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ABSTRACT

In the present study, free convection heat and mass transfer of fluid in a square packed bed enclosure is
numerically investigated. For the considered geometrical shape, the left vertical wall of enclosure was
assumed to be kept at high temperature and concentration while the opposite wall was kept at low
temperature and concentration with insulating both the top and bottom walls of enclosure. The Brinkman—
Forchheimer extended Darcy model was used to solve the momentum equations, while the energy equations
for fluid and solid phases were solved by using the local thermal non-equilibrium (LTNE) model.
Computations are performed for a range of the Darcy number from 107 to 10, the porosity from 0.5 to 0.9,
and buoyancy ratio from -15 to 15. The results showed that both the buoyancy ratio and the packed bed

characteristics have significant effect on each one of the flow field, heat transfer and mass transfer.
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INTRODUCTION

Double-diffusive convection or thermosolutal
convection is generally referred to a fluid flow
generated by buoyancy effects due to both
temperature and solutal concentration gradients.
This type of flow is encountered in natural and
technological applications. Such applications
include the growth of crystals, solar energy
systems, welding processes, thermal insulations.

The term double diffusive-convection is now
widely accepted for all processes which involve
simultaneous thermal and solutal concentration
gradients and provides an explanation for a
number of natural phenomena. Because of the
coupling between the fluid velocity field and the
diffusive (thermal and solutal concentration)
fields, double-diffusive convection is more
complex than the convection flow which is
associated with a single diffusive scalar, and many
different behaviours may be expected. Such
double-diffusive processes occur in many fields,
including chemical engineering (drying, cleaning
operations, evaporations, condensation,
sublimation, deposition of thin films, energy
storage in solar ponds, roll-over in storage tanks
containing liquefied natural gas, solution mining
of salt caverns for crude oil storage, casting of
metal alloys and photosynthesis), oceanography
(melting and cooling near ice surfaces, sea water
intrusion into freshwater lakes and the formation
of layered or columnar structures during
crystallisation of igneous intrusions in earth's
crust), geophysics (dispersion of dissolvent
materials or particulate matter in flows), etc. A
clear understanding of the nature of the interaction

between thermal and mass or solutal concentration

DOUBLE DIFFUSIVE FREE CONVECTION IN A PACKED
BED SQUARE ENCLOSURE BY USING LOCAL THERMAL
NON-EQUILIBRIUM (LTNE) MODEL

122

buoyancy forces is necessary in order to control
these processes. (Chaudhary and Jain, 2007)
studied the MHD flow past an infinite vertical
oscillating plate through porous medium with the
presence of free convection and mass transfer
by
(Mohamed, 2009) analyzed the

analytically using  Laplace-transform
technique.
double-diffusive convection-radiation interaction
for the unsteady MHD flow over a semi-infinite
vertical moving porous plate embedded in a
porous medium in the presence of thermal &
solutal diffusion and heat generation. A numerical
study of the unsteady free convection and mass
transfer flow of an electrically conducting fluid
past an infinite vertical porous plate in the
presence of a transverse magnetic field was
presented by (Shariful et. al. , 2005). (Bukhari,
2003) applied a linear stability analysis, using the
spectral Chebyshev polynomial method, to obtain
numerically the solution of a multi-layer system
consisting of the finger convection onset in a fluid
layer overlying a porous layer. (Saha and
Hossain, 2004) studied numerically the laminar
doubly diffusive free convection flows along an
isothermal vertical finite plate immersed in a
stable thermally stratified fluid by using an
implicit finite difference method and local non-
similarity method. (Hajri et. al. , 2007) presented
a numerical simulation for the steady double-
diffusive natural convection in a triangular cavity
by wusing equal finite elements method. A
numerical study was presented from (Mamou et.
al. , 2001) for the unsteady double-diffusive
convection in a two-dimensional horizontal
confined enclosure by using the finite element
technique. (Masuda et. al. , 2002) presented a

