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ABSTRACT 

Water flow into unsaturated porous media is governed by the Richards’ partial differential equation 
expressing the mass conservation and Darcy’s laws. The Richards’ equation may be written in three forms, 
where the dependent variable is pressure head or moisture content, and the constitutive relationships between 
water content and pressure head allow for conversion of one form into the other. In the present paper, the 
“moisture-based" form of Richards’ equation is linearized by applying Kirchhoff’s transformation, which 
combines the soil water diffusivity and soil water content. Then the similarity method is used to obtain the 
analytical solution of wetting front position. This exact solution is obtained by means of Lie’s method of 
infinitesimal transformation groups. The predicted results of the analytical solution agreed well with 
available results of experiments and numerical solutions. 
 

 الخلاصة
داخѧل  حرآѧة المѧاء     دراسѧة و تحليѧل       و بѧضمنه  ،   العقد الاخير تقدم آبير في تѧصميم و أدارة نظѧام الѧري بѧالتنقيط               جرى خلال 

 بمعادلѧѧѧѧة  فѧѧѧѧي وسѧѧѧѧط متماثѧѧѧѧل و متجѧѧѧѧانس  المѧѧѧѧاء مѧѧѧѧن مѧѧѧѧصدر نقطѧѧѧѧي علѧѧѧѧى سѧѧѧѧطح التربѧѧѧѧة تѧѧѧѧم وصѧѧѧѧف انتѧѧѧѧشار. . مѧѧѧѧصدرنقطي مѧѧѧѧنالتربѧѧѧѧة
 صѧيغ ثلاث بѧ قѧد تكتѧب هѧذه المعادلѧة     و  الطاقѧة،  حفѧظ الكتلѧة و   ي التي تربط بين قانون ،الجزئية  التفاضلية (Richards’ Equation)ريتشاردز

 معادلѧة ريتѧشاردز  ايجѧاد حѧلآ تحليليѧآ ل    في هذا البحѧث  قد تم .مختلط  أساسعلىو   ا رطوبة، ال  أساس على اوضغط،   ال  أساس على  وهي اما  قياسية
ث تبخѧر   وحѧد وعѧدم    ان التربة متجانسة و متماثلѧة الخѧواص الفيزياويѧة،             منها فرضيات ال الموصوفة ، بصيغة اساسها الرطوبة ، باستخدام بعض       

  آѧون  و، المنقطѧات المنفѧردة   ث تѧداخل بѧين انمѧاط الرطوبѧة مѧن            وحدوعدم  ،  نتظم م الابتدائي خلال التربة     ي الرطوب ىمحتو وال من سطح التربة،  
ن الجريѧѧان متماثѧѧل آѧѧو أيѧѧضا أفتѧѧراض   آمѧѧا تѧѧم .  أو متوسѧѧطة النѧѧسجةناعمѧѧةربѧѧة  فѧѧي تاي ان الجريѧѧان يحѧѧدث قابلѧѧة للاهمѧѧال،تѧأثيرات الجاذبيѧѧة  

تѧم  قѧد  . المѧسافة مѧن المѧصدر النقطѧي و الوقѧت     بدلالѧة   المѧائي الحجمѧي     ى المحتѧو  لك يمكѧن تحديѧد    ذ و بѧ    ،)شاقوليعلى طѧول المحѧور الѧ      (محوريا  
شارية مѧѧاء التربѧѧة و المحتѧѧوى الرطѧѧوبي للتربѧѧة،  لتحويѧѧل   ، الѧѧذي يѧѧدمج أنتKirchhoff’s transformation ѧѧ)( اسѧѧتخدام تحويѧѧل آيرشѧѧوف  

لتحويѧѧل المعادلѧѧة )  التѧѧشابه(مѧѧن ثѧѧم اسѧѧتخدمت طريقѧѧة التماثѧѧل    و،خطيѧѧة إلѧѧى معادلѧѧة تفاضѧѧلية جزئيѧѧة خطيѧѧة  الالمعادلѧѧة التفاضѧѧلية الجزئيѧѧة غير 
   .ليليخطية إلى معادلة تفاضلية اعتيادية من اجل الحصول على الحل التح الالتفاضلية الجزئية

