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ABSTRACT

In this study, a genetic algorithm (GA) is used to detect damage in curved beam model, stiffness as well
as mass matrices of the curved beam elements is formulated using Hamilton's principle. Each node of the
curved beam element possesses seven degrees of freedom including the warping degree of freedom. The
curved beam element had been derived based on the Kang and Yoo’s thin-walled curved beam theory. The
identification of damage is formulated as an optimization problem, binary and continuous genetic algorithms
(BGA, CGA) are used to detect and locate the damage using two objective functions (change in natural fre-
quencies, Modal Assurance Criterion MAC).

The results show the objective function based on change in natural frequency is the best objective and no
error was recorded in prediction of location and small error in detecting damage value. Also the result show
that the genetic algorithm method are efficient indicating and quantifying single and multiple damage with
high precision, and the prediction error for the CGA are less than corresponding value for the BGA.
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INTRODUCTION

At the recent years, genetic algorithms have
been recognized as promising intelligent
search techniques for difficult optimization
problems. Genetic algorithm method is very
attractive in comparison with classical meth-
ods because it does not require a solution
search within the whole solution space. Instead
the algorithm starts from a small initial popu-
lation of approximated solutions and con-
verges rapidly from thereon
W.M.Ostachowicz et a/.1996. Mares and
Surace 1996 employed a GA to identify dam-
age in elastic structures. A modified version of
residual force vectors in terms of the stiffness
matrix of the damaged structure was chosen as
an objective function to be minimized while
stiffness reduction factors of all elements were
chosen to be variables. M. I. Friswell et al.
1998 developed a technique, which is based on
combined use of eigensensitivity and genetic
algorithms to identify the location and magni-
tude of damage from measured vibration data.
They employ a genetic algorithm to minimize
a square-value of the frequency error. Struc-
tural damage is modeled by a reduction in
Young’s modulus, while the element number
in the finite element model gives damage loca-
tion. The objective is to identify the position of
one or more damage sites in a structure, and to
estimate the extent of the damage at these
sites. The GA 1is used to optimize the discrete
damage location variables. For a given damage
location site or sites, a standard eigensensitiv-
ity method is used to optimize the damage ex-
tent. This two-level approach incorporates the
advantage of both the GA and the eigensensi-
tivity methods. Damage at one and two sites
have been successfully located in the simu-
lated example of a cantilever beam, also suc-
cessfully location in an experimental cantile-
ver plate. J.H. Chou and J. Ghaboussi 2001
used a GA to solve an optimization problem
formulated for detection and identification of
structural damage. The “output error” indicat-
ing the difference between the measured and
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computed responses under static loading and
the equation error indicating the residual force
in the system of equilibrium equations are
used to formulate the objective function to be
optimized. The method proposed is capable of
successfully detecting the location and magni-
tude of the damage as well as correctly deter-
mining the unmeasured nodal displacement,
while avoiding the complete finite element
analyses. E. S. Sazonov et al. 2002 used the
GA to produce a sufficiently optimized ampli-
tude characteristic filter to extract damage in-
formation from the strain energy mode shapes.
A finite element model was used to generate
training data set with the known location. The
filter amplitude characteristic was encoded as
a GA string where the pass coefficient for each
harmonic of the Discrete Fourier Transform
representation was a number between 0 and 1
in an 8 bit. The genetic optimization was per-
formed based on the minimization of the sig-
nal- to- distortion ratio. The results obtained
from the GA has confirmed the theoretical
predictions and allowed improvements in the
method’s sensitivity to damages of lower
magnitude.

In this study, it had been used a binary and
continuous genetic algorithm for damage de-
tection and location in (in and out-of-plane)
curved beam by minimizing or maximizing the
objective function which is based on frequency
difference and modal assurance criterion
MAC.

I. MODELING THE DAMAGED BEAM.

In this study the equation of motion for
simply curved beam acquired from Kang and
Yoo’s theory of thin- walled curved beams to
drive the element stiffness and mass matrices
respectively’ The curved beam element is
shown in Fig.1 in curvilinear coordinate sys-
tem. Each node of the curved beam element
possesses seven degrees of freedom including
the warping degree of freedom. Using Hamil-
ton’s principle, the dynamic equilibrium can
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be expressed in the variation form as following
K. Young Yoon et al. 2006.

