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ABSTRACT

Water flow into unsaturated porous media is governed by the Richards’ partial differential equation
expressing the mass conservation and Darcy’s laws. The Richards’ equation may be written in three forms,
where the dependent variable is pressure head or moisture content, and the constitutive relationships between
water content and pressure head allow for conversion of one form into the other. In the present paper, the
“moisture-based" form of Richards’ equation is linearized by applying Kirchhoff’s transformation, which
combines the soil water diffusivity and soil water content. Then the similarity method is used to obtain the
analytical solution of wetting front position. This exact solution is obtained by means of Lie’s method of
infinitesimal transformation groups. The predicted results of the analytical solution agreed well with
available results of experiments and numerical solutions.
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INTRODUCTION

Trickle irrigation is the most common
micro-irrigation method based on supplying water
close to the rooted soil volume. This irrigation
method allows the effective wetted soil volume to
be reduced, thus, evaporation and deep
percolation (water and nutrients) to be limited.
Trickle irrigation management requires prediction
of the wetted soil volume because an over
application of water results in loss of both water
and fertilizers beyond the root zone. Information
on moisture distribution patterns under point
source trickle emitters is a pre-requisite for the
design and operation of trickle — irrigation
systems. The distribution pattern is influenced by
the soil properties and the manner water is applied
and withdrawn from the soil profile. Flow from a
point — source trickle emitter, because of its multi-
dimensional nature and high frequency of water
application, leads to complexities in modeling soil
moisture dynamics (Narda and Lubana, 2001).
Wetting pattern from trickle source can be
obtained by either direct measurement of soil
wetting in field, which is site - specific, or by
simulation using some numerical or analytical
models. In most of models, the Richards’ equation
governing water flow under unsaturated flow
conditions have been used to simulate soil water
matrix potential or water content distribution in
wetted soil. Also the hydraulic conductivity in
unsaturated flow equations is highly nonlinear and
show high spatial variable. Numerical and
analytical methods have been used to solve
unsaturated flow equations (Battam, et al., 2003).

Several studies have been conducted to
determine the flow pattern from trickle sources
(Bresler, et al., 1971; Clothier and Scotter, 1982;
Hachum, et al., 1976). Mathematical models have
been developed to analyze multidimensional
infiltration under trickle sources by using non-
linear water flow equation (Brandt, et al., 1971;
Taghavi, et al., 1984; Lafolie, et al., 1989).
Analytical solutions for the corresponding
linearized form of the water flow equation with or
without plant uptake have been developed for
steady-state conditions (Philip, 1971; Raats,
1971). The time-dependent infiltration equation
for surface sources of water with various two and
three-dimensional geometries has been treated by
Warrick (1974) and Lomen and Warrick (1976)
by using a linearization approach. By using the
unsteady, linearized solution, the wetting-front
locations during infiltration were determined by
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considering the advance of parabolas of constant
matric flux potential with time. Clothier and
Scotter (1982) and Clothier, et al., (1985) studied
infiltration from a hemispherical cavity by using
simple absorption theory. They developed an
analytical ~ solution  for  three-dimensional
infiltration with an assumption that, at early times,
the gravity term in the flow equation is
insignificant relative to the sorption term. Chung
(1987) studied a three-dimensional infiltration
from a point source by applying an alternating
direction implicit (ADI) finite difference method.
He used a Darcy-law based soil water equation
with a cylindrical coordinate system and a
constant flow rate at the point source. Two
analytical techniques for studying infiltration from
a surface point source have been proposed by
Ben-Asher, et al., (1986) and Healy and Warrick,
(1988). Analytical models provide a rapid method
for determining the wetting front position (Revol,
et al., 1997; Cook, et al., 2003). These models are
based on the assumption of a point source and
certain forms for the physical properties of soil
and water content distributions (Philip, 1984;
Revol, et al., 1997).

The analysis presented here is simplified by
the assumptions of homogeneous and isotropic
soils, no evaporation from the soil surface,
uniform initial moisture contents, no overlapping
between moisture patterns from point sources, and
gravity effects are negligible, i.e., a case of flow
in medium or fine-textured soils is considered.
The technique avoids other limitations of
analytical methods such as steady flow.

WATER FLOW EQUATION

The soil-water flow equation can be
developed by combining the continuity equation
and Darcy’s equation. The governing equation for
the soil - water flow can be expressed as (Philip,
1969):

00

—=V[K(0)Vy(0)] (1)

ot

where

0 : volumetric soil water content which is a
function of location and time, L*/L°,

K(®) : unsaturated soil hydraulic conductivity

which is a function of volumetric soil

water content, L/T,
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y(0) : total water head which is a function of the
volumetric soil water content, L,

t :time, T,
V  :the del operator (gradient operator), and
V. :the divergence operator.

