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ABSTRACT 

    In the present study, free convection heat and mass transfer of fluid in a square packed bed enclosure is 

numerically investigated. For the considered geometrical shape, the left vertical wall of enclosure was 

assumed to be kept at high temperature and concentration while the opposite wall was kept at low 

temperature and concentration with insulating both the top and bottom walls of enclosure. The Brinkman–

Forchheimer extended Darcy model was used to solve the momentum equations, while the energy equations 

for fluid and solid phases were solved by using the local thermal non-equilibrium (LTNE) model. 

Computations are performed for a range of the Darcy number from 10-5 to 10-1, the porosity from 0.5 to 0.9, 

and buoyancy ratio from -15 to 15. The results showed that both the buoyancy ratio and the packed bed 

characteristics have significant effect on each one of the flow field, heat transfer and mass transfer. 

  
  الخلاصة

 الهندسѧي لنمѧوذج  ل .تѧم دراسѧته عѧددياً   تجويѧف مربѧع       طبقѧات محѧشوة فѧي      الحمѧل الحѧر خѧلال     انتقال الحرارة والكتلة ب    ،خلال الدراسة الحالية        

 قѧد حُفѧظ عنѧد درجѧة      الجѧدار المقابѧل  بينمѧا  رتفعين وترآيѧز مѧ   للتجويѧف محفѧوظ عنѧد درجѧة حѧرارة      الجدار العمѧودي الأيѧسر   تم اعتبار ، المفترض

 حѧل   دارسѧي فѧي  نمѧوذج فورشماير المشتق مѧن   - برنكماننموذج استخدام تم. عزل آل من الجدارين العلوي والسفلي  مع   حرارة وترآيز واطئين  

لقѧد  . (LTNE) الاتزان الحراري المѧوقعي عدم  باستخدام نموذج الطورين المائع والصلب بينما تم حل معادلات الطاقة لكل من    ، معادلات الزخم 

أظهѧرت النتѧائج بѧأن آѧلاً      ،15 إلѧى  15- مѧن  نѧسبة الطفѧو  و، 0.9إلѧى   0.5المسامية من ، 1-10إلى  5-10أنجزت الحسابات لمدى رقم دارسي من     

  .وانتقال الكتلة انتقال الحرارة،  حقل الجريان آل مناً على مهم تأثيراًان تمتلكوخصائص الطبقات المحشوة نسبة الطفو من
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INTRODUCTION 

    Double-diffusive convection or thermosolutal 

convection is generally referred to a fluid flow 

generated by buoyancy effects due to both 

temperature and solutal concentration gradients. 

This type of flow is encountered in natural and 

technological applications. Such applications 

include the growth of crystals, solar energy 

systems, welding processes, thermal insulations.  

    The term double diffusive-convection is now 

widely accepted for all processes which involve 

simultaneous thermal and solutal concentration 

gradients and provides an explanation for a 

number of natural phenomena. Because of the 

coupling between the fluid velocity field and the 

diffusive (thermal and solutal concentration) 

fields, double-diffusive convection is more 

complex than the convection flow which is 

associated with a single diffusive scalar, and many 

different behaviours may be expected. Such 

double-diffusive processes occur in many fields, 

including chemical engineering (drying, cleaning 

operations, evaporations, condensation, 

sublimation, deposition of thin films, energy 

storage in solar ponds, roll-over in storage tanks 

containing liquefied natural gas, solution mining 

of salt caverns for crude oil storage, casting of 

metal alloys and photosynthesis), oceanography 

(melting and cooling near ice surfaces, sea water 

intrusion into freshwater lakes and the formation 

of layered or columnar structures during 

crystallisation of igneous intrusions in earth's 

crust), geophysics (dispersion of dissolvent 

materials or particulate matter in flows), etc. A 

clear understanding of the nature of the interaction 

between thermal and mass or solutal concentration 

buoyancy forces is necessary in order to control 

these processes. (Chaudhary and Jain, 2007) 