و قѧد تبѧين إن     ،  ونتائج حلول عددية لدراسѧات سѧابقة  ،"ا الرياضي باستخدام بيانات مقاسه مختبرينموذجتم التحقق من نتائج الحل التحليلي لل      قد  
  ، يѧة الارتѧشاح  هناك توافق جيد بين نتائج الحل التحليلي و القياسات المختبرية و القيم المحسوبة من الحل العѧددي فѧي المراحѧل المبكѧرة مѧن عمل           

ان . بعد هذه الفترة تبدأ  قيم الحل النظري بالابتعاد عن مثيلاتها للبحوث العملية و الحلѧول العدديѧة الѧسابقة ، و ذلѧك بѧسبب إهمѧال تѧأثير الجاذبيѧة                    
 بدلالة الزمن التربة المبتلة م حج ، و ذلك لانه يوفر وسيلة لمعرفة  الري بالتنقيط  منظومات الحل الذي تم الحصول عليه مفيد للغاية عند تصميم          

  . ، و بذلك يمكن ان تساهم النتائج في تحديد فواصل المنقطات أو وقت الارواء 
 
KEYWARDS: Unsaturated flow, Richards’ equation, trickle irrigation, point source, Kirchhoff’s 
transformation, similarity. 
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INTRODUCTION 

Trickle irrigation is the most common 
micro-irrigation method based on supplying water 
close to the rooted soil volume. This irrigation 
method allows the effective wetted soil volume to 
be reduced, thus, evaporation and deep 
percolation (water and nutrients) to be limited. 
Trickle irrigation management requires prediction 
of the wetted soil volume because an over 
application of water results in loss of both water 
and fertilizers beyond the root zone. Information 
on moisture distribution patterns under point 
source trickle emitters is a pre-requisite for the 
design and operation of trickle – irrigation 
systems. The distribution pattern is influenced by 
the soil properties and the manner water is applied 
and withdrawn from the soil profile. Flow from a 
point – source trickle emitter, because of its multi-
dimensional nature and high frequency of water 
application, leads to complexities in modeling soil 
moisture dynamics (Narda and Lubana, 2001). 
Wetting pattern from trickle source can be 
obtained by either direct measurement of soil 
wetting in field, which is site - specific, or by 
simulation using some numerical or analytical 
models. In most of models, the Richards’ equation 
governing water flow under unsaturated flow 
conditions have been used to simulate soil water 
matrix potential or water content distribution in 
wetted soil. Also the hydraulic conductivity in 
unsaturated flow equations is highly nonlinear and 
show high spatial variable. Numerical and 
analytical methods have been used to solve 
unsaturated flow equations (Battam, et al., 2003).   

Several studies have been conducted to 
determine the flow pattern from trickle sources 
(Bresler, et al., 1971; Clothier and Scotter, 1982; 
Hachum, et al., 1976). Mathematical models have 
been developed to analyze multidimensional 
infiltration under trickle sources by using non-
linear water flow equation (Brandt, et al., 1971; 
Taghavi, et al., 1984; Lafolie, et al., 1989). 
Analytical solutions for the corresponding 
linearized form of the water flow equation with or 
without plant uptake have been developed for 
steady-state conditions (Philip, 1971; Raats, 
1971). The time-dependent infiltration equation 
for surface sources of water with various two and 
three-dimensional geometries has been treated by 
Warrick (1974) and Lomen and Warrick (1976) 
by using a linearization approach. By using the 
unsteady, linearized solution, the wetting-front 
locations during infiltration were determined by 

