѧة بتغييѧѧر موقѧѧع الجѧѧذور واسѧѧتخدام الا  
عمليѧѧات التوجيѧѧه و . هتѧѧزازات لعتبѧѧة ذآيѧѧة وباسѧѧتخدام حالѧѧة ادخѧѧال واخѧѧراج مفѧѧردة   الاعلѧѧى الفاعلѧѧة سѧѧتخدام الѧѧسيطرة لناتجѧѧة وذلѧѧك لاا

حѧѧددة تكѧѧون مالتحѧѧسس لازاحѧѧة العتبѧѧة تѧѧتم بواسѧѧطة موجهѧѧات و متحسѧѧسات مѧѧصنوعة مѧѧن المѧѧواد الذآيѧѧة علѧѧى شѧѧكل ملѧѧصقات باحجѧѧام    
  .واقع محددةملصوقة على سطح العتبة الرئيسية و بم

 اويلѧر للعتبѧات و نظريѧة العناصѧر المحѧددة و      –تمت نمذجة العتبة الذآية باستخدام نظرية المواد الكهربية الذآيѧة، نظريѧة برنѧولي          
عѧدد الاطѧوار الكلѧي للنمѧوذج تمѧت تقليѧصها الѧى الѧثلاث اطѧوار الاساسѧية و المѧسيطرة               . حل المعادلات باستخدام نظرية الحالة المخمنة     

تѧم تѧصميم قѧانون للѧسيطرة للنمѧوذج المقلѧص الجديѧد حيѧث اسѧتخدمت نظريѧة                    . م نظرية محددات معѧاملات الѧسيطرة و التخمѧين         باستخدا
  .خدام ارجاع المخرجاتتلرياضي و السيطرة باساابدال الجذور للنموذج 

المواد الذآية ملصوق بشكل درست الحالة في هذا البحث تقليص الاهتزاز لعتبة مصنوعة من الالمينوم باستخدام زوج واحد من 
و تم  تسجيل هذا .  سم1الاهتزاز في العتبة منتج بواسطة ازاحة راس العتبة من الجهة السائبة بمسافة . متناظر على سطحي العتبة

زاز فعالة اظهرت الدراسة ان نظرية السيطرة الفاعلة للاهت. الاهتزاز بالنسبة للزمن اضافة الى ذلك تمت مقارنة النتائج باعمال اخرى
  .لاخماد الاهتزازات في هكذا هياآل
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INTRODUCTION 

It is desired to design lighter mechanical 

systems carrying out higher workloads at higher 

speeds. However, the vibration may become 

prominent factor in this case. Smart materials 

and active control methods can be used to 

eliminate the undesired vibration. This 

combination of smart material and active 

vibration control paid considerable attention in 

the last decade especially in the space structures 

application. 

Since the middle of the 19th century and 

due to the importance of providing a lighter, 

strong and vibration resisting structures specially 

in aero-structure and space application, the smart 

materials and active vibration control methods 

considered important for these application 

[Anna-Maria R. McGowan, 1998].  

1.1. Piezoelectric Materials (Smart 

Materials) 

In the year 1880, the brothers Pierre and 

Jacques Curie discovered the direct piezoelectric 

effect at tourmaline crystals. The inverse 

piezoelectric effect was predicted in 1881 by M. 

G. Lippmann based on thermodynamic 

considerations and afterwards confirmed 

experimentally by the brothers Curie [R.G. 

Ballas, 2007]. 

T.C. Manjunath and B. 

Bandyopadhyay (2007) [T.C. Manjunath, 2007] 

presented the modeling and design of a (FOS) 

Feedback control technique for the Active 

Vibration Control of a smart flexible aluminium  

Cantilever beam for a (SISO) case. The 

entire structure modeled in state space form 

using the concept of piezoelectric theory, Euler-

Bernoulli beam theory and FEM techniques. The 

conclusions drawn for the best performance and 

for smallest magnitude of the control input 

required to control the vibrations of the beam. 

The MATLAB program used in results 

simulations. 

Tamara Nestorović and Miroslav 

Trajkov (2010) [Tamara Nestorović, 2010] 

studied the piezoelectric applications in active 

vibration and noise attenuation in mechanical 

and civil engineering involving subsequent steps 

of modeling, control, simulation, experimental 

verification and implementation. 