numerical simulation by using finite differences
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method for the unsteady two-dimensional double-
diffusive convection in porous rectangular
enclosure. After that, (Masuda et. al. , 2008)s
studied the peculiar oscillating convection which
is observed when two-dimensional double-
diffusive convection in porous medium is
analyzed numerically. (Khanafer and Vafai,
2002) presented a numerical study of mixed-
convection heat and mass transport in a lid-driven
square enclosure filled with a non-Darcian fluid-
saturated porous medium by using the finite
volumes technique. (Rahli and Bouhadef, 2004)
studied numerically the double-diffusive natural
convection in a partially porous square enclosure
with the presence of inclination effect by using the
control volume method and the power Ilaw
scheme. (Wang et. al.,, 2007) presented a
numerical investigation of natural convection of
fluid (without mass transfer) in an inclined square
enclosure filled with porous medium and
submitted to a strong magnetic field by using
(LTNE) model. However, the buoyancy force due
to the double-diffusive effect has received more
attention in the literature. But all the previous
studies which deal with the double-diffusive
convection in porous mediums assume that the
porous medium in thermo dynamical equilibrium
with the fluid which flow inside it, except (Wang
et. al.,, 2007) which studied the pure convection
without mass transfer in the presence of heat
transfer between the fluid and the porous media.
The present study gives more attention to the
interaction between the effect of the double-
diffusive convection and the effect of heat transfer
between the porous medium and the fluid which

flows inside it.
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MATHEMATICAL MODEL
Geometrical Shape of Studied Problem

The schematic view of the studied problem is
shown in Fig.1. The square enclosure has a side
length (a) and it is filled with a saturated packed
bed. The left vertical wall of the square enclosure
is kept at high temperature and concentration
while the opposite wall is kept at low temperature
and concentration, finally, the horizontal walls are

insulated.

Governing Equations

In the model development, the following
assumptions are adopted; the working fluid has a
Prandtl number Pr=0.71 and assumed to be
incompressible and Newtonian fluid, no phase
change occurs and the process is in a steady state,
the thermo physical properties of the fluid are
assumed to be constant except the density
variation in the buoyancy force, which is
approximated according to the Boussinesq
approximation. This wvariation, due to both
temperature and solutal concentration gradients
can be described as follow (Khanafer and Vafai,

2002);
p=p[1=AT-T)-f(c—c) )
Where fr and f¢ are the coefficients of the

thermal and solutal expansions, which are defined

as follow (Khanafer and Vafai, 2002);

:J(@?) &
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The Brinkman—Forchheimer extended Darcy

2

model is used to solve the momentum equations
while the energy equations for fluid and solid

phases are solved with the local thermal non-
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equilibrium (LTNE) model. Thus, the governing
equations for the present study will take the
following forms as in (Amiri and Vafai, 1998)
and (Khanafer and Vafai, 2002);

- Continuity equation

al a/
& @’ 3)
- Momentum equations
Py Ao
gl x o
- (4)
6}3 :uf @ @ ﬁu+pr l*u
@( el od a)/z \/R
&[iu @J_ @ (agv ava
F o, |uy
+ﬁ;g[a@@—?})+ﬁc(¢_cﬂ]_”_f %
(5)

- Fluid phase energy equation

c y oT; V@Tf
+ =
P CP ox oy

o°’T. 0°T,
ff T 2
OX oy
- Solid phase energy equation

82TS 82TS
off ( axz + ayz J+asf hsf (Tf _Ts):0

(7

J"‘ Ayt hsf (Ts _Tf)

(6)

- Solutal concentration equation

oc, o _ 5 o’c L 0% .
ox> oy’ ®

The geometric function F, specific surface area

of the packed bed ay and the fluid-to-solid heat
transfer coefficient in a packed bed hy are

determined as suggested by (Amiri and Vafai,

1998);
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Fo L5 (9.2)
J150 &3
61 &
L
p
- 0.6
e,
hy =k,|2+1.1Pr"? (9.0)
My

where the sphere particle diameter dp can be

computed as follow (Amiri and Vafai, 1998);