considering the advance of parabolas of constant 
matric flux potential with time. Clothier and 
Scotter (1982) and Clothier, et al., (1985) studied 
infiltration from a hemispherical cavity by using 
simple absorption theory. They developed an 
analytical solution for three-dimensional 
infiltration with an assumption that, at early times, 
the gravity term in the flow equation is 
insignificant relative to the sorption term. Chung 
(1987) studied a three-dimensional infiltration 
from a point source by applying an alternating 
direction implicit (ADI) finite difference method. 
He used a Darcy-law based soil water equation 
with a cylindrical coordinate system and a 
constant flow rate at the point source.  Two 
analytical techniques for studying infiltration from 
a surface point source have been proposed by 
Ben-Asher, et al., (1986) and Healy and Warrick, 
(1988). Analytical models provide a rapid method 
for determining the wetting front position (Revol, 
et al., 1997; Cook, et al., 2003). These models are 
based on the assumption of a point source and 
certain forms for the physical properties of soil 
and water content distributions (Philip, 1984; 
Revol, et al., 1997). 

The analysis presented here is simplified by 
the assumptions of homogeneous and isotropic 
soils, no evaporation from the soil surface, 
uniform initial moisture contents, no overlapping 
between moisture patterns from point sources, and 
gravity effects are negligible, i.e., a case of flow 
in medium or fine-textured soils is considered. 
The technique avoids other limitations of 
analytical methods such as steady flow.  
 
WATER FLOW EQUATION 

The soil-water flow equation can be 
developed by combining the continuity equation 
and Darcy’s equation. The governing equation for 
the soil - water flow can be expressed as (Philip, 
1969):   

 

( ) ( ). K
t

∂θ
= ∇ θ ∇ψ θ⎡ ⎤⎣ ⎦∂

                            (1) 

 
where 
θ     : volumetric soil water content which is a 

function of   location and time, L3/L3, 

K(θ) : unsaturated soil hydraulic conductivity 
which is a function   of volumetric soil 
water content, L/T, 
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ψ(θ)  : total water head which is a function of the 
volumetric soil water content, L,  

t        : time, T,  

∇      : the del operator (gradient operator), and 

∇.      : the divergence operator. 

It is usually convenient to separate the total 
potential into gravitational and matric potentials. 
Such a separation yields the general form of 
Richards’ equation, or: 

 

K( ) = . [K( )   h ( )] -   
t z

∂θ ∂ θ
∇ θ ∇ θ

∂ ∂
    (2) 

 

where  

h : matric potential head, L, and 

z : gravitational potential head expressed as the 
depth below soil surface (positive downward), 
L. 

The infiltration phenomenon from a surface 
point source into a homogeneous and isotropic 
soil of a uniform initial volumetric water content, 
θi, can be described by the equation governing 
moisture flow in an unsaturated soil. The 
moisture-based form is (Philip, 1969):  

 

( ) K( ). D
t z

∂θ ∂ θ
= ∇ θ ∇θ −⎡ ⎤⎣ ⎦∂ ∂

                (3) 

 

where  

D(θ) = unsaturated soil water diffusivity, L2/T. 

At short times during three-dimensional 
infiltration and in medium or fine-textured soils 
the gravity term in eq. (3) is insignificant relative 
to the sorption term, so the infiltration process is 
approximately absorption (gravity-free) with 
radial symmetry (Clothier and Scotter, 1982). 
Therefore, eq. (3) reduces to the nonlinear 
diffusion equation (Philip, 1969): 

( )D
t

∂ θ
= ∇ ⋅ θ ∇θ⎡ ⎤⎣ ⎦∂

                                  (4) 

In the present study, consider a systems exhibiting 
spherical radial symmetry, then the volumetric 

water content, θ, can be expressed in terms of the 
radial distance from the source, r, and the time, t. 
Thus, eq. (4) can be written as: 
 

2
2

1 D( ) r
t r rr

⎛ ⎞∂ θ ∂ ∂ θ
= θ⎜ ⎟∂ ∂ ∂⎝ ⎠

                  (5) 

 

The initial and boundary conditions are (as shown 
in Fig. 1): 

i

s

i

, at t 0, r 0
, at t 0, r 0, and
, at t 0, r

θ = θ = >
θ = θ > =

θ = θ > = ∞

                   (6) 

where  
r  = radial distance from the source, L,    

θi = initial soil water content, L3/L3, and 

θs  = saturated soil water content, L3/L3.  
 