Deepak Chhabra, Pankaj Chandna , 

Gian Bhushan (2011) [Deepak Chhabra, 2011] 

designed the state/output feedback control by 

Pole placement technique and LQR optimal 

control approach achieve the desired control for 

the same smart cantilever beam in [T.C. 

Manjunath, 2007]. Sufficient vibrations 

attenuation was achieved. Pole placement 

technique is used to obtain the desired Eigen 

values of controlled system. 

Meysam Chegini, Milad Chegini and 

Hadi Mohammadi (2011) [Meysam Chegini, 

2011] used the PID control technique in their 

paper instead of (FOS) Feedback controller in 

(T.C. Manjunath and B. Bandyopadhyay (2007)) 

for the same smart cantilever beam, concluding 

that it is possible to implement classical 

controllers, such as PID and PI to control the 

amplitude and time of the vibration. 



Journal of Engineering Volume   19  January   2013        Number 1  

 
 

  84

The analysis performed by Gergely 

Takács (2011) [Gergely Takács, 2011] presents 

the smart cantilever beam but with digital 

feedback control loops inside ANSYS transient 

simulations using the proprietary macro 

language of the software package. The close 

agreement of the closed-loop simulation results 

and laboratory measurements indicates the 

potential to use ANSYS for the preliminary 

prototyping of active vibration control systems 

(AVC). 

1.2. Smart Structures 

Piezoelectric materials could be divided, 

from structural viewpoint, into ceramic and 

polymeric forms. The most popular piezoelectric 

ceramics (or in short, piezoceramics) are 

compounds of lead zirconate titanate (PZT), the 

properties of which can be optimized to suit 

specific applications by appropriate adjustment 

of the zirconate–titanate ratio. 

The polymeric form of the piezoelectric 

materials as polyvinylidene fluoride (PDVF) 

having low stiffness and electromechanical 

coupling coefficients (when compared to 

ceramics like PZT, for instance) [Nader Jalili, 

2010].  

Structures with added functionality over 

and above the conventional purpose of providing 

strength by reinforcement or stiffness may be 

regarded as smart. Smart or adaptive structures, 

based on using a small change in the structure 

geometry at critical locations induced by 

internally generated control signals, can result in 

a non-linear amplification of the shape, stiffness 

or strength, and so the structure will adapt to a 

functional need. In practice, smart structures 

may be classified depending on their 

functionality and adaptation to the changing 

situation:  

1. Passive smart  

2. Active smart 

3. Intelligent. 

2. MODELING OF SMART 

CANTILEVER BEAM 

The smart structure is modeled based on the 

concept of piezoelectric theory, Bernoulli -

Euler beam theory, using Finite Element 

Method (FEM). 

2.1. Displacement Functions 

A beam element is considered with two 

nodes at its end. Each node is having two degree 

of freedom (DOF). The shape functions of the 

element are derived by considering an 

approximate solution and by applying boundary 

conditions. The mass and stiffness matrix is 

derived using shape functions for the beam 

element. Mass and stiffness matrix of 

piezoelectric (sensor/actuator) element are 

similar to the beam element. To obtain the mass 

and stiffness matrix of smart beam element that 

consists of two piezoelectric materials and a 

beam element, all the three matrices added. 

FEM assembly of beam element and 

smart beam element models the cantilever beam. 

The last two row’s two elements of first matrix 

are added with first two row’s two element of 

next matrix. The global mass and stiffness 

matrix is formed. The boundary conditions are 

applied on the global matrices for the cantilever 
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beam. The first two rows and two columns 

should be deleted as one end of the beam is 

fixed. The actual response of the system, i.e., the 

tip displacement u (x,t) is obtained for all the 

various models of the cantilever beam with and 

without the controllers[Deepak Chhabra, 2011].  

A beam element of length Lb with two 

DOFs at each node i.e. translation and rotation is 

considered[T.C. Manjunath, 2007].  

 
Application of the boundary condition of 

the cantilever beam yields: 

 
Substituting the constants obtained from 

(2) into (1) and by rearranging the terms, the 

final form for W(x) is obtained as: 

 
where  gives the shape function as, [Ranjan 

Vepa, 2010]: 

 
and is the vector of displacements and slopes 

(nodal displacement vector) and is given by: 

 
 
 

2.2. DYNAMIC EQUATION OF THE 

BEAM ELEMENT 

The equation of motion of the regular 

beam element is obtained by the lagrangian 

equation:  

 
As: 

   
The strain energy  and the kinetic 

energy  for the beam element with uniform 

cross section in bending is obtained as: 

 

 
Element in its explicit form is obtained as: 

 
where  and are the forces at the 

nodes 1 and 2, and  are the bending 

moments acting at the nodes 1 and 2 

respectively. 