studied the MHD flow past an infinite vertical 

oscillating plate through porous medium with the 

presence of free convection and mass transfer 

analytically by using Laplace-transform 

technique.  (Mohamed, 2009) analyzed the 

double-diffusive convection-radiation interaction 

for the unsteady MHD flow over a semi-infinite 

vertical moving porous plate embedded in a 

porous medium in the presence of thermal & 

solutal diffusion and heat generation. A numerical 

study of the unsteady free convection and mass 

transfer flow of an electrically conducting fluid 

past an infinite vertical porous plate in the 

presence of a transverse magnetic field was 

presented by (Shariful et. al. , 2005). (Bukhari, 

2003) applied  a linear stability analysis, using the 

spectral Chebyshev polynomial method, to obtain 

numerically the solution of a multi-layer system 

consisting of the finger convection onset in a fluid 

layer overlying a porous layer. (Saha and 

Hossain, 2004) studied numerically the laminar 

doubly diffusive free convection flows along an 

isothermal vertical finite plate immersed in a 

stable thermally stratified fluid by using an 

implicit finite difference method and local non-

similarity method. (Hajri et. al. , 2007) presented 

a numerical simulation for the steady double-

diffusive natural convection in a triangular cavity 

by using equal finite elements method. A 

numerical study was presented from (Mamou et. 

al. , 2001) for the unsteady double-diffusive 

convection in a two-dimensional horizontal 

confined enclosure by using the finite element 

technique. (Masuda et. al. , 2002) presented a 

numerical simulation by using finite differences 
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method for the unsteady two-dimensional double-

diffusive convection in porous rectangular 

enclosure. After that, (Masuda et. al. , 2008)s 

studied the peculiar oscillating convection which 

is observed when two-dimensional double-

diffusive convection in porous medium is 

analyzed numerically. (Khanafer and Vafai, 

2002) presented a numerical study of mixed-

convection heat and mass transport in a lid-driven 

square enclosure filled with a non-Darcian fluid-

saturated porous medium by using the finite 

volumes technique. (Rahli and Bouhadef, 2004) 

studied numerically the double-diffusive natural 

convection in a partially porous square enclosure 

with the presence of inclination effect by using the 

control volume method and the power law 

scheme. (Wang et. al., 2007) presented a 

numerical investigation of natural convection of 

fluid (without mass transfer) in an inclined square 

enclosure filled with porous medium and 

submitted to a strong magnetic field by using 

(LTNE) model. However, the buoyancy force due 

to the double-diffusive effect has received more 

attention in the literature. But all the previous 

studies which deal with the double-diffusive 

convection in porous mediums assume that the 

porous medium in thermo dynamical equilibrium 

with the fluid which flow inside it, except (Wang 

et. al., 2007) which studied the pure convection 

without mass transfer in the presence of heat 

transfer between the fluid and the porous media. 

The present study gives more attention to the 

interaction between the effect of the double-

diffusive convection and the effect of heat transfer 

between the porous medium and the fluid which 

flows inside it. 

 

MATHEMATICAL MODEL 

Geometrical Shape of Studied Problem 

     The schematic view of the studied problem is 

shown in Fig.1. The square enclosure has a side 

length (a) and it is filled with a saturated packed 

bed. The left vertical wall of the square enclosure 

is kept at high temperature and concentration 

while the opposite wall is kept at low temperature 

and concentration, finally, the horizontal walls are 

insulated. 

 

Governing Equations 

      In the model development, the following 

assumptions are adopted; the working fluid has a 

Prandtl number Pr=0.71 and assumed to be 

incompressible and Newtonian fluid, no phase 

change occurs and the process is in a steady state, 

the thermo physical properties of the fluid are 

assumed to be constant except the density 

variation in the buoyancy force, which is 

approximated according to the Boussinesq 

approximation. This variation, due to both 

temperature and solutal concentration gradients 

can be described as follow (Khanafer and Vafai, 

2002); 

( ) ( )[ ]LCLT ccTT −−−−= ββρρ 10                  (1) 