[150 K
dpz(l—é‘) 8—3

while the effective thermal conductivity kg and

(9.d)

ke in fluid and solid phase energy equations and

the mean thermal diffusivity @, can be computed

as follow (Wang et. al. , 2007);
K = ¢ Ky (10 .a)
Ker = (1 — &) kg (10 .b)
k + k
a o= feff seff (1 0 c )
Pt CP g
Now we introduce the following non-

dimensional quantities and parameters as in
(Khanafer and Vafai, 2002) and (Wang et. al. ,
2007);
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c V? (11b) By wusing the (stream function-vorticity)
K v, ' formulation we will reduce
Da = a_2 , Sc= E variables to only five variables by differentiating
Be(c, —¢c,) Gr, eq.(13) W.lth respect to (Y) and differentiating
= = ) eq.(14) with respect to (X), after that we subtract
,BT (TH _TL) GrT i
e first of the two resulted equations from the
, the first of the t Ited equat fi th
A= K fer = ay hy a second to eliminate the pressure terms from the
Kot ’ K et momentum equations, thus, eqs.(12, 13 & 14) will

By substituting eqs.(11.a & 11.b) in eqs.(3, 4,
5, 6, 7 & 8), we get the dimensionless forms of
governing equations as follow;
ou oV
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where w and @ are the (stream function & NUMERICAL SOLUTION

vorticity) respectively, and they are defined as The governing equations for y, @, 65 6, & €

can be written in a common form for the

follow;
5 5 (convection-diffusion)  problem as  follow
U=Y%gv=-2Y " (19.a) .
PYY aX (Versteeg and Malalasekera, 1995);
oV ou 0
0= —0" < 19.b _— u,o® )=
oX oY (19-) oX % )
After getting the final values of all dependent 0 R S (2 )
—_— — |+
variables in the flow field, calculations will be oX oX

made for local and mean Nusselt and Sherwood

where the general scalar @ stands for any one of
numbers, where the local Nusselt and Sherwood

) the dependent variables under consideration, the
numbers at the hot wall can be found as in (Wang

et. al. , 2007) and (Khanafer and Vafai, 2002);

diffusion coeffecient I and the source term § in

the cartesian form are listed below for each

Nu, = ({Gé’f 71% ] (20.a) governing equation;
OX X=0 OX Jx=o - Stream function equation
0C b=y, =1,S=w 23.a
sh, = <= (20 b) v (23.2)
oX |y _o
- Vorticity equation
Boundary Conditions O=w,'=¢Pr,S=
The hydrodynamic boundary conditions for the I 5 00, ocC
. ProGry| —+N— |-
present problem at all enclosure walls will obey to oX oX
the non-slip condition, while the thermal and &’ = ‘U‘
solutal boundary conditions are (the left side wall £+— o
. Da +/Da
was kept at high temperature and solutal i

concentration, the right side wall was kept at low

F [,

temperature and solutal concentration and finally — (23.b)
JDa| oX oY
each one of the top and bottom walls were kept
insulated), thus the boundary conditions will be as
- Fluid phase energy equation
follow;
U=0,V=0,0, =60, =C=1 ®=0,,I'= 1 S=§(95_0f) (23.0)
=V =UU =0 =v = e 1+A7" 1+A™ .
at X =0;
Uu=0,v=0,6,=6,=C=0 - Solid phase energy equation
at X =1; (21 ®=6,,T=1,S=AE6, -6,) (23.d)
00
U=0,v=02r-0%_0x_, . .
oY oY oY - Solutal concentration equation
atY =0&1 Pr
<D=C,F=S—,S=O (23 .e)
C
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The numerical solution of the governing
equations will be made according to the finite
volume method to transform the governing
equations from partial differential form to discrete
algebraic form, this method is based on principle
of dividing the flow field to a number of volume
elements, each one of them is called (control
volume), after that a discretization process
(Versteeg and Malalasekera, 1995) was carried
out by integrating eq.(22) (of the general
conservation) over a control volume element,

where this equation will be as follow;

3 O, =a; D +3, B, +a, Dy +a; D +Su 29
where;
ap =ag +a, +a, +a5 -39S, (25)

the source coefficients S, and S, represent the
source terms of the discrete equation and their
values for each governing equation are listed as
follow;

- For the stream function equation

S, = o 2%
.a
5" < o ( )
- For the vorticity equation
_ 20 _
Pr’ Gr, P NE
oX oX
S, =& — —
F 49,99
JDa| X oY (26b)
s :_52 E_Fﬂ
P Da +Da
- Fluid phase energy equation
c 0,
Uo7 A -1
L+ A (26 .c)
4
Sp = T
I+ A
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- Solid phase energy equation