The piezoelectric beam element shown 

in Figure (1) is obtained by sandwiching the 

regular beam element between two piezoelectric 

thin layers of thickness  or .  

The bottom layer acts as a sensor and the 

upper layer acts as an actuator. Similar to the 

equation (10) obtained for a regular beam 
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element, the Lagrangian equation of motion of 

the piezoelectric beam element is obtained as, 

 
where and  are the mass and stiffness 

matrices of the piezoelectric element and is 

obtained as, [Daniel J. Inman, 2006]: 

 
and  

 
where : 

 

 

 

2.3. Piezoelectric strain rate sensors and 

actuators 

The sensor equation is derived from the 

direct piezoelectric equation. The electric 

displacement developed on the sensor surface is 

directly proportional to the stress acting on the 

sensor. If the poling is done along the thickness 

direction of the sensors with the electrodes on 

the upper and the lower surfaces, the electric 

displacement D is given by, [Michael R. Hatch,  

2001]: 

 

where  is the piezoelectric constant,  is 

the piezoelectric stress / charge constant,  is 

the young’s modulus and  is the strain that is 

produced. 

2.3.1. Sensor equation 

The total charge  developed on the 

sensor surface is the spatial summation of all the 

point charges developed on the sensor layer. 

Thus, the expression for the current generated is 

obtained as, [Ranjan Vepa, 2010]: 

 
where, , and  is the second spatial 

derivative of the shape function given in 

(Appendix 1) [T.C. Manjunath, 2007]. 

After converting the current  using 

signal conditioning device with gain  into 

voltage , thus the sensor output voltage is 

obtained as,: 

 
Substituting for  and  in equation 

(19) and simplifying, we get the sensor voltage 

for a 2-nodes finite element as: 

 
 

 
 
where  is the time derivative of the modal 

coordinate vector  ,  is a constant vector which 
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depends on the type of sensor, its characteristics 

and its location on the beam. 

2.3.2. Actuator equation 

The actuator strain is derived from the 

converse piezoelectric equation. The strain 

developed a  on the actuator layer is given by 

 
where  and  are the piezoelectric strain 

constant and the electric field respectively. When 

the input to the piezoelectric actuator , is 

applied in the thickness direction , the electric 

field,  which is the voltage applied  

divided by the thickness of the actuator  ; and 

the stress,  which is the actuator strain 

multiplied by the young’s modulus  of the 

piezoelectric actuator layer are given by 

 

 
The strain developed on the actuator 

layer is directly proportional to the electric field 

, The resultant moment  acting on the beam 

is thus determined by integrating the stress 

through the structural thickness as, [T.C. 

Manjunath, 2007]: 

 
where  is the distance between the 

neutral axis of the beam and the piezoelectric 

layer [T.C. Manjunath, 2007]. Finally, the 

control force applied by the actuator is obtained 

as: 

 

 
 

 

2.4. Formulation 

The dynamic equation of the smart 

structure is obtained by using both the 

regular and piezoelectric beam elements 

given by equations (10, 12 and 13), the mass 

and stiffness of the bonding or the adhesive 

between the master structure and the sensor / 

actuator pair is neglected.  

After assembling the general mass 

and stiffness matrices and including the 

generalized structural damping matrix 

, where  and  are 

the frictional damping constant and the 

structural damping constant, and applying 

the cantilever beam boundary condition, the 

system equation of motion for the 4-element 

cantilever beam is: 

 

and  

 
for free vibration condition  equal to 

zero, so the remaining applied force on the 
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system is the controlling force exerted by the 

controller. 

2.5. State Space model of the smart 

cantilever beam 

The equation (29) could be written in 

state space form as follows, Let the states of the 

system be defined as, 

 

 

 

 
Substituting equations (31 – 34) in (29), 

we get,: 

 
 

 

 
and finally written in state equation form as: 

 

 
 

 
The output equation (sensor equation) 

for a SISO case is given by: 

 

 

 
The SISO state space model (state 

equation and output equation (41)) of the smart 

cantilever beam finally is given by equations 

(38) and (41), with, 

 

 

 

 

3. ACTIVE VIBRATION CONTROL 

Active vibration control (AVC) is an 

important problem in structures. One of the ways 

to tackle this problem is to make the structure 

smart, intelligent, adaptive and self-controlling 

by making use of the smart material. 