 

MODEL DEVELOPMENT 

A similarity substitution usefully reduces 
the number of independent variable in a partial 
differential equation only when the variables 
removed from the equation are removed also from 
all the governing conditions by the same 
substitution.  A similarity solution of a partial 
differential equation is obtained by first 
transforming it into an ordinary differential 
equation. The equation has been solved by two 
methods one solution utilized the Boltzmann’s 
transformation and the other utilized similarity 
techniques. The complete solution is described in 
detail elsewhere by Abid, (2006); the following is 
a brief description. 

 

1. Boltzmann Similarity Transformation 

The form of eq. (5) can be modified by the 
application of Kirchhoff’s integral transformation 
in which the dependent variable θ is transformed 
into a new variable φ by means of:  

 

i

D( ) d
θ

θ

φ = θ θ∫                                           (7) 
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where  

φ      = matric flux potential, L2/T. 

Application of Kirchhoff’s integral transformation 
to eq. (5) yields: 

 

2
2

*

1 1 r
D t r rr

⎡ ⎤∂φ ∂ ∂φ
= ⎢ ⎥∂ ∂ ∂⎣ ⎦

                           (8) 

 

where 

D* = soil water diffusivity of  linearized model, 
L2/T. 

which will be subjected  to the following 
conditions: 

 

i

0, at t 0, r 0
, at t 0, r 0, and

0, at t 0, r

φ = = > ⎫
⎪φ = µ > = ⎬
⎪φ = > = ∞ ⎭

               (9) 

 

where 

s

i

i D( )d
θ

θ

µ = θ θ∫                                          (10) 

 

To eliminate the r2 term in eq. (8), the following 
substitution can be used: 

 

( )r, t
r

λ
φ=                                                   (11) 

 

Therefore, eq. (8) reduces to: 

 

2

2
*

1
D tr

∂ λ ∂λ
=

∂∂
                                          (12) 

 

which is now subjected to the conditions: 

 

i

0, at t 0, r 0
r , at t 0, r 0, and
0, at t 0, r

λ = = > ⎫
⎪λ = µ > = ⎬
⎪λ = > = ∞ ⎭

          (13) 

 

Eq. (12) may be transformed into an 
ordinary differential equation by applying the 
well-known Boltzmann’s transformation 
(Boltzmann, 1894, this has been cited in Remson, 
et al., 1971). Such a transformation is defined by: 

 

( )

*

r
2 D t

 =   ( r , t )

⎫ρ = ⎪
⎪⎪
⎬
⎪λ ρ λ ⎪
⎪⎭

                           (14) 

where 

ρ = the similarity variable, and  

 

s

i

i
*

s i s i

1D D( )d
( ) ( )

θ

θ

µ
= = θ θ

θ − θ θ − θ ∫   (15) 

 

Thus, application of the similarity transformation, 
defined by eq. (14) to eq. (12) yields the ordinary 
differential equation: 

 

2

2
d d2 0

dd
λ λ
+ ρ =

ρρ
                                   (16) 

 

subjected to:  

 

i(0) r , and
( ) 0

λ = µ ⎫
⎬λ ∞ = ⎭

                                    (17) 

 

After separating the variables, integrating, and 
rearranging, the resulting equation is: 
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( )
i

iD( ) d erfc
θ

θ

θ θ = µ ρ∫                             (18) 

Substituting µi for 
s

i

D( ) d
θ

θ

θ θ∫   gives the 

following: 

( )
s

i i

D( ) d erfc D( ) d
θθ

θ θ

θ θ = ρ θ θ∫ ∫             (19) 

 

The analytical solution to the water flow 
equation for some cases of soil water diffusivity is 
shown in Table 1. 