      Where βT and βC are the coefficients of the 

thermal and solutal expansions, which are defined 

as follow (Khanafer and Vafai, 2002); 
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      The Brinkman–Forchheimer extended Darcy 

model is used to solve the momentum equations 

while the energy equations for fluid and solid 

phases are solved with the local thermal non-
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equilibrium (LTNE) model. Thus, the governing 

equations for the present study will take the 

following forms as in (Amiri and Vafai, 1998) 

and (Khanafer and Vafai, 2002); 

- Continuity equation 
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- Momentum equations 
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- Fluid phase energy equation  
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- Solid phase energy equation  
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- Solutal concentration equation 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

=
∂
∂

+
∂
∂

2

2

2

2

y
c

x
cD

y
cv

x
cu           (8) 

    The geometric function F, specific surface area 

of the packed bed asf and the fluid-to-solid heat 

transfer coefficient in a packed bed hsf are 

determined as suggested by (Amiri and Vafai, 

1998); 
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where the sphere particle diameter dp can be 

computed as follow (Amiri and Vafai, 1998); 

).9(150)1( 3 dKd p ε
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while the effective thermal conductivity kfeff and 

kseff in fluid and solid phase energy equations and 

the mean thermal diffusivity αm can be computed 

as follow (Wang et. al. , 2007); 
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    Now we introduce the following non-

dimensional quantities and parameters as in 

(Khanafer and Vafai, 2002) and (Wang et. al. , 

2007); 
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    By substituting eqs.(11.a & 11.b) in eqs.(3, 4, 

5, 6, 7 & 8), we get the dimensionless forms of 

governing equations as follow;  
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     By using the (stream function-vorticity) 
formulation we will reduce the dependent 
variables to only five variables by differentiating 
eq.(13) with respect to (Y) and differentiating 
eq.(14) with respect to (X), after that we subtract 
the first of the two resulted equations from the 
second to eliminate the pressure terms from the 
momentum equations, thus, eqs.(12, 13 & 14) will 
be transformed to the following equations; 
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where ψ and ω are the (stream function & 

vorticity) respectively, and they are defined as 

follow; 
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    After getting the final values of all dependent 

variables in the flow field, calculations will be 

made for local and mean Nusselt and Sherwood 

numbers, where the local Nusselt and Sherwood 

numbers at the hot wall can be found as in (Wang 

et. al. , 2007) and (Khanafer and Vafai, 2002); 
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Boundary Conditions 

     The hydrodynamic boundary conditions for the 

present problem at all enclosure walls will obey to 

the non-slip condition, while the thermal and 

solutal boundary conditions are (the left side wall 

was kept at high temperature and solutal 

concentration, the right side wall was kept at low 

temperature and solutal concentration and finally 

each one of the top and bottom walls were kept 

insulated), thus the boundary conditions will be as 

follow; 
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NUMERICAL SOLUTION 
    The governing equations for ψ, ω, θf, θs & C 

can be written in a common form for the 

(convection-diffusion) problem as follow 

(Versteeg and Malalasekera, 1995); 
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where the general scalar Φ stands for any one of 

the dependent variables under consideration, the 

diffusion coeffecient Γ and the source term S in 

the cartesian form are listed below for each 

governing equation; 

- Stream function equation 
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- Vorticity equation 
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- Fluid phase energy equation 
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- Solid phase energy equation 

).23()(,1, dS sfs θθξθ −Λ==Γ=Φ
 

- Solutal concentration equation 
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     The numerical solution of the governing 
equations will be made according to the finite 
volume method to transform the governing 
equations from partial differential form to discrete 
algebraic form, this method is based on principle 
of dividing the flow field to a number of volume 
elements, each one of them is called (control 
volume), after that a discretization process 
(Versteeg and Malalasekera, 1995) was carried 
out by integrating eq.(22) (of the general 
conservation) over a control volume element, 
where this equation will be as follow; 
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where; 
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the source coefficients Su and Sp represent the 
source terms of the discrete equation and their 
values for each governing equation are listed as 
follow; 
- For the stream function equation 
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- For the vorticity equation 
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     A computational program was written in 
Fortran-90 language to compute the values of the 
required variables, The discretized algebraic 
equations are solved by the tri-diagonal matrix 
algorithm (TDMA). The used mesh size is 
(60×60). Relaxation factors of about (0.7–0.9) are 
used for all dependent variables, Convergence 
was measured in terms of the maximum change in 
each variable during an iteration where the 
maximum change allowed for convergence check 
was 10-6. 
 
