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ABSTRACT: 
    The present work considers an alternative solution for a complex configuration of rotor discs by 
applying  Galerkin Method. The theoretical model consists of elastic shaft carrying number of discs 
and supported on number of journal bearings. The equation of motion was discretized to finite 
degree of freedom in terms of the system generalized coordinates. The various effects of the 
dynamical forces and moments arising from the bearing, discs and shaft were included. Rayleigh 
beam model is used for analyzing the shaft while the discs are considered rigid . The validity and 
convergence of the present analysis was carefully checked by comparing with the Finite Element 
solution. An example of rotor consists of three different size discs and supported by two journal 
bearing was considered  for the numerical solution .The results  shows good agreements between 
the two methods ,where the maximum error not exceeds  5%. The convergence test showed that 
using few modes (not more than 6) are sufficient for the accurate analysis. The forward and 
backward whirl was investigated experimentally .The experimental results of a two discs rotor 
,show a reasonable  agreement where the maximum error  not exceeds 11%. The unbalance 
response, Cambpell diagram, orbit response were plotted .The effects of geometry, disc sizes , 
location and arrangement on the unbalance response and natural frequencies of three discs rotor 
were further investigated .  
  
Key words: Galerkin method, Cambpell diagram, whirl frequency, journal bearing , gyroscopic 
couple  
 

 الاشكالبحث نظري وتجريبي للتصرفات الديناميكية لدوارات معقدة م
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 الخلاصه:
وذلك باستخدام طريقة جالركين .يتألف النموذج النظري من عمود مرن ،تم في البحث الحالي اعتماد طريقه بديلة لتحليل الدوار المعقد        

د من الاقراص والمساند الزيتيه .تم نجزئة معادلة الحركه الى عدد محدد من درجات الحرية باستخدام الاحداثيات العامة .تم الاخذ يحمل عد
لاقراص وعمود الدوران .تم اعتبار العمود كعمود رايلي اما المساند اتأثيرات قوى والعزوم الناتجة من التاثيرات الديناميكية للبنظر الاعتبار 

اختيار دوار مؤلف .وكمثال عددي  تم FEMصحة وتقارب الحل بالمقارنة مع طريقة العناصر المحدده  اختبرت.قراص فاعتبرت كتل صلدةالا
% 5من عمود يحمل ثلاثة اقراص مختلفة الحجم ومسند على مسندين زيتين .بينت النتائج تطابق جيد بين الطريقتين حيث لم تتعدى نسبة الخطأ 

الديناميكيه ) يكفي للحصول على نتائج جيده .بعض الخصائص 6بينما بينت تجربة اقتراب الحل بان استخدام عدد قليل من الاطوار (لايتعدى 
فبينت النتائج تطابق مقبولا حيث لم تتعدى نسبة باستخدام نموذج لدوار مؤلف من قرصين ، تم قياسها عمليا مثل تردد التدويم الامامي والخلفي 

دراسة م .بالاضافة الى ذلك، فقد ت%.تم رسم مخططات استجابة عدم الاتزان ومخطط كامبل وشكل المدارات لنماذج من الدوارات 11الخطأ 
 .دسكات  ةعلى الاستجابه والترددات الطبيعيه  لدوار مؤلف من ثلاثالاقراص  قعوترتيب وموجم تأثير ح