[Z(6T + 6U + 6¥)dt = 0 (1)

Where &T is the variation kinetic energy,
§U is the variation strain energy, and &% is the
variation potential energy loss due to applied
loads. The symbol (&) means the first varia-

tion. For the linear elastic body, the variation
of strain energy stored in the body is

all = | T a

dv 2)

iy

Where 7;; refers to the components of the
stress tensor and ¢, to those of the strain ten-
sor. The variation in kinetic energy of a thin-
walled curved beam is

6T = p i" du,dV 3)

Where g is the mass density, wu; is the dis-
placement components of the curved beam,
and tis time. The variation potential energy

loss due to applied loads with body forces ne-
glected is

ov=—| gq,6u.dz 4)

Where g; stands for distributed loads ap-
plied on the line of shear center and ! is the

length of the element.

A linear stiffness matrix and a consistent
mass matrix are developed so that various ana-
lyses such as linear and free vibration analyses
can be performed. Using shape functions, the
dynamic equilibrium given in eq. (1) yields a
set of simultaneous equations

ST+ U+ dv=3d [Md+Kd—f]=0 (5)
From which one obtains.

Md+Kd—f=0 (6)

Where K, M, d, and f are the linear stiffness
matrix, the consistent mass matrix, the nodal
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displacement vector, and the applied force
vector of a global structural system, respec-
tively. The nodal forces and the corresponding
nodal displacements are shown in Fig.1 in the
positive senses. The nodal forces are seven
components (£, M, M, B, T,V ,and1,.).The
corresponding nodal  displacements are
(Wa ¥ — v, —T, B ug, and g Jwhere ¥ and T are
defined as

¥ = Uy + “— (7a)

r=p <+ (7b)

Wy, Ug, and ¥ describe the in-plane displace-

ments whereas 17,

o -1, A, and -7 are the out-of-
plane displacements. These two parts of displace-
ment fields are not coupled with each other and
can be formulated separately. Then, the displace-
ment fields can be expressed in terms of nodal dis-
placements as following K. Young Yoon et al.

200s.

(8)

Zo oo
O, Boon o

N, 0 o0

v [0 N, ©
) wi j “lo o N,
{ 0 0 0

=

Where the shapes function, N is defined as.

L0 (F 28 L) o9
\m:ll B2 -2 +) W -N l[‘ ¢ y,|} (9a)

LN ) - ] o)
N, =[1-¢ ¢ (Oc)

Where ¢ = z/

Where the nodal displacement, d is repre-

sented

d* = [Ua: ¥ Uo; W7 (10a)
d” = [";; —Vg Vg, —:.'"_;]T (10b)
d¥ = [Wer Wos)’ (10c)
dd=[8 -t B -] (10d)
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From the variation of strain energy pre-
sented in eq. (2) and the shape function in equ-
ations (9a), (9b), and (9c) the element stiffness
matrix for curved beam is derived as shown
K.Young Yoon et al. 2005.

ELK, 0 0 0

k1= g EE'Bhb E.-:.]K: E ()
0 0 0 EIK,~GKK,

Where

K,=J NJN,dz=

12 & -12 &

1 40 -6 2°
= 12 -6

Sym. 4
K_D — i N:__T :\T:dZ=

12 6 -12 6

1 Wt -6 20
12 —6

Sym. 4

— T T W ) — l l _l
K.= | NN, dz I [S}'m- 1 ]’
Kni = | NET NéIdZ:

12 —6t —12 —é6t

1 4 6 200

12 T

Sym. 4’
K. = [ NJINgdz=

4;° 6t —i=
301 36 3
Sym. 4¢°
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From the variation kinetic energy presented
in eq. (3) and following the similar procedure

as used for the element stiffness matrix for

curved beam formulation, the mass matrix is

derived.
ALY, 00 0
0 AM+LM 0 0
=0 0o 0 (12)
0 00 (LM LY,
Where:
M, = [, NIN_dz=

156 221 54 -—13

: 47 130 =3
410 156 -2

Sym. 447

M, = [ NIN.dz=

156 —22t 54 13:

I 4= —13: -3¢~
420 156 22 I
Sym. 4.2

1T owy =_' 2 l
= [ NIN,dz E[ ]

Sym. 2
M, = [ NJ Ngdz=

36 3t —36 3
4t =3 =
36 —3)

Sym. 4.

w1
o -

M;= [ NN dz=

36 -3t —36 -3
4" 3i —*

36 =3

Sym. 47

L)
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I1. APPLACATION OF A GENETIC AL-
GORITHM.