3.1 Output Feedback Control 

The vibrations of many structures and 

devices are controlled by sophisticated control 

methods. Examples of the use of feedback 

control to remove vibrations range from machine 

tools to tall buildings and large spacecraft. This 

method considered, as one of most popular way 

to control the vibrations of a structure by 

measuring the position and velocity vectors of 

the structure and to use that information to drive 

the system in direct proportion to its positions 

and velocities [Daniel J. Inman, 2006].  

Consider the following dynamical 

system form, 
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Where,  represent a generalized 

coordinate that may not be an actual physical 

coordinate or position but is related, is 

the mass, or inertia, matrix, is the viscous 

damping matrix, is gyroscopic matrix, 

is stiffness matrix, and The  vector 

 represents applied external forces and is 

also time varying. 

A condition to ensure stability, ,  and  is 

positive definite, such that  for all 

nonzero real vectors , and   if and 

only if  is zero.  

When Output Feedback Control done for 

the above system, Equation (46) becomes 

 

 
Here,  and  are called feedback gain 

matrices [Daniel J. Inman, 2006].  

3.2 Model Order Reduction 

It is necessary to reduce the order of a 

model before performing a control analysis and 

designing. 

The approach taken for reduction the 

order of a given model based on deleting the 

coordinates, or modes, that are the least 

controllable and observable. The idea here is that 

controllability and observability of a state 

(coordinate) are indications of the contribution 

of that state (coordinate) to the response of the 

structure, as well as the ability of that coordinate 

to be excited by an external disturbance[Daniel 

J. Inman, 2006].  

A useful measure is provided for 

asymptotically stable system of the form given 

by Equations (38) and (41) by defining the 

controllability grammian, denoted by , as 

 
and the observability grammian, denoted by , 

as: 

 
If the system is controllable (or 

observable), the matrix  (or ) is 

nonsingular. These grammians characterize the 

degree of controllability and observability by 

quantifying just how far away from being 

singular the matrices  and  are. This is 

equivalent to quantifying rank deficiency. The 

most reliable way to quantify the rank of a 

matrix is to examine the singular values of the 

matrix. [Daniel J. Inman, 2006] 

Let the matrix  denote a linear 

similarity transformation, which when applied to 

Equations (38) and (41) yields the equivalent 

system 

 

 
These two equivalent systems are related 

by 
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Here, matrix  can be chosen such that 

the new grammians defined by 

 
and, 

 
are equal and diagonal. That is, 

 
where the numbers are the singular values of 

the grammians and are ordered such that 

 
The MATLAB program offer a good 

algorathems for the system order reduction using 

the controllability and observability gramians 

called Control System Toolbox. The command 

(balreal) used to perform the balanced relization 

based on controllability and observability 

gramians, where the command (modred) used for 

system order reduction [Michael R. Hatch,  

2001].  

3.3 Controller Design using Pole Placement 

and output feedback techniques 

Stability of a system are closely related 

to the location of poles or eigenvalues of the 

system. Pole placement can be achieved by 

feedback control. The poles of this system are 

eigenvalues of . 

Using the state feedback 

 
Where  is linear state feedback. 

Under this feedback control, the 

controlled closed loop system is given 

by[Deepak Chhabra, 2011]:  

 
Where: 

 
 

To find out the value of feedback gain 

matrix , A characteristic equation of the 

system is considered as: 

 

 
The poles of the controlled system is in 

the desired locations represented by the desired 

characteristic equation as: 

 

 
This can be achieved by letting the 

feedback matrix be: 

 

 

 
The MATLAB command (place) in 

Control System Toolbox could be used to  

 

computes the feedback gain matrix  that 

achieves the desired closed-loop pole locations. 

The algorathem used in this command uses the 

extra degrees of freedom to find a solution that 

minimizes the sensitivity of the closed-loop 

poles to perturbations in  or  matrices, and it 

optimizes the choice of eigenvectors for a robust 

solution. 