 
 ، مسند زيتي ،العزم الجايروسكوبي طريقة جالركين ،مخطط كامبل ،تردد التدويم : الكلمات الرئيسية 
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1.INTRODUCTION 
     Rotors and rotary machines have a significant 
application in engineering and industries. Many 
catastrophic damages of machines are due to the 
undesired dynamical behavior of the rotors, such 
as; whirling and large deflection, resonance, 
imbalance shaking forces,…etc.   
    In 1869, the first attempt to formulate the 
dynamics of single disc rotor had been put 
forward by Rankin. However the first simplified 
acceptable model had been proposed by Jeffcott in 
1919. From that time till now, enormous 
theoretical and experimental works had been 
achieved in this vast field, hence, rotor-dynamics 
bibliography is much extended. A comprehensive 
survey about this subject can be found in many 
references such as Genta,2005.   
   The main kinds of effects contribute the 
dynamical behavior of rotors; The elasticity 
,inertia and  gyroscopic effects of the shaft , the 
elasticity and damping of the oil film at bearings, 
and the gyroscopic ,inertial (lateral and rotational)  
and unbalance of the attached discs. Including all 
these effects, will complicate the analysis even for 
the simplest modelsو Holmes,1978. The 
dynamical  analysis of multi disc and bearings 
rotors  were normally achieved via numerical 
methods such as Finite Element, influence 
coefficients ,state space ,lumped analysis and 
transfer matrix method. For example, 
Geradin,1984, introduced a new Finite element 
model for evaluating the natural frequencies and 
dynamics response of multi disc rotos .Rao ,1994, 
used the Influence coefficient method to calculate 
the natural frequencies of multi disc rotor . Das 
and Dutt,2012, employed state space method to 
evaluate the vibration of multi disc rotors for 
controlling process .  
The effect of the unbalancing of multi disc rotor 
on the dynamical behavior and stability was 
studied by Ding ,1997 and  Xie .et.al 2008 .They  
used the  lumped mass method for the analysis. 
For all of the  above mentioned  methods ,the 
accurate analysis demand four degree of freedom 
for the individual station (two translations and two 
rotations).Hence large number of stations are 
needed for accurate numerical analysis. This lead 
to a huge global matrix for analyzing the Eigen 
value problem and frequency response. Analytical 
methods are seldom used except for simple or 
high approximated models, Adams,2010.Many 
experimental works was performed to justify the 

theoretical investigation of multi disc rotors .For 
example ,Flack, et.al ,1981, conducted 
experiment to investigate the effect of lubricant 
viscosity on the response of three mass rotor . 
Ding, et al.,2005, made experimental study to 
predict the  nonlinear dynamic behaviors of a 
multi-bearing flexible rotor system. 
    In the present work, An alternative method  for 
evaluating the dynamical behavior of multi discs 
and bearings rotor  will be attempted . In this 
method , Galerkin procedure  is employed, in 
which  an appropriate shape functions are selected 
as basis functions for performing the analysis . 
Such functions take into account the elastic 
deformation of the shaft as well as the possibility 
of rigid body translation and rotation.  
 
2.THEORY 
      For the multi discs and bearings model shown 
in Fig.1, the flexible shaft was considered to obey 
Rayleigh beam, and subjected to bending 
vibration at two orthogonal planes x-z and x-y. 
The various forces and moments due to the 
stiffness and damping of the bearing oil film, disc 
inertia, rotary inertia, gyroscopic and unbalancing 
for the rotor components, are shown in Fig.2.  

 
The equations of motion of bending vibration can 
be written as, Ding,2005: 
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Dividing Eq. (1) and Eq. (2) by EI and arranging, 
giving: 
 

( ) ),(,.2* τζτζαµβηβηηη Zz
IV QfC ==′′Ω−′′−++ 

 
( ) ),(,.2* τζτζαηβµβµµµ yy

IV QfC ==′′Ω+′′−++ 

                          (3) 
Where; 

Lw /=η   ,   Lv /=µ   ,  Lx=ζ  ’  
( ) AEILt ρτ 2/= , EIALsp ρω 2=Ω  

 
ALI 2=β  ,  

AEI
CLC
ρ

=∗ , EIL /3=α                                                

(4) 
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For simplicity the following notations were used; 
 
 And    ( ) ( )′=

∂
∂
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The R.H.S terms of Eq.(3) represents the 
dimensionless dynamical forces due to the bearing 
and discs at x-z and x-y planes. In case of, Qz they 
are as follows; 
 
1-bearing spring forces; 
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2- bearing damping forces; 
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2- Disc translation inertial forces: 
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3- Disc imbalances forces; 
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4-Disk gyroscopic moments; 
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5-Disc rotational inertia moments; 
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Where Nb and Nd are the number of bearings and 
discs, respectively .  
  For the plan x-y the same procedures can be used 
to obtain the components of the  force yQ  as the 
follows: 
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In the above equations, the following 
dimensionless terms are considered; 
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Substituting
 
Eqs.(5 to 10) into the first of Eq.(3) 

giving  the following equation of motion at (x-y) 

plane; 
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Smilarly ,substituting
 
Eqs.(11-16),into the second 

of  Eqs.(3) giving  the equation of motion at (x-z) 

plane; 
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 To introduce Galerkin scheme ,a solution in term 

of the beam normal modes may be taken . Let 

such  solutions of eqs(18) and (19) be;  