GA is a global probabilistic search algo-
rithm inspired by Darwin's survival-of-the fit-
test theory. In this optimization method, in-
formation about a problem, such as variable
parameters, is coded into a genetic string
known as an individual (chromosome). Each
of these individuals has an associated fitness
value, which is usually determined by the ob-
jective function to be maximized or mini-
mized. Genetic algorithms have been shown to
be able to solve the optimization problem
through mutation, crossover and selection op-
eration applied to individuals in the popula-
tion.

IL.I Population

The initial population are created randomly
by generating the required number of
individuals but a new population developed
from this initial population and to do this must
apply the genetic operator. The initial
populations are generated by the following
equation L. Randy Haupt, S. Ellen Haupt
2004:

P= XLB + rand (Npop 5 Nvar) (XUB - XLB) (13)

Where:

(Xus, Xrp) means the range of maximum and
minimum values allowed for each variable
respectively.

Npop = The number of population.

Nyar = The number of variable.

In this population, there are several
individuals  carrying  different  “genetic
information® in their string or coding. When
working with binary coded genetic algorithms
each of the real parameters to be optimized is
translated to binary codes.

e To transform the real values (b;) to
binary codes the following equation is
used H. M. Gomes and N. R. S. Silva
(2007)
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s = bin, {round (27 - 1) I%—_U
| F (14)

Where bin, indicates a binary traslation to a

string s , and n bit means the number of bit.

e To transform the binary codes to real

values (decoding) the following

equation is used.

(15)

Where bin'(s) is the nonnegative integer
decoded from the base 2 binary representation,
From this equation it is obviouse that the
precision by the binary coding is (Xup - Xig) /
(Zn bit _1)

IL.II Fitness Function

In order to determine the ability of an
individual to search better solution, a fitness
function is used to quantify how good the
solution represented by a chromosome is.
Depending on the problem characteristic, the
fitness function can be any form of
mathematical formulation, can be ecither a
maximized or minimized function. This
function generates an output from the set of
input variables of a chromosome. The goal is
to modify the output in some desirable fashion
by finding the appropriate values of input
variables.

In this work the two objective functions are
used to assess the presence of damage in
beam.

¢ Changes in Natural Frequencies.
e Modal Assurance Criterion.
Changes in Natural Frequencies

The natural frequency used as a diagnostic
parameter in structural assessment procedures
using vibration monitoring. One great
advantage of using only eigenvalue in the
damage assessment of structures is that they
are cheaply acquired and the approach can
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give an inexpensive structural assessment
technique. The objective function to be
minimized is defined as follows M. T. V.
Baghmisheh et al 2008:

Aw = Ev [:L-_:Ew' — c..::: :I: (16)

Where:

i =Mode Number (i=1,2,3,....,n)
w,." = Test natural frequencies
w? = Calculated natural frequencies.

The «w!™ are the natural frequencies which are

applied to our damage detection system as
inputs. An objective value of zero indicates an
exact match between the values of frequencies.

Modal Assurance Criterion.

The Modal Assurance Criterion MAC value
indicates the degree of correlation between
two modes and varies from 0 to 1, with 1 for
full correlation, and O for no- correlation. The
deviation from 1 can be interpreted as a dam-
age indicator in structures. This index is based
on comparisons between the changes in the
mode shapes obtained both from tests and
from calculations, the MAC is defined by W.
M. Ostachowicz et al. 1996:

MAC(0,,0,) = 74— (17)

i -
W R EL

L]

L]

0. = Test mode shape vector.

@, = calculate mode shape vector.

IL.III Selection (reproduction)

Reproduction is the first operator applied
on a population. The first step in the reproduc-
tion is fitness assignment. Each individual re-
ceives a reproduction probability depending on
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the own objective (fitness) value and the ob-
jective value of all other individuals in the
population. The evaluation of this objective
function indicates which individuals will have
more chances to procreate and to generate a
large offspring.

There are various selection processes that
are utilized in genetic algorithms such as rou-
lette wheel selection, rank selection and tour-
nament selection. A common processes and
used in this work are the roulette wheel selec-
tion. This selection method was used to copy
individuals according to their fitness values,
individuals with higher fitness have a higher
probability of contributing one or more off-
spring in the next generation. For each popula-
tion individual a probability of being selected
for copying is given by the following equation
D. E. Goldberg 1989:

ij =12 Py (18)

Where f; is the fitness of individual j, the
sum is taken over all population members (Ps.
ize), and Pj is the probability of individual i
with fitness f; receiving an additional copy.