RESULTS AND DISCUSSION 

   All solution were carried out for solution of 
(Pr=0.71 & Sc=0.25) at GrT= 105, where the 
numerical code which is used in the present 
investigation has been carried out for number of 
simulations for a wide range of controlling 
parameters such as buoyancy ratio, Darcy number, 
and porosity of the packed bed. Figs.(2 - 9) show 
the effect of buoyancy ratio for different values of     
(-15≤N≤15) on the stream function, fluid phase 
temperature and solutal concentration contours 
respectively at Da=10-1 and ε=0.9. Figs.[(2.a), 
(2.b) & (2.c)] represent these contours for the case 
of single diffusing effect at N=0, where there is 
only thermal diffusing without solutal diffusing. It 
is clear from the stream function contour at N=0 
and as a result of the thermal buoyancy effect, the 
fluid at the left-hand side hot wall will be lighter 
than in other locations while the fluid at the right-
hand side cold wall will be heavier than in other 
locations, so, the fluid particles move upward 
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along the hot wall while they move downward 
along the cold wall, and thus, the flow will take 
the direction of clockwise. The fluid phase 
temperature contour at N=0 indicates that the 
temperature levels will decrease gradually from 
the hot wall towards the cold wall, where the hot 
fluid rises up along the left-hand side hot wall and 
descends along the right-hand side cold wall 
because of the thermal buoyancy effect. Finally 
the solutal concentration contour at N=0 indicates 
that the solutal concentration will be maximum at 
the hot regions and decreases gradually with the 
decrease of the fluid phase temperature. After 
that, and with increasing the positive buoyancy 
ratio N>0 as shown in Figs.(3, 4 & 5) which 
represent the cases at N=5, 10 & 15, and as it is 
clear from these figures, the solutal buoyancy 
force which increases with the buoyancy ratio will 
cooperate with the thermal buoyancy and they'll 
drive the flow in the same direction to form a 
cooperator flow, where the stream function levels 
will increase with increasing in positive buoyancy 
ratio because of the increase of the total buoyancy 
force due to both the thermal and solutal 
diffusing, while as it is shown from the contours 
of fluid phase temperature, its distribution will 
keep on the same previous behavior, but the 
gradients will be stronger than them at N=0 and 
increase directly with increase of the buoyancy 
ratio, also a similar behavior to the fluid 
temperature distribution will appear in the 
contours of the solutal concentration, but their 
gradients will be relatively less than the gradients 
of the fluid phase contours because of the absence 
of internal transference sources as it is clear from 
eq.(23.e). Figs.(6, 7, 8, 9) the cases of negative 
buoyancy ratio N<0, where the negative value of 
buoyancy ratio means that the value of solutal 
expansion coefficient βC is negative too, and as it 
is clear from the density definition in eq.(1), the 