 
2. Classical Similarity Reductions 

The classical method for finding symmetry 
reductions of partial differential equations is the 
Lie- group method of infinitesimal 
transformations (Ames, 1967; and Bluman and 
Cole, 1974; Ovsiannikov, 1982; Bluman and 
Kumei, 1989; Olver, 1993). The method of 
solution depends on the application of one- 
parameter group transformation to the partial 
differential equation [eq. (12)]. Under this 
transformation the two independent variables will 
be reduced by one, and a differential equation in 
only one independent variable is obtained, which 
is the similarity variable. 

To apply the classical method to the 
second order partial differential eq. (12). A one 
parameter group of infinite infinitesimal 
transformations is sought which takes the (r, t, λ) - 
space into itself and under which eq. (12) is 
invariant, i. e.: 

 

2

2

2

r r (r, t, O( ),

t t (r, t, O( ), and

(r, t, O( ).

⎫= + εξ λ) + ε
⎪⎪= + ετ λ) + ε ⎬
⎪λ = λ + εη λ) + ε ⎪⎭

          (20) 

 

where  

ε        = group parameter, and  

O(ε2) = order of the parameter, ε. 

Also the derivatives of λ are transformed 
according to:  

 

%

%

2
t t t

2
rr rr rr

O( ), and

O( ).

⎫⎡ ⎤λ = λ + ε η + ε⎣ ⎦ ⎪
⎬

⎡ ⎤λ = λ + ε η + ε ⎪⎣ ⎦ ⎭
           (21) 

 

where 

%
t⎡ ⎤η⎣ ⎦ , and %

rr⎡ ⎤η⎣ ⎦ = infinitesimals for 

transformations of the derivatives ηt and ηrr, 
respectively.  

and 

 

[ ]t t r

2
t r t

t t t

.

∂η ∂η ∂τ ∂ξ⎡ ⎤η = + − λ − λ⎢ ⎥∂ ∂λ ∂ ∂⎣ ⎦
∂τ ∂ξ

− λ − λ λ
∂λ ∂λ

%

        (22) 

[ ]
2 2 2

rr r2 2

2 2 2
2

t r2 2

2 2
3

r t r2

2
2
r t rr2

rt r rr t rr

r rt

2
rr r

2
rr

2
r

2
r

2 3
r

2 .

⎛ ⎞∂ η ∂ η ∂ ξ
η = + − λ⎜ ⎟∂ ∂λ∂ ∂⎝ ⎠

⎛ ⎞∂ τ ∂ η ∂ ξ
− λ + − λ⎜ ⎟∂ ∂λ∂ ∂λ⎝ ⎠

∂ τ ∂ ξ
− λ λ − λ

∂ ∂λ ∂λ
∂ τ ∂η ∂ξ⎛ ⎞− λ λ + − λ⎜ ⎟∂λ ∂∂λ ⎝ ⎠
∂τ ∂ξ ∂τ

− λ − λ λ − λ λ
∂ ∂λ ∂λ
∂τ

− λ λ
∂λ

%

         (23) 

 

Invariance of eq. (12) under eq. (20) gives: 
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( ) [ ] [ ]( )* rr t * rr t

2

D D

O( ) 0

λ − λ + ε η − η

+ ε =

% %
         (24) 

Then, substituting for [ ]rrη% and [ ]tη% from eqs. 
(23) and (22), respectively, and substituting for λrr 
from eq. (12) gives:  

 

( )
( )

( )

] ( )

] ( )