IL.IV Recombination (Crossover)

Crossover is one of the recombination op-
erators that is used for information exchange
between any two individuals to create two off-
spring. Each pair of parents have a probability,
P. ,of producing offspring. Usually, a high
crossover probability is used.

e Real value Recombination: The vari-
able values of the offspring are chosen
somewhere around and between the
variable values of the parents. Off-
spring are produced according to the
rule H. Pohlheim 2007:

Var® =var' .o; + var”. (1-w)
1€ (1,2,...Nyar) (19)
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Where a is a scaling factor chosen uniformly a
random over an interval [-0.25 , 1.25] for each
a new.

e Binary valued Recombination: The
some of the crossover operators avail-
able in GA are single point crossover,
two-point crossover and uniform cros-
sover. In this work a single point cros-
sover is applied, where one crossover
position (n) a long the string is se-
lected randomly between 1 and the
string length less one. Two new
strings are created by swapping all
characters between the individuals
about this point.

I1I.V Mutation

Mutation means a random change in the
information of a chromosome, to add diversity
to the genetic characteristics of the population.
It is applied at a certain probability, P, to
each gene of the offspring, the mutation prob-
ability also called mutation rate, is usually a
small value, to ensure that good solutions are
not distorted too much. Mutation of real vari-
ables means, that randomly created values are
added to the variables selected. The mutation
rule is:

C=P +rand (XUB - XLB) (20)

Where C is mean the child and P mean parent
For binary mutation, randomly change a par-
ticular gene in a chromosome, thus, 1 may be
changed to a 0 or vice versa.

I1.VI Elitism

In the process of the crossover and muta-
tion- taking place, there is high chance that the
optimum solution could be lost. There is no
guarantee that these operators will preserve the
fittest string. To avoid this, the elitist models
are often used. Elitism refers to the process of
ensuring that the best chromosome (or few
best chromosomes) of the current population
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survive to the next generation. The best indi-
viduals are copied to the new population with-
out being mutated. Elitism can rapidly increase
the performance of GA, because it prevents a
loss of the best found solution M. Obitko1998

II.VII Termination

The GA may be terminated by using the
convergence criterion in order to get an ac-
ceptable approximate solution, the terminate if
there is no improvement over a number of
consecutive generation, by monitoring the fit-
ness of the best individual if there is no sig-
nificant improvement over a time, GA is to
stop. Or if the objective function value of the
fittest individual is 0 or very small number,
which means that the optimal solution has
been found.

In the present work the chromosome has
two variables, the damage location and the
stiffness reduction. The objective function ge-
nerates an output from the set of input vari-
ables of a chromosome. The goal is to modify
the output in some desirable fashion by finding
the appropriate values of input variables. Fig.2
shows the flowchart of the method of damage
detection using genetic algorithms.

III. NUMERICAL SIMULATION

The processes of damage detection are demon-
strated using (in and out-of-plane) simply sup-
ported curved beam. The dimensions and material
properties for the simply supported in and out-of-
plane curved beam are shown in Table 1 and Ta-
ble 2 respectively.

In and out-of-plane simply supported
curved beam is divided into 30 finite elements
of equal length, where the value of first natural
frequency is used for convergent test for
checking the stability of the results as shown
in the Fig. 3 and Fig. 4 for in and out-of-plane
respectively.

Six damage scenarios are investigated and
are summarized in Table 3.In the first four
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cases for single damage, the scenarios were
simulate by reducing the stiffness of an ele-
ment near the beam’s end and near the beam’s
mid-span. The remaining damage cases D5
and D6 in the same table correspond to a mul-
tiple damage scenario and were simulated by
reducing the stiffness of assumed elements at
two different locations. The following parame-
ters of the GA have been used: size of the
population is 40, probability of crossover P, is
0.9, probability of mutation Py, is 0.05, number
of elitism is 2 and number of bit is 20.

IV. RESULTS AND DISSCUSION

The frequency predictions from the FEM
model of undamaged beam are validated by
comparing with other researches as shown in
Tables 4 and Table 5 for in and out-of-plane
curved beam respectively.

IV.I Objective Function Based on Change

in Natural Frequency.