fluid density will increase with increase of the 
solutal concentration, and as a result, the flow 
begins to reverse its direction, So, the flow case at 
N=-1 as it is shown in Figs.[(6.a), (6.b) & (6.c)] 
represents a conversion point in the flow direction 
from clockwise to counterclockwise as it is shown 
from the stream function distribution at N=-1, 
where the clockwise main central vortex which 
formed at each of the previous cases of positive 
buoyancy ratio will divide into two main vortices 
in two opposite directions, also the distribution of 
both the fluid phase temperature and the solutal 
concentration at N=-1 will begin to change their 
directions and their gradient will be at the 
minimum levels at this case. With increasing the 
value of negative buoyancy ratio as it is shown in 
Figs.[(7.a), (7.b) & (7.c)] which represent the 
flow case at N=-5, the negative solutal buoyancy 
effect will be greater than the thermal buoyancy 
effect, and as a result of the total negative 
buoyancy effect, the fluid at the hot wall will be 
heavier than it in other locations while the fluid at 
the cold wall will be lighter than it in other 
locations, so, the fluid particles move downwards 
along the hot wall while they move upwards along 
the cold wall, and thus, the flow will take the 
direction of counterclockwise. The fluid phase 
temperature contour at N=-5 indicates that the 
temperature levels will decrease gradually from 
the hot wall towards the cold wall, where the hot 
fluid descends downwards along the hot wall and 
rises up along the cold wall because of the large 
negative effect of solutal buoyancy. Finally the 
solutal concentration contour at N=-5 indicates 
that the solutal concentration will be maximum at 
the hot regions and decreases gradually with the 
decrease of the fluid phase temperature. Figs.(8 & 
9) represent the flow case at N=-10 & -15 
respectively, and as it is clear that the levels of 
counterclockwise stream function will increase 
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with the increase of negative value of buoyancy 
ratio, while the fluid phase temperature and 
solutal concentration keep the same previous 
behaviours but their gradients increase with the 
increase of negative value of buoyancy ratio. 
Figs.(10.a & 10.b) indicate the variation of 
velocity components with buoyancy ratio at the 
intermediate vertical and horizontal locations 
respectively for Da=10-1 and ε=0.9, where as it is 
shown in Fig.(10.a) the horizontal velocity 
component at the positive values of buoyancy 
ratio will direct to the right in top half of the 
enclosure while it will be in opposite direction in 
the bottom half of the enclosure because of the 
positive total buoyancy effect, while we'll note the 
conversion in flow direction nearly at N=-1 where 
the horizontal velocity begins to reverse its 
direction as it happens when the value of negative 
buoyancy ratio becomes N<-1, also as it is shown 
in Fig.(10.b), the vertical velocity component at 
the positive values of buoyancy ratio will direct 
upwards in the left half of the enclosure while it 
will be in opposite direction in the right half of the 
enclosure because of the positive total buoyancy 
effect, where it begins to reverse its direction at 
the negative buoyancy ratios of N<-1. Fig.(11) 
represents the variation of local Nusselt number 
with buoyancy ratio at Da=10-1 and ε=0.9, where 
it is clear that the value of local Nusselt number at 
N≥0 will be maximum at the bottom of the left-
hand vertical wall and it descends gradually with 
rising to the wall top because the temperature 
gradient will be very strong at the bottom and it 
decreases gradually to the top, also it is clear the 
increasing in the local Nusselt number levels with 
the increase of positive buoyancy ratio, while the 
minimum levels of it will be at N=-1 because the 
temperature gradients were minimum at that 
buoyancy ratio value, also at N<-1 it is clear that 

the value of local Nusselt number will be 
maximum at the top of the hot wall and it 
descends gradually with dropping down to the 
wall bottom because the temperature gradient will 
be very strong at the top and it decreases 
gradually to the bottom. Fig.(12) represents the 
variation of local Sherwood number with 
buoyancy ratio (which is analog to Nusselt 
number in heat transfer, where it gives an 
indication to the rate of mass transfer through the 
solution which happens by solutal concentration 
difference), where it is clear that the distribution 
of local Sherwood number will be similar to the 
distribution of local Nusselt number and for the 
same mentionable reasons previously. Fig.(13) 
explains the variation of the mean Nusselt number 
with buoyancy ratio for different values of Darcy 
number at ε=0.9, generally it is clear that the 
minimum rate of heat transfer is at N=-1 because 
of the minimum temperature gradients at that 
case, after that, heat transfer levels begin to 
increase with the increase of each one of positive 
or negative buoyancy ratios, also it is clear that 
the values of Nusselt number will be lower than 
them at the same values of positive buoyancy ratio 
because the thermal and solutal buoyancy effects 
at negative buoyancy ratios will be in opposite 
direction while they in same direction at positive 
buoyancy ratios to form (assisting flow), and 
finally it was noted that the mean Nusselt number 
generally increases with Darcy number increase 
because of the decreasing in overall bed resistance 
to the flow inside it as a result to the increasing in 
the volume of passable paths of fluid through the 
packed bed. Fig.(14) explains the variation of the 
mean Nusselt number with buoyancy ratio for 
different values of porosity at Da=10-1, where it 
was noted that when porosity equals to a value in 
the range of (ε=0.5~0.8), the values of mean 
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Nusselt number will increase gradually with the 
increase of porosity in that range, but when the 
porosity increases above that  range, the values of 
mean Nusselt number will decrease, and for 
explaining this phenomenon clearly we must 
return to Eq.(20.a), where it is noted that the 
whole value of local Nusselt number is 
multiplicand by the porosity while the second 
term in this equation (solid phase term) was 
multiplicand by the inverse of dimensionless 
thermal conductivity Λ-1 which decreases with the 