* rr r rr r rr t

2
r r r r t

3 2
r r t r t

*

r rt r t t t
* *

r rt t t t t r

2
t r t 25

D 2

2 2

12
D

l l2 3
D D

2

0

λ

λλ λ λ

λλ λλ λ

λ λ

λ λ

λ λ

⎡η + η − ξ λ − τ λ⎣

+ η − ξ λ − τ λ λ

⎛ ⎞
−ξ λ −τ λ λ + η − ξ λ⎜ ⎟

⎝ ⎠
⎛ ⎞ ⎛ ⎞

− τ λ − ξ λ λ − τ λ λ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎡− τ λ λ − η + η − τ λ −ξ λ⎣

−τ λ − ξ λ λ =
             

The solution of eq. (25) gives the infinitesimal 
elements ( ,ξ τ ,η) leaving invariant eq. (12). As 
a comparatively simple solution, the following 
relations were found: 

3 5 6

3 4

5
2 1

*

1 c r c t c ,
2
c t c , and

cc r c
2D

⎫
ξ= + + ⎪

⎪⎪τ= + ⎬
⎪
⎪η = λ − λ+
⎪⎭

                           (26) 

 

where 

c1, c2, c3, c4, c5, and c6  = arbitrary constants. 

The similarity variables are obtained by solving 
the characteristics equation (Bluman and Cole, 
1974): 

 

dr dt dλ
= =

ξ τ η
                                              (27) 

 

The general solution of eq. (27) involves two 
constants, one of them becomes the similarity 
variable and the other plays the role of a new 
dependent variable. From the integrals of the two 
equations dr dtξ= τ  and dt dτ= λ η , with c3 
≠ 0, the similarity variables are obtained: 

 

( )

* 1
* *

*

*

1 1 r
4D 4D t
r

2 D t

H

⎫ρ = ρ = ⎪
⎪
⎪⎪= ⎬
⎪
⎪
⎪

λ = ρ ⎪⎭

                  (28) 

when substitute in eq. (28) into eq. (12), and 
rearranging, the result would be: 

2

*2
* *

d H dH2 0
d d

+ ρ =
ρ ρ

                                   (29) 

subjected to: 

*

* i

, H( ) 0, and
0 , H(0) r

ρ = ∞ ∞ = ⎫
⎬ρ = = µ ⎭

                    (30) 

because λ = H(ρ*) from eq. (28). After separating 
variables, integrating, and rearranging, eq. (19) is 
obtained. 

 

RESULTS AND DISCUSSION 

In order to utilize the developed exact 
solution of the soil-water flow equation to predict 
the radius of a hemispherical wetted soil volume, 
i.e., radius of wetting front, the solution needs to 
be verified by comparing the computed values of 
wetting front radii with available measured 
experimental values. The numerical solution has 
also been used for verification. One set of 
pertinent data has been found in the literature 
(data gathered by Clothier and Scotter (1982)) and 
used for verification.  These data can be 
summarized as follows: initial soil water content, 
θi = 0.08, saturated soil  water content, θs = 0.36, 
sorptivity, S = 1.65 mm / s1/2, the value of β = 8 
which yields γ = 1.44 *10−3, and discharge of the 
emitter, Qe = 1.0 * 10-7 m3/s. Fig. 2 shows the 
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locations of the wetting front for a fine sandy 
loam soil (medium textured) predicted by the 
developed model and similar values measured 
experimentally by Clothier and Scotter (1982); 
values predicted by a numerical model, finite 
difference method (FDM), developed by Chung 
(1987); the hemispherical model developed by 
Ben-Asher, et al., (1986); and the analytical model 
developed by Clothier and Scotter (1982). The 
predicted wetting front patterns by the developed 
model were concentric hemispheric due to 
neglecting the gravity effect in the absorption 
solution. For the first 165 minutes, the predicted 
values of the wetting front patterns agree well 
with the experimental values measured by 
Clothier and Scotter (1982). The maximum 
relative error was (3.6 %). But, after 360 minutes 
the predicted wetting front patterns deviated from 
experimentally measured values, the relative error 
was about (7.9 %). This over prediction by the 
developed model is due to errors introduced in the 
solution when neglecting the gravity-force term in 
Richards’ equation. On the other hand, the 
predicted wetting front patterns moved slightly 
slower than those predicted by the numerical 
finite difference model developed by Chung 
(1987). The maximum relative error between the 
two sets of values ranged from (0.44 %) at the 
first minute to (3.9 %) after 360 minutes. This is 
mainly due to the different basic assumptions 
adopted in the two models. In addition, the 
predicted wetting front patterns agrees with both 
values predicted by the hemispherical model 
developed by Ben-Asher, et al., (1986) and the 
analytical model developed by Clothier and 
Scotter (1982), respectively. Comparing the 
wetting front patterns predicted by the developed 
model with the results of both the hemispherical 
and analytical models gave an average relative 
error of (0.8 %) and (0.63 %), respectively, for the 
first 96 minutes.  But after 6 hours, this relative 
error reached (4.5 %) for both models. Therefore, 
it can be concluded that the developed model 
generally provided an accurate-enough means to 
predict the locations of the wetted soil volume 
from a point source for medium and fine-textured 
soils. Fig. 3 shows the effect of initial soil water 
content on the wetting front location by using the 
developed model.  It is clear from the results 
shown in the figure that as initial soil water 
content increases the volume of wetted soil 
increases when the time is held constant. Fig. 4 
shows the effect of increasing the saturated soil 
water content on the movement of wetting front 
by using the developed model. It can be seen from 