S, = A& 0,
(26 .d)
S, =-A¢
- Solutal concentration equation
S, =0 26
.e
' < o ( )

A computational program was written in
Fortran-90 language to compute the values of the
The
equations are solved by the tri-diagonal matrix
algorithm (TDMA). The used mesh size is
(60%60). Relaxation factors of about (0.7-0.9) are

used for all dependent variables, Convergence

required variables, discretized algebraic

was measured in terms of the maximum change in
each variable during an iteration where the
maximum change allowed for convergence check

was 1075,

RESULTS AND DISCUSSION

All solution were carried out for solution of
(Pr=0.71 & Sc=0.25) at Gr= 10°, where the
numerical code which is used in the present
investigation has been carried out for number of
simulations for a wide range of controlling
parameters such as buoyancy ratio, Darcy number,
and porosity of the packed bed. Figs.(2 - 9) show
the effect of buoyancy ratio for different values of
(-15<N<I5) on the stream function, fluid phase
temperature and solutal concentration contours
respectively at Da=10" and &=0.9. Figs.[(2.a),
(2.b) & (2.¢)] represent these contours for the case
of single diffusing effect at V=0, where there is
only thermal diffusing without solutal diffusing. It
is clear from the stream function contour at N=0
and as a result of the thermal buoyancy effect, the
fluid at the left-hand side hot wall will be lighter
than in other locations while the fluid at the right-
hand side cold wall will be heavier than in other

locations, so, the fluid particles move upward
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along the hot wall while they move downward
along the cold wall, and thus, the flow will take
the direction of clockwise. The fluid phase
temperature contour at N=0 indicates that the
temperature levels will decrease gradually from
the hot wall towards the cold wall, where the hot
fluid rises up along the left-hand side hot wall and
descends along the right-hand side cold wall
because of the thermal buoyancy effect. Finally
the solutal concentration contour at N=0 indicates
that the solutal concentration will be maximum at
the hot regions and decreases gradually with the
decrease of the fluid phase temperature. After
that, and with increasing the positive buoyancy
ratio V>0 as shown in Figs.(3, 4 & 5) which
represent the cases at N=5, 10 & 15, and as it is
clear from these figures, the solutal buoyancy
force which increases with the buoyancy ratio will
cooperate with the thermal buoyancy and they'll
drive the flow in the same direction to form a
cooperator flow, where the stream function levels
will increase with increasing in positive buoyancy
ratio because of the increase of the total buoyancy
force due to both the thermal and solutal
diffusing, while as it is shown from the contours
of fluid phase temperature, its distribution will
keep on the same previous behavior, but the
gradients will be stronger than them at N=0 and
increase directly with increase of the buoyancy
fluid

in the

ratio, also a similar behavior to the

temperature distribution will appear
contours of the solutal concentration, but their
gradients will be relatively less than the gradients
of the fluid phase contours because of the absence
of internal transference sources as it is clear from
eq.(23.e). Figs.(6, 7, 8, 9) the cases of negative
buoyancy ratio N<@, where the negative value of
buoyancy ratio means that the value of solutal

expansion coefficient f¢ is negative too, and as it

is clear from the density definition in eq.(1), the
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fluid density will increase with increase of the
solutal concentration, and as a result, the flow
begins to reverse its direction, So, the flow case at

=-1 as it is shown in Figs.[(6.a), (6.b) & (6.¢)]
represents a conversion point in the flow direction
from clockwise to counterclockwise as it is shown
from the stream function distribution at N=-1,
where the clockwise main central vortex which
formed at each of the previous cases of positive
buoyancy ratio will divide into two main vortices
in two opposite directions, also the distribution of
both the fluid phase temperature and the solutal
concentration at N=-1 will begin to change their
directions and their gradient will be at the
minimum levels at this case. With increasing the
value of negative buoyancy ratio as it is shown in
Figs.[(7.a), (7.b) & (7.c)] which represent the
flow case at N=-3, the negative solutal buoyancy
effect will be greater than the thermal buoyancy
effect, and as a result of the total negative
buoyancy effect, the fluid at the hot wall will be
heavier than it in other locations while the fluid at
the cold wall will be lighter than it in other
locations, so, the fluid particles move downwards
along the hot wall while they move upwards along
the cold wall, and thus, the flow will take the
direction of counterclockwise. The fluid phase
temperature contour at N=-5 indicates that the
temperature levels will decrease gradually from
the hot wall towards the cold wall, where the hot
fluid descends downwards along the hot wall and
rises up along the cold wall because of the large
negative effect of solutal buoyancy. Finally the
solutal concentration contour at N=-5 indicates
that the solutal concentration will be maximum at
the hot regions and decreases gradually with the
decrease of the fluid phase temperature. Figs.(8 &
9) represent the flow case at N=-10 & -15
respectively, and as it is clear that the levels of