increase of porosity [ ]fs kk εε )( −=Λ− 11 , so, 

when the porosity values equal to or less than 
(0.8), the value of Nusselt number will increase, 
while it decreases after that value of porosity 
because the value of dimensionless thermal 
conductivity will be very small and it causes 
decreasing in Nusselt number more than the 
increasing in it because of porosity. Fig.(15) 
shows the variation of the mean Sherwood 
number with buoyancy ratio for different values 
of Darcy number at ε=0.9, where Sherwood 
number will comport a similar behavior to Nusselt 
number variation with buoyancy ratio and Darcy 
number and for the same mentionable reason 
previously, while Fig.(16) explains the variation 
of the mean Sherwood number with buoyancy 
ratio for different values of porosity at Da=10-1, 
where it is clear that the values of Sherwood 
number will increase with increase of packed bed 
porosity because the flow levels will increase as a 
result of decreasing in the occupied volume by the 
bed through enclosure, where the overall packed 
bed resistance to the flow will decrease. To 
exhibit the reliability of the presented results, the 
variation of mean Nusselt number with the 
buoyancy ratio at GrT≈1.4×105 was compared 
with results of (Rahli and Bouhadef, 2004) as it 
is shown in Fig.(17), where it is clear the 

similarity in Nusselt number behavior with the 
mentionable study, but there is a small difference 
between these values because of the using of 
(LTNE) model in the present study which causes 
more heat transfer due to both the fluid and solid 
phases. 
 
CONCLUSIONS 
     This paper has presented a numerical 
investigation of double-diffusive flow in a packed 
bed square enclosure by using local thermal non-
equilibrium (LTNE) model, and from the obtained 
results, the following conclusions are drawn; 
1- At the positive buoyancy ratios N≥0, the flow 

takes the clock wise direction, while at N=-1 

the flow begins to reverse its direction as it 

happens at N<-1. 

2- Generally, levels of flow, heat transfer and 

mass transfer increase with the increase of 

both the positive or negative buoyancy ratio 

as a result of increasing in the total buoyancy 

effects. 

3- The values of Nusselt number increase with 

increase of Darcy Number. 

4- The values of Nusselt number increase with 

increase of porosity until the porosity reaches 

a certain value of about (ε ≈ 0.8) where the 

value of mean Nusselt number will decrease 

after that value of porosity. 

5-  The values of Sherwood number increase 

with increase of both Darcy Number and the 

porosity. 

REFERENCES 

A. Amiri and K. Vafai, Transient analysis 

of incompressible flow through a packed bed, 

International Journal of Heat and Mass Transfer, 

41, 4259-4279, 1998.  



Journal of Engineering Volume 18 January   2012       Number   1  
 

131 
 

A. K. Bukhari, Double diffusive 

convection in a horizontal porous layer 

superposed by a fluid layer, Umm Al-Qura Univ. 

J. Sci. Med. Eng. Vol. 15, No. 2, pp. 95-113, 

2003. 

I. Hajri*, A. Omri and S. Ben Nasrallah, 

A numerical model for the simulation of double-

diffusive natural convection in a triangular cavity 

using equal order and control volume based on the 

finite elements method, Desalination 206, 579-

588, 2007.  