It is usually convenient to separate the total
potential into gravitational and matric potentials.
Such a separation yields the general form of
Richards’ equation, or:

9 _ v [K®) v h(©)-

0K (0
oKO)
ot 0z

where
h : matric potential head, L, and

z : gravitational potential head expressed as the
depth below soil surface (positive downward),
L.

The infiltration phenomenon from a surface
point source into a homogeneous and isotropic
soil of a uniform initial volumetric water content,
0;, can be described by the equation governing

moisture flow in an unsaturated soil. The
moisture-based form is (Philip, 1969):

00 o0 K(0

—= V.[D(O)VO]——() 3)
ot 0z

where

D(0) = unsaturated soil water diffusivity, L*/T.

At short times during three-dimensional
infiltration and in medium or fine-textured soils
the gravity term in eq. (3) is insignificant relative
to the sorption term, so the infiltration process is
approximately absorption (gravity-free) with
radial symmetry (Clothier and Scotter, 1982).
Therefore, eq. (3) reduces to the nonlinear
diffusion equation (Philip, 1969):
@:V{D(e)ve]

4
ot “4)

In the present study, consider a systems exhibiting
spherical radial symmetry, then the volumetric
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water content, 0, can be expressed in terms of the
radial distance from the source, r, and the time, t.
Thus, eq. (4) can be written as:

09 _1 E[D(G)rzﬁ]

—=— 5
ot r?or or ©)

The initial and boundary conditions are (as shown
in Fig. 1):

9291, at t:O, I'>O
0=0,, at t>0, r=0,and
0=0,, at t>0, r=o0

(6)

where
r = radial distance from the source, L,

0; = initial soil water content, L*/L°, and

0, = saturated soil water content, L*/L°.

MODEL DEVELOPMENT

A similarity substitution usefully reduces
the number of independent variable in a partial
differential equation only when the variables
removed from the equation are removed also from
all the governing conditions by the same
substitution. A similarity solution of a partial
differential equation is obtained by first
transforming it into an ordinary differential
equation. The equation has been solved by two
methods one solution utilized the Boltzmann’s
transformation and the other utilized similarity
techniques. The complete solution is described in
detail elsewhere by Abid, (2006); the following is
a brief description.

1. Boltzmann Similarity Transformation

The form of eq. (5) can be modified by the
application of Kirchhoff’s integral transformation
in which the dependent variable 0 is transformed
into a new variable ¢ by means of:

0
o= D(®) do ™)
6
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where
® = matric flux potential, L*T.

Application of Kirchhoff’s integral transformation
to eq. (5) yields:

1 og_1 o[ .04

oo 2o ar ®)
D. Ot or or

where

D+ = soil water diffusivity of linearized model,

L*/T.
which will be subjected to the following
conditions:
$=0, at t=0, r>0
d=p;, at t>0, r=0,and 9)
=0, at t>0, r=o00
where

eS

= j D(6)do (10)
6;

To eliminate the r* term in eq. (8), the following
substitution can be used:

Alr,t
T
Therefore, eq. (8) reduces to:
*L 1 o -
or* D. ot

which is now subjected to the conditions:
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A=0, at t=0, r>0
A=rp;, at t>0, r=0, and (13)
A=0, at t>0, r=ow

Eq. (12) may be transformed into an
ordinary differential equation by applying the
well-known Boltzmann’s transformation
(Boltzmann, 1894, this has been cited in Remson,
et al., 1971). Such a transformation is defined by:

RO 9)

p=—1
2Dt
(14)
A (p) = A (1, 1)
where
p = the similarity variable, and
M.
= : D(6)do (s
@8 j (0)d6 (13)

Thus, application of the similarity transformation,
defined by eq. (14) to eq. (12) yields the ordinary
differential equation:

2

d 7;+2 d 2 =0 (16)
dp dp
subjected to:
A(0) =1 ., and

(0) =r p;, an .
M(e0) =0

After separating the variables, integrating, and
rearranging, the resulting equation is:
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0
j D(6) d6 = ; erfc(p)

(18)

6;
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Substituting p; for ID(G) dO  gives the

0
following:
0 0
j D(6) d6 = erfc(p) j D(6) do (19)
6; 6;

The analytical solution to the water flow
equation for some cases of soil water diffusivity is
shown in Table 1.