Dr. Wedad Ibraheem Majeed                                                       Vibration Control Analysis of a Smart Flexible 
    Dr. Shibly Ahmed Al-Samarraie                                                  Cantilever Beam Using Smart Material 

Mohanad Mufaq AL-SAIOR 

 
 

91

4. NUMERICAL SIMULATION AND 

RESULTS 

Figure (2) illusterate the smart canteliver 

beam with the embaded sensor and actuator 

layers, showing the devisions considered in the 

FEM solution. 

The dimensions of the piezoelectric 

patch are given in Table (1) and Table (2). 

The bode plot of the original system and 

the balanced reduced system is shown if 

figure(3) 

The resulted natural frequencies (N.F) 

from the numerical simulation is matching the 

reference N.F, also A complete match was found 

between the original system model and the 

reduced system model for the first three modes. 

The tip response of smart cantilever 

beam for free vibration case with initial tip 

displacement of (1 cm) is shown in figure (4) for 

the case at which the sensor/actuator patches 

placed onto position of element 2. In addition, 

the free vibration tip response for the case at  

which the patches placed onto element 4 

is shown in figure(5). 

            After applying the control law the new 

closed loop system bode plot is shown in 

figure(6) for the case of the patches onto element 

2, also the effect of the control action on the 

cantilever response for the case of the patches 

onto element 2 is represented in figure(7). 

Moreover, for the case of the patches onto 

element 4 is represented in figure (8). 

The patches position affects the free 

response of the beam as shown in figures (4) and 

(5). In addition, the case in which the 

piezoelectric patches placed onto the position of 

element (2) is better than the position of element 

(4) in vibration suppression using the proposed 

control law. 

5. Conclusions 

In conclusion, it could be said that 

the vibration suppressed successfully for the 

cantilever beam using 2 piezoelectric 

patches of piezoelectric material as sensor 

and actuator. 

It is found out that, the Pole 

Placement method is an applicable way for 

the active vibration control vibration 

The reduction method used was very 

effective. 

On the other hand, it is possible to 

implement optimal control techniques to 

control the amplitude and time of the 

vibration. 
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Figure 1 Smart beam element 
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Figure2  smart cantilever beam 
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Figure 2 Bode plot of the original system and 

the balanced reduced system 
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Figure 3 Free Vibration tip response for 

sensor/actuator patches on to element 2 
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Figure 4 Free Vibration tip response for 

sensor/actuator patches on to element 4 
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Figure 5 Bode plot of the original system, the 

balanced reduced system and the new closed 

loop controlled system 
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Figure 6 AVC for beam with patch on 

element(2) 
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Figure 7 AVC for beam with patch on 

element(4) 
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Table (1) properties of the flexible cantilever 

beam when the beam is divided into 4 elements 

[B.Bandyopadhyay, 2007] 

Parameter Symbol Numerical 
Value 

Length (m)  0.03 
Width (m)  0.03 

Thickness (mm)  0.5 
Young’s Modulus 

(Gpa)  193.06 

Density (kg/m3)  8030 
Damping constant 

used in (C)  
0.001, 
0.0001 

 

T able (2) properties of the piezoelectric element 

when the beam is divided into 4 elements [B. 

Bandyopadhyay, 2007].  

Parameter Symbol Numerical 
Value 

Length (m)  0.075 
Width (m)  0.03 

Thickness (mm)  0.35 
Young’s Modulus 

(Gpa)  68 

Density (kg/m3)  7700 

Piezoelectric Stain 
constant (m/V)    125×10-12 

Piezoelectric Stress 
constant (V.m/N)   10.5×10-3 

 

 

 

 

 

 

 

 

 

 

Table (3) shows the natural frequency in (Hz) 

and verification with the reference paper 

N.F. 
Numerical 
result by 

MATLAB 

N.F. 
Ref. [B. 

Bandyopadhyay, 
2007] 

Error 
(%) 

ω1 4.738 4.73 0.00 

ω2 27.429 27.43 0.00 

ω3 81.868 -- -- 
 

Table(4) Symbols Description 

Syb. Description Unit 

 Fractional damping constant  

  Structural damping constant  

 Strain  

 Mechanical normal strain  

 Poisson’s ratio  

 Density of the beam Kg/m3 

 
Density of the piezoelectric 
patch 

Kg/m3 

 Mass / unit length  

 Stress in the actuator  

 Stress N/m2 

 Natural frequency Hz 

 Damping ratio  
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Appendix - 1 - 

Spatial Derivative of The Shape 

Function of Bernoulli-Euler Beam, 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