( ) ( ) ( ) ( )τζφτζφτζφτζη RRTT

N

s
ss qqq ++=∑

=1
)()(),(

                                   

( ) ( ) ( ) ( )τζψτζψτζψτζµ RRTT

N

s
ss ppp ++=∑

=1
)()(),(

(20) 

         
In eqs.(20); )(ζφs  and )(ζϕ s stand for the 

normal modes of beam free vibration, Tφ and Tϕ  
for translational modes and Rφ , Rϕ  for rotational 
modes in z and y directions, respectively. 
In the absence of all the forces and moments the 
normalized mode shapes )(ζφs and )(ζϕ s  are 
those of free-free beam which take the following 
form, Lund et al.,1978: 
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sλ  are the Eigen values of the free-free beam.    
The normalized modes of translational and 
rotational modes may be taken as; 
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So that Eq (20) become; 
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Substitute Eq. (22) into Eq. (18), and following 
Galrkin procedure in which another series for the 

 r modes is chosen  as : 
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Now , multiply , integrate from 0 to 1 and make 
use of the orthogonally of the normal modes,  the 
following matrix equation can be obtained as; 
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By the similar procedures one can obtain from 
eq.(23) and (19) the following matrix equation; 
 

}]{[}]{[}]{[}]{[ * pSpBCpBpA  β−++

( )∑
=

++Ω+
Nb

i
iiyiiy pHCpHKqs

1

** }]{[}]{[}]{[2 β
 

( ) ∑∑
==

ΩΩ=Ω+++
Nd

j
jj

Nd

j
jjjjjj WembqVJpVJpTm

1

2**

1

*** ][sin}]{[}]{[}]{[ τ

                      (25) 
 

The elements of the matrices [A] ,[B] ,[S] ,[ Hi] 
,[Tj] ,[ Vj] ,[ Wj] are given in the appendix. 
 
Finally, Eqs. (24) and (25) can be arranged in the 
following standard form; 
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2.1 Unbalance response and critical speeds  
  Eqs.(26) and (27) can be arranged in a single 
equation by using the following complex vector; 
 

{u}={q}+i{p}                                               (29) 
 
Now ,multiplying Eq.( 26) by i (𝑖 = √−1) , 
adding to Eq.(25) and applying Eq.(29) will give; 
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Since the imbalanced force is harmonic, the 
steady state response of Eq.(30) can be written as;  
  
{ } [ ] [ ] [ ] [ ][ ] τΩ−

Ω−Ω+Ω+= ieWIMIGiCiKu }{][][ 12

                                                         (32) 
 
  Eq.(32) as well as Eqs.(22) and (23) can be used 
for calculating and plotting the response due to 
unbalancing at a given range of spin speeds .The 
speeds which give the maximum amplitude are 
the critical speeds. The effect of any parameter 
related to the rotor configuration can be studied by 
using this equation.  
  It is important to note  that; the present analysis 
assumes the unbalance vectors lie in the same 
planes for all discs .However for the case when 
there is different unbalance planes of discs ,a 
spatial consideration for solving Eq.(32) must be 
made .This case is not dealt in the present analysis  
   
2.1  Cambpell Diagram  
     The forward and backward whirling 
frequencies at a given spin speed can be 
calculated by using the homogenous parts of Eqs. 
(26) and (27) which are; 
 

0}]{[}]{[}]{[}]{[ =+Ω−+ qMpGqCqK zz   (33)         
0}]{[}]{[}]{[}]{[ =+Ω++ pMqGpCpK yy   (34) 

 

Since vibration is harmonic motion, one can 
assume the following solutions for q and p; 
  

ωτωτ ii eppeqq }ˆ{}{,}ˆ{}{ ==                            (35) 
 
Where }ˆ{},ˆ{ pq  are arbitrary constants . 
 
Substituting Eq. (35) into Eqs. (33) and (34) and 
eliminating the arbitrary constants yield to the 
following characteristics determinant; 
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zz

ωωω
ωωω
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= 0                                                              (36) 
 
At a given rotor parameters Eq.(36) can be used 
to construct  cambpell diagram .by plotting the 
backward and forward frequencies for selected 
modes against the spin speeds . 
 
2.3 Finite element solution  
   For Finite element analysis ,ANSYS 14 
software was employed . Three element types are 
selected to define the various rotor components 
which are;MASS21 element for discs, BEAM 188 
element for shaft and COMBI214 element for 
Bearings. 
  The shaft is divided to 32 elements .The 
gyroscopic effect was considered by employing 
the rotating axis via the CORIOLIS and OMEGA 
commands .The HARMONIC ANALYSIS is used 
for evaluating the solution and plotting the results. 
 