counterclockwise stream function will increase
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with the increase of negative value of buoyancy
ratio, while the fluid phase temperature and
solutal concentration keep the same previous
behaviours but their gradients increase with the
increase of negative value of buoyancy ratio.
Figs.(10.a & 10.b) indicate the variation of
velocity components with buoyancy ratio at the
intermediate vertical and horizontal locations
respectively for Da=10" and £=0.9, where as it is
shown in Fig.(10.a) the horizontal velocity
component at the positive values of buoyancy
ratio will direct to the right in top half of the
enclosure while it will be in opposite direction in
the bottom half of the enclosure because of the
positive total buoyancy effect, while we'll note the
conversion in flow direction nearly at N=-1 where
the horizontal velocity begins to reverse its
direction as it happens when the value of negative
buoyancy ratio becomes /N<-1, also as it is shown
in Fig.(10.b), the vertical velocity component at
the positive values of buoyancy ratio will direct
upwards in the left half of the enclosure while it
will be in opposite direction in the right half of the
enclosure because of the positive total buoyancy
effect, where it begins to reverse its direction at
the negative buoyancy ratios of N<-I1. Fig.(11)
represents the variation of local Nusselt number
with buoyancy ratio at Da=10" and £=0.9, where
it is clear that the value of local Nusselt number at
N>0 will be maximum at the bottom of the left-
hand vertical wall and it descends gradually with
rising to the wall top because the temperature
gradient will be very strong at the bottom and it
decreases gradually to the top, also it is clear the
increasing in the local Nusselt number levels with
the increase of positive buoyancy ratio, while the
minimum levels of it will be at V=-1 because the
temperature gradients were minimum at that

buoyancy ratio value, also at N<-1 it is clear that
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the value of local Nusselt number will be
maximum at the top of the hot wall and it
descends gradually with dropping down to the
wall bottom because the temperature gradient will
be very strong at the top and it decreases
gradually to the bottom. Fig.(12) represents the
variation of local Sherwood number with
buoyancy ratio (which is analog to Nusselt
number in heat transfer, where it gives an
indication to the rate of mass transfer through the
solution which happens by solutal concentration
difference), where it is clear that the distribution
of local Sherwood number will be similar to the
distribution of local Nusselt number and for the
same mentionable reasons previously. Fig.(13)
explains the variation of the mean Nusselt number
with buoyancy ratio for different values of Darcy
number at £=0.9, generally it is clear that the
minimum rate of heat transfer is at N=-1 because
of the minimum temperature gradients at that
case, after that, heat transfer levels begin to
increase with the increase of each one of positive
or negative buoyancy ratios, also it is clear that
the values of Nusselt number will be lower than
them at the same values of positive buoyancy ratio
because the thermal and solutal buoyancy effects
at negative buoyancy ratios will be in opposite
direction while they in same direction at positive
buoyancy ratios to form (assisting flow), and
finally it was noted that the mean Nusselt number
generally increases with Darcy number increase
because of the decreasing in overall bed resistance
to the flow inside it as a result to the increasing in
the volume of passable paths of fluid through the
packed bed. Fig.(14) explains the variation of the
mean Nusselt number with buoyancy ratio for
different values of porosity at Da=10", where it
was noted that when porosity equals to a value in

the range of (e=0.5~0.8), the values of mean
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Nusselt number will increase gradually with the
increase of porosity in that range, but when the
porosity increases above that range, the values of
mean Nusselt number will decrease, and for
explaining this phenomenon clearly we must
return to Eq.(20.a), where it is noted that the
whole value of local Nusselt number is
multiplicand by the porosity while the second
term in this equation (solid phase term) was
multiplicand by the inverse of dimensionless