K. Khanafer and K. Vafai, Double-

diffusive mixed convection in a lid-driven 

enclosure filled with a fluid saturated porous 

medium, Numerical Heat Transfer, Part A, 42: 

465-486, 2002. 

M. Mamou, P. Vasseur and M. Hasnaoui, 

On numerical stability analysis of double-

diffusive convection in confined enclosures, J. 

Fluid Mech., vol. 433, pp. 209-250, 2001. 

 Md. Shariful Alam, M. M. Rahman and Md. 

Abdul Maleque, Local similarity solutions for 

unsteady MHD free convection and mass transfer 

flow past an impulsively started vertical porous 

plate with Dufour and Soret effects, Thammasat 

Int. J. Sc. Tech., Vol. 10, No. 3, July-Sept., 2005. 

O. Rahli and K. Bouhadef *, Double-

diffusive natural convection in a partially porous 

square enclosure; effect of the inclination, 

Laboratoire LTPMP, Faculté de Génie Mécanique 

et Génie des Procédés, USTHB, Alger – Algérie, 

2004. 

Q. W. Wang*, M. Zeng, Z. P. Huang, G. 

Wang, H. Ozoe, Numerical investigation of 

natural convection in an inclined enclosure filled 

with porous medium under magnetic field, 

International Journal of Heat and Mass Transfer 

50, 3684-3689, 2007. 

R. A. Mohamed, Double-diffusive 

convection-radiation interaction on unsteady 

MHD flow over a vertical moving porous plate 

with heat generation and soret effects, Applied 

Mathematical Sciences, Vol. 3, no. 13, 629 - 651, 

2009. 

R. C. Chaudhary and Arpita Jain, 

Combined heat and mass transfer effects on MHD 

free convection flow past an oscillating plate 

embedded in porous medium, Rom. Journ. Phys., 

Vol. 52, Nos. 5–7, P. 505–524, Bucharest, 2007. 

S.C. Saha, M.A. Hossain, Natural 

convection flow with combined buoyancy effects 

due to thermal and mass diffusion in a thermally 

stratified media, Nonlinear Analysis: Modelling 

and Control, Vol. 9, No. 1, 89–102, 2004. 

Versteeg H. K. and Malalasekera W., An 

introduction to computational fluid dynamics the 

finite volumes method, Longman Group Ltd, 

1995. 

Y. Masuda, M. Yonaya, T. Ikeshoji, S. 

Kimura, F. Alavyoon, T. Tsukada, M. Hozawa, 

Oscillatory double-diffusive convection in a 

porous enclosure due to opposing heat and mass 

fluxes on the vertical walls, International Journal 

of Heat and Mass Transfer 45, 1365-1369, 2002. 

Yoshio Masuda, Michio Yoneya, Akira 

Suzuki, Shigeo Kimura and Farid Alavyoon, 

Numerical analysis of double-diffusive convection 

in a porous enclosure due to opposing heat and 

mass fluxes on the vertical walls -Why does 

peculiar oscillation occur?-, Research Center for 

Compact chemical Process, National Institute of 

Advanced Industrial Science and Technology, 4-



DOUBLE DIFFUSIVE FREE CONVECTION IN  A PACKED 
BED SQUARE ENCLOSURE BY USING LOCAL THERMAL  
NON-EQUILIBRIUM (LTNE) MODEL 

Ahmed N. Mehdy 
 

 