3-EXPERIMENTAL INVESTIGATION  
     The aim of the experimental work is carried to 
verify  the present theoretical analysis. For this 
purpose, a model of rotor consisted of a two 
different size brass discs fitted on elastic steel 
shaft and sited on two identical journal bearings as 
shown in Fig.3-a was used. The specifications of 
the model are given in table(1) except that disc(1) 
was excluded .Disc(2) and (3) were located at 
0.35 and 0.25m from the shaft right side end .The 
rotor is driven by an electrical motor with variable 
speed of (0-3000) RPM .In order to investigate the 
forward and backward whirl frequencies ,the 
motor has a facility of changing its speed 
directions .To reduce the undesired effect of the 
motor vibration which may interfere with the rotor 
response, a PVC coupling was used. A special 
attention was made for aligning the shaft with the 
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motor shaft and the bearings to insure center to 
center alignment which is necessary for reducing 
the misalignment effect on the response. A special 
mechanism was introduced to measure the 
response of the rotating shaft, since it is 
impossible to fit a pick up device directly on the 
rotating shaft .This mechanism consists of a small 
light rod slides vertically through a slot in the 
supported frame. A soft spring is used to insure 
continuous contact between the shaft and the 
slider rod. Finally the accelerometer pick up was 
mounted on the top of rod. The accelerometer was 
connected to the oscilloscope through a charger 
amplifier as shown in Fig.3-c. 
  The main task of the experimental work is to 
measure the forwarded and backward whirl 
frequencies. For this purpose, impact hummer test 
was used .In this test the rotor speed was assigned 
0,200,400,600,800,1000 and 1200 RPM at 
clockwise and counterclockwise directions .For 
each speed an impact test was carried out  .The 
time histories of the excited force and the 
response were recorded and analyzed by using 
SigView software package .The Fast Fourier 
Transformation (FFT) was performed from which 
the whirl  frequencies were calculated .  
 
4. RESULTS AND DISCUSSIONS 
   Although the present analysis is hold for any 
number of discs and bearings, However, an 
example of a rotor consists of elastic shaft 
carrying  three different size discs and  supported 
by two identical bearings was considered  for the 
numerical  analysis. The journal bearings has the 
following specifications; D=0.019170 m, 
L/d=1,c=0.1454mm.The oil lubricant is SAE 20 
with μ =0.0562 N.s/m². For evaluating the bearing 
stiffness and damping, the value of Summerfield 
number was calculated from the above data and 
the graphs given by ,Lund, are employed. The 
numerical data of the model are listed in table .1  
     The validity and convergence of the present 
solution were checked by comparing with the 
ANSYS solution. MATLAB R2009 software was 
employed to solve Eq.(32) to evaluate the 
unbalance response. The number of modes of the 
present solution are varied from N=3 to 6. For the 
two methods the discs are located at ζ= 0.25, 0.5 
and 0.75. The results of  the two methods ,as well 
as, the percentage errors are presented in Table 
2.Table 2 shows that, the present solution has 
better  convergence  at N=5 where the percentage 