the results that as the saturated soil water content 
increases the rate of advance of the wetting front 
decreases.  

 

CONCLUSIONS 

The simulation of water in homogeneous, 
unsaturated soils is typically accomplished by 
solving the unsaturated flow equation. The 
governing unsaturated flow equation was derived 
by Richards in 1931. The governing unsaturated 
flow equation is a nonlinear partial differential 
equation and difficult to solve exactly in closed 
form. The aim of this research was to solve 
Richards’ equation and analyze water flow from a 
point source through medium and fine-texture 
soils. A mathematical procedure has been 
developed to solve the unsaturated flow equation 
by applying Kirchhoff’s transformation to 
linearize the equation. It is a transformation of the 
dependent variable and is a classical tool to solve 
nonlinear partial differential equations of water 
flow in unsaturated soil from a point source. The 
equation has been solved by two methods one 
solution utilized the similarity techniques and the 
other utilized Boltzmann’s transformation. An 
exponential function of soil water diffusivity is 
selected to demonstrate the use of general 
similarity theory for describing infiltration of 
water in soil from a point source. The similarity 
solution of water infiltration for a functional form 
of soil water diffusivity compares well with the 
corresponding experimental data and numerical 
solutions. The results obtained from the analytical 
solution of Richards’ equation were checked with 
data previously gathered which relate the distance 
from the point source to boundary of the saturated 
wetting front. A sensitivity analysis was also 
conducted to study the effects of major soil 
parameters on the movement of the saturated 
wetting front from a point source. The present 
analytical solution provides reasonable predictions 
for absorption problems and can be easily 
extended to general soil-water flow studies. 
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SYMBOLS AND ABBREVIATIONS 
 
D(θ) : unsaturated soil water diffusivity, L2/T. 

D* : soil water diffusivity of  linearized model, 
L2/T. 

h : matric potential head, L.  

K(θ) : unsaturated soil hydraulic conductivity 
which is a function   of volumetric soil 
water content, L/T. 

r : radial distance from the source, L.    

t  : time, T,  

z : gravitational potential head expressed as the 
depth below soil surface (positive downward), 
L. 

ε : group parameter.  

O(ε2) : order of the parameter, ε. 

θs: saturated soil water content, L3/L3.      

θi : initial soil water content, L3/L3,  

∇. : the divergence operator. 

ψ(θ) : total water head which is a function of the 
volumetric soil water content, L.  

ρ : the similarity variable. 

θ: volumetric soil water content which is a 
function of   location and time, L3/L3. 

∇: the del operator (gradient operator). 

φ: matric flux potential, L2/T. 
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