thermal conductivity 4™ which decreases with the
increase of porosity [A_1 =(l-¢) ks/g K, ], s0,

when the porosity values equal to or less than
(0.8), the value of Nusselt number will increase,
while it decreases after that value of porosity
because the value of dimensionless thermal
conductivity will be very small and it causes
decreasing in Nusselt number more than the
increasing in it because of porosity. Fig.(15)
shows the variation of the mean Sherwood
number with buoyancy ratio for different values
of Darcy number at &=0.9, where Sherwood
number will comport a similar behavior to Nusselt
number variation with buoyancy ratio and Darcy
number and for the same mentionable reason
previously, while Fig.(16) explains the variation
of the mean Sherwood number with buoyancy
ratio for different values of porosity at Da=I10",
where it is clear that the values of Sherwood
number will increase with increase of packed bed
porosity because the flow levels will increase as a
result of decreasing in the occupied volume by the
bed through enclosure, where the overall packed
bed resistance to the flow will decrease. To
exhibit the reliability of the presented results, the
variation of mean Nusselt number with the
buoyancy ratio at Gr;=I.4x10° was compared
with results of (Rahli and Bouhadef, 2004) as it

is shown in Fig.(17), where it is clear the
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similarity in Nusselt number behavior with the
mentionable study, but there is a small difference
between these values because of the using of
(LTNE) model in the present study which causes

more heat transfer due to both the fluid and solid

phases.
CONCLUSIONS
This paper has presented a numerical

investigation of double-diffusive flow in a packed

bed square enclosure by using local thermal non-

equilibrium (LTNE) model, and from the obtained
results, the following conclusions are drawn;

1- At the positive buoyancy ratios V=0, the flow
takes the clock wise direction, while at N=-1
the flow begins to reverse its direction as it
happens at N<-1.

2- Generally, levels of flow, heat transfer and
mass transfer increase with the increase of
both the positive or negative buoyancy ratio
as a result of increasing in the total buoyancy
effects.

3- The values of Nusselt number increase with

increase of Darcy Number.

The values of Nusselt number increase with

increase of porosity until the porosity reaches

a certain value of about (¢ = 0.8) where the

value of mean Nusselt number will decrease

after that value of porosity.

5- The values of Sherwood number increase
with increase of both Darcy Number and the
porosity.
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Nomenclature
a  side length of the enclosure (m)

Greek symbols
a thermal diffusivity (m*s™)

ay  specific surface area of the packed bed (m™) u  dynamic viscosity (kg m” s

C dimensionless solutal concentration

v kinematic viscosity (m®s™)

c solutal concentration (kmol m™) p  density (kg m>)
cp  specific heat at constant pressure (J kg” K™ Pr thermal expansion coefficient (K™
D concentration diffusion coefficient (m” s™) Pc  solutal expansion coefficient (kmol' m®)

Da Darcy number
d, sphere particle diameter (m)
F  geometric function
Grc solutal Grashof number
Gry Grashof number
gravitational acceleration (m s™)

8
hy  solid-fluid heat transfer coefficient(Wm™>K™)
k

thermal conductivity (W m™ K™
K permeability (m?)
N buoyancy ratio
Nu  Nusselt number
D pressure (Pa)
P dimensionless pressure
Pr  Prandtl number
Sc¢  Schmidt number
Sh Sherwood number
T temperature (K°)
u,v  velocity components (ms™)

U, V dimensionless velocity components

X,y  X-,y-coordinates (m)
X, Y dimensionless coordinates

6 dimensionless temperature

v dimensionless stream function

o dimensionless vorticity

@ general scalar dependent variable

I' diffusion coeffecient

&  porosity

A dimensionless thermal conductivity

¢ dimensionless solid-to-fluid heat transfer

coefficient
Subscripts
f fluid
feff eftective properties for fluid
H  high
i axis indication
L low
1 local value
m  mean value
s solid

seff eftective properties for solid

Packed Bed

X

Fig.(1) schematic diagram of the physical system
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