error is not exceeded (5 %) .Hence using five 
modes is quite sufficient for the accurate analysis.  
Fig.4 shows the ANSYS simulation of the model. 
The unbalance response is displayed in figure. For 
the comparison purpose, the responses of the same 
model is plotted by using the present solution for 
N=3,4 and 5 and shown in Fig.4. As it is clear 
from these figures, the results of the two methods 
are in a good agreement especially when N 
approaches 5. 
    To investigate the effect of spin speed on the 
forward and backward frequencies for the lowest 
three modes,  Campbell diagram is plotted in 
Fig.5 .This diagram  is plotted by using the two 
methods, again. As it is clear from these figures, 
that ,the agreements between the two solutions  is 
good . 
    The main advantage of Cambpell diagram is to 
test the stability and evaluate critical speeds of the 
rotor .In order to inspect stability; the values of 
the natural frequencies are checked at the selected 
range of spin speeds. When their values changed 
from real to complex the rotor is regarded 
unstable. The speeds causing such a change are 
referred as Threshold speeds .It is found that the 
present rotor model is always stable at the selected 
speed range. 
 The critical speeds can be evaluated from 
cambpell diagram by plotting a straight line with 
slope=1(the solid line in Fig.5 .The points of 
intersections between this line and the frequencies 
curves  give the critical speeds .Referring to Fig.5 
the critical speeds  have the following values ; 
630,660,780 and 1650 RPM .It is to be noted that, 
some of  critical speeds cannot be detected from 
plotting the  unbalance response curve since it 
consider the unbalance response for forward whirl 
speeds, only. Hence Cambpell diagram is more 
effective tool in designing rotors since it is able to 
detect wide range of critical speeds.     
The orbit plot response of the model as it spin at  
960 RPM is shown in Fig.6. As one can see from 
the plot that, the larger orbit path is found under 
the location of heaviest disc. 
  For further investigation , the effect of disc 
locating and arranging ,Figs. 7,8 and 9 are created 
.In Fig .7  the discs are allow  to locate close 
together by assigning  ζ=0.4,0.5 and 0.6.The 
unbalance response of this case is plotted. Fig.7 
indicates two information; firstly, the   critical 
speeds decrease, secondly, one of critical speeds 
becomes insignificant (very small peak response) 
.This means that as the discs spacing decreased 



Journal of Engineering Volume   20  February  2014 Number 2  
 

112 
 

the multi rotor behavior approach  that of the  
single rotor behavior. 
  The effect of discs arrangements are investigated 
in Figs.8 and 9 .In Fig.8 the discs are arranged in 
increasing size order, whilst ,in Fig.9 in 
decreasing order .  Comparing the response of the 
two cases indicates that; reverting the order of 
discs sizes gives a slight change in the critical 
speeds which may be ignored .This may be 
reasoned due to the dynamical symmetry of the 
supporting bearings which give nearly identical 
elastic curve.  
  The theoretical and experimental results of the 
two discs model is shown in Fig.10.In this figure 
the forward and backward whirl frequencies are 
shown .As it is clear that the results are in a good 
agreements where the maximum error is not 
exceeding 11%.The deviation between the two 
results may be attributed to the measuring error 
,effect of internal damping and bearings in 
isotropic .   

 
4.CONCLUSIONS 
    In the present analysis, Galerkin method was 
used to evaluate the dynamical behavior of multi 
discs and bearing rotors. The present analysis can 
be used for any number of discs and bearings. All 
the rotor dynamic aspects; such as forward and 
backward whirl frequencies ,Cambpell diagram 
,stability, critical speed and unbalance response 
can be evaluated by using the present method . 
    The validity and convergence of the present 
analysis was performed by comparing with the 
Finite element solution and experimental results . 
The numerical results of a sample of three disc 
rotor showed that; the solution has better 
convergence when only five modes are employed, 
and the maximum error is not exceeded 5% 
.Hence the computation time and labor can be 
saved. The experimental results showed good 
agreements in measuring the forward and 
backward whirl frequencies with maximum error 
is not exceeding 11%. The effects of disc 
locations and arrangements are investigated .It is 
found that closing the space between the discs 
tends to decrease the critical speeds values and 
diminish some of them .So that the multi discs 
rotor behaves as a single rotor However reverting 
the location of the discs has insignificant effect on 
the critical speeds since it cause a slight change. 
 
 
    

5-REFERENCES  
 

A. G. Holmes, C. M. Ettles and I. W. Mayes, 
1978, “The Dynamics of Multi-Rotor Systems 
Supported on Oil Film Bearings”, J. Mech. 
Des., 100, 156 - 164. 
 
A.S. Das, J.K.Dutt, 2012,“A Reduced Rotor 
Model Using Modified SEREP Approach for 
Vibration Control of Rotors, Mechanical 
Systems and Signal Processing” 26,167–180. 
 
G. Genta, 2005,“Dynamics Of Rotating 
Systems”, springer. 
 
J. Ding, 1997,“Computation Of Multi-Plane 
Imbalance for a Multi-Bearing Rotor 
System”, Journal of Sound and Vibration 205 
(3), 364–371. 
 J. S. RAO ,1994,”The Calculation of the 
Natural Frequencies  of Multi-Disk-Rotor 
Systems Using the Influence Coefficient 
Method Including The Gyroscopic Effects”, 
Mech. Mach. 7"heory ( 29). pp. 739-748. 
 