2. Classical Similarity Reductions

The classical method for finding symmetry
reductions of partial differential equations is the
Lie- group method of  infinitesimal
transformations (Ames, 1967; and Bluman and
Cole, 1974; Ovsiannikov, 1982; Bluman and
Kumei, 1989; Olver, 1993). The method of
solution depends on the application of one-
parameter group transformation to the partial
differential equation [eq. (12)]. Under this
transformation the two independent variables will
be reduced by one, and a differential equation in
only one independent variable is obtained, which
is the similarity variable.

To apply the classical method to the
second order partial differential eq. (12). A one
parameter group of infinite infinitesimal
transformations is sought which takes the (r, t, A) -
space into itself and under which eq. (12) is
invariant, i. e.:

r=r+ek(r, t,A)+0(e?),
t=t+et(r, t, A)+O(e?), and
L=r+en t, )+ 0.

(20)

where

€ = group parameter, and
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O(&?) = order of the parameter, &.

Also the derivatives of A are transformed

according to:

A= Ai+€ [ﬁt] +0(e?), and

hir =y +8| Ny |+ O(). e
where
[ﬁt :| , and [ﬁrr] = infinitesimals  for

transformations of the derivatives n; and n,
respectively.

and

Gik

o[ o, &,

=5 2=
ot
"o
8211
arz

5 (22)
A7 - ax Ay
o
on 8%
2 - r
ook or?
2
0 Az
oron

[7]=

0’1
or?
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01T A, — 0 %
Oron O\

0’1 0 0
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oL oL or
ot
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(23)
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O\

Invariance of eq. (12) under eq. (20) gives:
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(Dakyy = A ) +&(De[ 7 ] - [A,])

(24)
+0(e*)=0

Then, substituting for [ﬁrr] and [ﬁt]from egs.

(23) and (22), respectively, and substituting for A,
from eq. (12) gives:

Da[ M+ (200~ & P =Tk
+(nm - 28y, )7“3 =2ty A A

1
—ﬁmxf _TMJ\‘%}\"L + (m - 2¢, )(_7%]

D.
| |
2t Ay =350, D_kt — Ty D_xt

_Zrkkrkrt] —[m + (m - Tt)}\‘t —&A,
1A — &0 A ]=0 (25)
The solution of eq. (25) gives the infinitesimal

elements (E_,,‘L' ,N) leaving invariant eq. (12). As

a comparatively simple solution, the following
relations were found:

1
§:§c3r+cst+ Co s

T=C3t+c,, and (26)

c
=CoA———TA+cC
n=¢c; D 1

*

where
c1, C2, C3, C4, Cs, and ¢ = arbitrary constants.

The similarity variables are obtained by solving
the characteristics equation (Bluman and Cole,
1974):

dr_di_dn

(27)
& 1t 1
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The general solution of eq. (27) involves two
constants, one of them becomes the similarity
variable and the other plays the role of a new
dependent variable. From the integrals of the two

equations dr/E=dt/t and dt/t=dA/n, with c;
# 0, the similarity variables are obtained:

1t
P Jap. P 4D, i
__r
2,/D,t (25)

when substitute in eq. (28) into eq. (12), and
rearranging, the result would be:

d’H dH
dp’ p- a =
subjected to:

ps =00 , H(w)=0, and
p+=0 , H(0)=r, }

+2

0 (29)

(30)

because A = H(p+) from eq. (28). After separating
variables, integrating, and rearranging, eq. (19) is
obtained.