 132

g

x

y 

a

Packed Bed 

TH 
cH 

TL
cL

Fig.(1) schematic diagram of the physical system

2-1 Nigatake, Miyagino-ku, Sendai 983-8551, 

Japan, 2008. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Nomenclature 
 a       side length of the enclosure (m) 
 asf      specific surface area of the packed bed (m-1) 
 C       dimensionless solutal concentration 
 c        solutal concentration (kmol m-3)   
 cp      specific heat at constant pressure (J kg-1 K-1) 
 D      concentration diffusion coefficient (m2 s-1) 
 Da     Darcy number  
 dp      sphere particle diameter (m) 
 F       geometric function  
 GrC    solutal Grashof number  
 GrT    Grashof number  
 g        gravitational acceleration (m s-2) 
 hsf       solid-fluid heat transfer coefficient(Wm-2K-1)
k         thermal conductivity (W m-1 K-1) 
 K          permeability (m2) 
 N         buoyancy ratio  
 Nu       Nusselt number  
 p          pressure (Pa) 
 P         dimensionless pressure  
 Pr       Prandtl number  
 Sc       Schmidt number  
 Sh       Sherwood number  
 T         temperature (K°) 
 u, v       velocity components (m s-1) 
 U, V     dimensionless velocity components  
 x, y       x-, y-coordinates (m) 
 X, Y     dimensionless coordinates  

Greek symbols 
 α     thermal diffusivity (m2 s-1) 
 µ     dynamic viscosity (kg m-1 s-1) 
 ν      kinematic viscosity (m2 s-1) 
 ρ     density (kg m-3) 
 βT    thermal expansion coefficient (K-1) 
 βC    solutal expansion coefficient (kmol-1 m3) 
 θ     dimensionless temperature  
 ψ     dimensionless stream function  
 ω    dimensionless vorticity  
 Φ    general scalar dependent variable 
 Γ     diffusion coeffecient  
 ε      porosity 
Λ     dimensionless thermal conductivity 
 ξ      dimensionless solid-to-fluid heat transfer 
         coefficient          
 
Subscripts  
 f        fluid 
 feff   effective properties for fluid 
 H      high 
 i        axis indication 
 L       low 
 l        local value 
 m      mean value 
 s       solid 
 seff   effective properties for solid 
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c) Solutal concentration a) Streamlines  b) Fluid phase temperature
Fig. (2) Properties distribution at; N=0, Da=1×10-1 &  ε =0.9  

a) Streamlines  b) Fluid phase temperature
c) Solutal concentration Fig. (3) Properties distribution at; N=5, Da=1×10-1 &  ε =0.9  

a) Streamlines  b) Fluid phase temperature c) Solutal concentration 

Fig. (4) Properties distribution at; N=10, Da=1×10-1 &  ε =0.9 

a) Streamlines  b) Fluid phase temperature c) Solutal concentration 

Fig. (5) Properties distribution at; N=15, Da=1×10-1 &  ε =0.9 
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a) Streamlines b) Fluid phase temperature c) Solutal concentration 
Fig. (6) Properties distribution at; N=-1, Da=1×10-1 &  ε =0.9  

a) Streamlines  b) Fluid phase temperature c) Solutal concentration 
Fig. (8) Properties distribution at; N=-10, Da=1×10-1 &  ε =0.9 

a) Streamlines  b) Fluid phase temperature c) Solutal concentration 

Fig. (9) Properties distribution at; N=-15, Da=1×10-1 &  ε =0.9 

Fig. (7) Properties distribution at; N=-5, Da=1×10-1 &  ε =0.9  
a) Streamlines  b) Fluid phase temperature c) Solutal concentration 
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Fig. (11) Variation of local Nusselt number 
with buoyancy ratio at ε=0.9 & Da=1×10-1  

Fig. (13) Variation of mean Nusselt 
number with Darcy number at ε=0.9 

Fig. (14) Variation of mean Nusselt 
number with porosity at Da=1.E-1 

Fig. (12) Variation of local Sherwood number 
with buoyancy ratio at ε=0.9 & Da=1×10-1  

Fig. (10) Variation of velocity components with buoyancy ratio  
at the intermediate vertical and horizontal locations for Da=1×10-1 &  ε =0.9 

b) V- velocity component at the 
intermediate horizontal location 

a) U- velocity component at the 
intermediate vertical location  
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Fig. (15) Variation of mean Sherwood 
number with Darcy number at ε=0.9 

Fig. (16) Variation of mean Sherwood 
number with porosity at Da=1.E-1  

 

Fig. (17) Comparison the variation of mean Nusselt number with buoyancy ratio at GrT≈1.4×105  
with the work of (Rahli and Bouhadef, (2004)   