J. W. Lund and K. K. Thomsen, 1978, “A 
Calculation Method and Data for the 
Dynamic Coefficients of Oil-Lubricated” 
Journal Bearings, Topics ‘In Fluid Film 
Bearing And Rotor Bearing System Design 
And Optimization, ASME Design 
Engineering ,New York. 
  
L. Meirovitch, 1975, "Elements Of Vibration 
Analysis" Mcgraw-Hill, Inc. 
 
M. Geradin, N. Kill, 1984, “A New Approach 
to Finite Element Modeling Of Flexible 
Rotors,” Engineering Computations, 52–64. 
 
M. L. Adams &JR, 2010,“Rotating Machinery 
Vibration, from Analysis to Troubleshooting”, 
CRC press, Taylor & Francis group, second 
edition. 
 
Q. Ding, A.Y.T. Leung, 2005 ,“Experimental 
Study on Nonlinear Dynamic Behaviours of a 
Multi-Bearing Flexible Rotor System”, 
Journal of Vibration and Acoustics—
Transactions of the ASME, 127, (4),408–415. 
  
 R. D. Flack, R F. Lanes and P. S. Gambel, 
1981,“Effects Of Lubricant Viscosity on the 



Mohsin Juber Jweeg  
Mahmud Rasheed Ismail 
Zainab Mohammed Hwad 

Theoritical and Experimental Investigation of  the 
Dynamical Behaviour  of Complex Configuration  
Rotors 

 

113 
 

Experimental Response of a Three-Mass 
Flexible Rotor in Two Types of Journal 
Bearings ,Wear”, 67,201 – 216 
 
Xie Wenhuia, Tang Youganga, Chen Yushub, 
2008, “Analysis of Motion Stability of the 
Flexible Rotor-Bearing System with Two 
Unbalanced Disks”, Journal of Sound and 
Vibration 310, 381–393. 

 
 

Figure 1. Multi discs and bearings model. 
 
 

 

 

 
Figure 2. Disc and bearing modeling. 

 
 
 
 
 

 
(a) 

 
 

(b) 

 
(c) 

Figure 3. Experimental rig, instrumentations and 
connection block diagram.  
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Figure 4. Model simulation , unbalance response 

by using ANSYS and the  present method, for 
three discs rotor  . 

 
 
 

 

 
 

Figure 5. Cambpell diagram , by ANSYS and  the 
present method. 

 
 

 
Figure 5. Orbit response of the three discs rotor  

spins at 960RPM. 
 
 
 
 
 

0 100 200 300 400 500 600 700 800 900 1000
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Spin speed (RPM)

A
m

p
lit

u
d

e
 (

d
im

e
n

s
io

n
le

s
s
)

 

 

N=5
N=3
N=4

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

5

10

15

20

25

30

35

Spin speed (RPM)

F
re

q
u

e
n

c
y
 (

H
z
)



Mohsin Juber Jweeg  
Mahmud Rasheed Ismail 
Zainab Mohammed Hwad 

Theoritical and Experimental Investigation of  the 
Dynamical Behaviour  of Complex Configuration  
Rotors 

 

115 
 

 

 
 

Figure 7. Model simulation and unbalance 
response for closing spaced discs case. 

     
 
 

 
 

Figure 8.  Model simulation and unbalance 
response of increasing order size discs case.  

 

 
 

Figure 9.  Model simulation and unbalance 
response of decreasing order size discs case. 
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Table 2. Validity and convergence of the present.  
 

 

 
Figure 10.  Theoretical and experimental whirl 

frequencies.  
 

Table 1. Specifications of the theoretical and 
experimental models (in SI units). 

 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
NOMENCLATURE 
 
A Shaft cross sectional area, m2 
Ciz i th bearing damping coefficients, in z 

axis, N/m 
Ciy 
 
c 
D 

i th bearing damping coefficients, in y 
axis, N/m 
Bearing clearance, m 
Bearing diameter , m 

ds 
E 

Shaft diameter, m 
Modulus of elasticity, N/m2 

r Disc eccentricity, m 
I Area second moment of inertia, m4 
FZs Spring forces at z axis, N 
Fys,  Spring forces at y axis, N 
FzD Damping forces at z axis, N 
FzI Damping forces at y axis, N 
FzIb Imbalance forces at z, y axis, N 