RESULTS AND DISCUSSION

In order to utilize the developed exact
solution of the soil-water flow equation to predict
the radius of a hemispherical wetted soil volume,
i.e., radius of wetting front, the solution needs to
be verified by comparing the computed values of
wetting front radii with available measured
experimental values. The numerical solution has
also been used for verification. One set of
pertinent data has been found in the literature
(data gathered by Clothier and Scotter (1982)) and
used for verification. These data can be
summarized as follows: initial soil water content,
0; = 0.08, saturated soil water content, 6, = 0.36,
sorptivity, S = 1.65 mm / s'?, the value of p = 8
which yields y = 1.44 *107, and discharge of the
emitter, Q. = 1.0 * 107 m’/s. Fig. 2 shows the
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locations of the wetting front for a fine sandy
loam soil (medium textured) predicted by the
developed model and similar values measured
experimentally by Clothier and Scotter (1982);
values predicted by a numerical model, finite
difference method (FDM), developed by Chung
(1987); the hemispherical model developed by
Ben-Asher, et al., (1986); and the analytical model
developed by Clothier and Scotter (1982). The
predicted wetting front patterns by the developed
model were concentric hemispheric due to
neglecting the gravity effect in the absorption
solution. For the first 165 minutes, the predicted
values of the wetting front patterns agree well
with the experimental values measured by
Clothier and Scotter (1982). The maximum
relative error was (3.6 %). But, after 360 minutes
the predicted wetting front patterns deviated from
experimentally measured values, the relative error
was about (7.9 %). This over prediction by the
developed model is due to errors introduced in the
solution when neglecting the gravity-force term in
Richards’ equation. On the other hand, the
predicted wetting front patterns moved slightly
slower than those predicted by the numerical
finite difference model developed by Chung
(1987). The maximum relative error between the
two sets of values ranged from (0.44 %) at the
first minute to (3.9 %) after 360 minutes. This is
mainly due to the different basic assumptions
adopted in the two models. In addition, the
predicted wetting front patterns agrees with both
values predicted by the hemispherical model
developed by Ben-Asher, et al., (1986) and the
analytical model developed by Clothier and
Scotter (1982), respectively. Comparing the
wetting front patterns predicted by the developed
model with the results of both the hemispherical
and analytical models gave an average relative
error of (0.8 %) and (0.63 %), respectively, for the
first 96 minutes. But after 6 hours, this relative
error reached (4.5 %) for both models. Therefore,
it can be concluded that the developed model
generally provided an accurate-enough means to
predict the locations of the wetted soil volume
from a point source for medium and fine-textured
soils. Fig. 3 shows the effect of initial soil water
content on the wetting front location by using the
developed model. It is clear from the results
shown in the figure that as initial soil water
content increases the volume of wetted soil
increases when the time is held constant. Fig. 4
shows the effect of increasing the saturated soil
water content on the movement of wetting front
by using the developed model. It can be seen from
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the results that as the saturated soil water content
increases the rate of advance of the wetting front
decreases.

CONCLUSIONS

The simulation of water in homogeneous,
unsaturated soils is typically accomplished by
solving the unsaturated flow equation. The
governing unsaturated flow equation was derived
by Richards in 1931. The governing unsaturated
flow equation is a nonlinear partial differential
equation and difficult to solve exactly in closed
form. The aim of this research was to solve
Richards’ equation and analyze water flow from a
point source through medium and fine-texture
soils. A mathematical procedure has been
developed to solve the unsaturated flow equation
by applying Kirchhoff’s transformation to
linearize the equation. It is a transformation of the
dependent variable and is a classical tool to solve
nonlinear partial differential equations of water
flow in unsaturated soil from a point source. The
equation has been solved by two methods one
solution utilized the similarity techniques and the
other utilized Boltzmann’s transformation. An
exponential function of soil water diffusivity is
selected to demonstrate the use of general
similarity theory for describing infiltration of
water in soil from a point source. The similarity
solution of water infiltration for a functional form
of soil water diffusivity compares well with the
corresponding experimental data and numerical
solutions. The results obtained from the analytical
solution of Richards’ equation were checked with
data previously gathered which relate the distance
from the point source to boundary of the saturated
wetting front. A sensitivity analysis was also
conducted to study the effects of major soil
parameters on the movement of the saturated
wetting front from a point source. The present
analytical solution provides reasonable predictions
for absorption problems and can be -easily
extended to general soil-water flow studies.
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SYMBOLS AND ABBREVIATIONS

D(0) : unsaturated soil water diffusivity, L*/T.

D« : soil water diffusivity of linearized model,
L*/T.

h : matric potential head, L.
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K(0) : unsaturated soil hydraulic conductivity
which is a function of volumetric soil
water content, L/T.

r : radial distance from the source, L.
t :time, T,

z : gravitational potential head expressed as the
depth below soil surface (positive downward),
L.

€ : group parameter.

O(&”) : order of the parameter, «.

0,: saturated soil water content, L33,
9; : initial soil water content, L*/L>,
V. : the divergence operator.

y(0) : total water head which is a function of the
volumetric soil water content, L.

p : the similarity variable.

0: volumetric soil water content which is a
function of location and time, L*/L°.

V: the del operator (gradient operator).

¢: matric flux potential, L*/T.
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Tablel: Analvtical solution to water flow

equation for some cases of soil water

diffusivity.
Soil Water Diffusivity Solution
=B Eii
D{f)= constant =erfcip|
E!s - E!i
fg D8] a8
—1 = |
D(8) = variatie 5 = erfe(p)
[ *Di(&1d8
E|i
ot +1 g+ 1
1 P
D(8)= Dy (n+1) 8" = arfe (p)
gt +1 g+ 1
g 1
EbB __ba
b S [ (o]
D(5]= = e e lP)
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Fig. 1. Physical model of soil water flow.
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Fig. 2. Wetting front patterns.
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Fig.3. Effect of initial soil water content on

the wetting front patterns.
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Fig.4. Effect of satured soil water content

on the wetting front patterns.
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