MzG Gyroscopic moments at z, y axis, N.m 
MzI,  Inertial moments at z, y axis, N.m 
Ip Polar moment of inertia, Kg.m2 
IT Transverse moment of inertia, kg.m2 
Kzi i th bearing stiffness, in z axis, N/m 
Kyi 
L 

i th stiffness, in y axis, N/m 
Bearing length, m 

Ls Shaft span length, m 
md 
N 

Disc mass, kg 
Mode number or RPM 

p or p(t) Generalized coordinate at y axis  
µ,η Dimensionless coordinates at z and y 

axis 
λ Eigen values of free-free beams 
φ ,Φ  
 
 
 
 

 

S 

Present solution 

ANSYS N=

3 
E% N=4 E% N=5 E% N=6 E% 

1 784 20.2 746 14.1 627 -3.8 623 -4.4 
652 

 

2 824 19.2 777 12.4 657 -4 653 -5.5 
691 

 

Bearing(1) Bearing (2) Disc(1) 
Kxx1=17.249x106 
Kyy1=1.294x106 
Czz1= 3.08x105 
Cyy1= 2.05x104 

 

Kxx=17.249x106 
Kyy =1.294x106 
Czz= 3.08x105 
Cyy= 2.05x104 

d1=0.35 
t1=0.013 
ρ1=8205 
mb=0.2 
r=0.05 

Disc(2) Disc(3) Shaft 
d2=0.167 
t2=0.019 
ρ2=8205 
mb=0.2 
r=0.05 

d3=0.268 
t3=0.02 
ρ3=8205 
mb=0.2 
r=0.05 

Ls=1 
ds=0.019 

E=206x109 
ρs=7800 

damp=0.01  
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ζ Dimensionless lateral coordinate 
ρ 
μ 

Density, kg/m³ 
Oil viscosity, Pa-sec  

τ Dimensionless time 
Ω Disc spin speed, r/s 
ω Natural frequency, r/s 
 
Elements of [A] and [B] ; 

ζζφζφ da r
IV
srs )()(

1

0
, ∫= ζζϕζϕ dr

IV
s )()(

1

0
∫=   ,

ζζφ da IV
sNs )(

1

0
1, ∫=+ ζζϕ dIV

s )(
1

0
∫=  

ζζφζ da IV
sNs )(

1

0
2, ∫=+ ζζϕζ dIV

s )(
1

0
∫=  ,

ζζφζφ db rsrs )()(
1

0
, ∫= ζζϕζϕ drs )()(

1

0
∫=    

ζζφ db rrN )(
1

0
,1 ∫=+ ζζϕ dr )(

1

0
∫= ,

ζζφζ db rrN )(
1

0
,2 ∫=+ ζζϕζ dr )(

1

0
∫=    

( ) ( ) ζζφζζφ ddb ssNs ∫ ==+

1

0
1, ,

ζdb NN )1(
1

0
1,1 ∫=++ ζd)1(

1

0
∫= =1 ,

2
1.

1

0
2,11,2 === ∫++++ ζζ dbb NNNN ,

( ) ( )∫∫ ==+

1

0

1

0
2, .... ζζζϕζζζφ ddb ssNs  

3
1.

1

0

2
2,2 == ∫++ ζζ db NN  

 
 
 
 
 
 
 
 
 
 

 
Elements of matrix H, L, T, V and  W; 

)()()()( 1111. ζϕζϕζφζφ srsrrsh ==   

)()( 111,,1 ζϕζφ ssNsrN hh === ++  

11,1 =++ NNh  

02,21,2,21,2,2 ===== ++++++++ NNNNrNNNrN hhhhh
  

)()()()( 3333. ζϕζϕζφζφ srsrrsl ==   

)()( 331,,1 ζϕζφ ssNsrN ll === ++  

11,1 =++ NNl  

02,21,2,21,2,2 ===== ++++++++ NNNNrNNNrN lllll   

)()()()( 2222. ζϕζϕζφζφ srsrrst ==  ,  

)()( 221,,1 ζϕζφ ssNsrN tt === ++  ,  11,1 =++ NNt  

02,21,2,21,2,2 ===== ++++++++ NNNNrNNNrN ttttt
 

)()()() ( 2222, ζϕζϕζφζφ srsrrsv ′′=′′=   

02,21,2,22,11,1,12,1, ======== ++++++++++++ NNNNrNNNNNrNNsNs vvvvvvvv
 

w1,s= ) ( 2ζφr   ,   w1,1=1   ,   w1,2=  2ζ  