The input first five natural frequencies of
damage scenarios are shown in Table 6 and
Table 7 for out-of-plane and in-plane curved
beam respectively. A population of individuals
is generated randomly then the natural fre-
quencies and objective function are calculated
for each individual. The GAs theory is used to
find the optimal location and stiffness reduc-
tion by minimizing the eq. (16). For each sce-
nario the algorithm is run from five different
initial random population and the identified
values for damage scenarios by using CGA
and BGA are shown in Table 8 for out-of-
plane and Table 9 for in-plane curved beam.
In all scenarios there are no error recorded in
prediction of damage element and the errors
for the CGA are less than corresponding val-
ues for the BGA, because in the CGA deals
with real values without using any encoding
method.

Fig. 5 show the typical objective function
curve for out-of-plane at D4 by using CGA, it
is see that the objective function value tends to
zero with the increasing number of generations
and reach zero at around 21 generations. The
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Fig. 6 shows the objective function curves at
same damage scenario but using BGA, the
convergence occurs at 28 generation.

IV.II Objective Function Based on Modal
Assurance Criterion (MAC)

The mode shapes are calculated numeri-
cally using finite element model for the dam-
aged scenarios, these used as test inputs for the
GA operator. A population of individuals is
generated randomly then the objective func-
tion is calculated for each individual and the
GAs theory is applied. For each scenario
the algorithm is run in five different initial ran-
domly generated populations and the average
results obtained by CGA and BGA listed in
Table 10 for out-of-plane and Table 11 for in-
plane curved beam. The errors for CGA are
less than corresponding values for the BGA.

For out-of-plane curved beam the objective
function with multi damage for D5 using CGA
is shown in Fig. 7 it can seen that convergence
occurs at 15 generations.

V. CONCLUSIONS

The main conclusions from the present work
may be stated as follows:

e The study shows that the genetic algo-
rithm is effective in identifying posi-
tions and extents in single and multi
damage.

e The results obtained from continuous
genetic algorithms are more accurate
then those obtained from binary ge-
netic algorithms in damage assess-
ment.

e The length of the run (in terms of gen-
eration number) and results depends
on the initial randomly generated pop-
ulation and GA parameters and the
test point.

e The objective function based on
change in natural frequency is the best
objective function, because the stiff-
ness reduction has a relatively large
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effect on the natural frequencies, as
compared with mode shapes, it is in-
sensitive of the modes to the damage.
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Notation

A Sectional area (m®)

B, Bimoment (N .m)

E Young modulus (N/m?)

G Shear modulus (N/m?*)

GA Genetic Algorithm.

I Area moment of inertia about y-axis (m*)
Area moment of inertia about x-axis (m”)
Warping moment of inertia (m®)

Area polar moment of inertia (m*)

(+ St Venant constant of a straight member(m"*)

~

Length of the finite element (m, cm)

M_. M, Moment about x- and y-axis (N.m)

MAC Modal Assurance Criterion

m,, m,, m, Uniform distributed moments about x-, y-, and z-axis
m_  Uniform distributed bimoment

Npop  Number of population

Nyar  Number of variable

Py, Population size

Q. 9,9, Uniform distributed forces about x-, y-, and z-directions
Radius of initial curvature (m)

Kinetic energy (N.m)

U Strain energy (N.m)

u,.v, Displacement components of the shear center in x- and y- directions, respectively
V  Volume of body (m®)

V..V, Transverse shear forces (N)

' ;U

w, Average longitudinal displacement of cross-section

Xy Maximum value of variable
Xig Minimum value of variable

Greek letters

p  Mass density (Kg/m?)
i Rotation of the cross-section about z-axis
&  Subtended angle (degree)

Components of strain tensor

3

&  Variation
+. T Nodal displacements
1,  Components of stress tensor

10
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Table 1 Material properties of the in-plane curved beam

Area of cross section (A) | 4 x 107%m-
Radius of the arch (R) 2438 m
Mass density (9) 7850 kgim®
Subtended angle (8) 97"
Modules of Elasticity (E) 200 GPa
Modules of Rigidity (G) 77 GPa
Moment of inertia (I) | 645 x 107%m*

Table 2 Material properties of the out-of- plane curved beam

Area of cross section (A) 9.3 x1073m?"
Length (L) 10m
Mass density (o) 7850 kgim®
Subtended angle (8) 89°
Modules of Elasticity (E) 200 GPa
Modules of Rigidity (G) TTGPa
Moment of inertia (Ix) 1.13 x 107*m*
Moment of inertia (Iy) 3.88 x 10 3m*
Warping moment of inertia (Iew) | 5.56 x 10~ m*
Venant constant (K;) 5.38 x 10~ " m*

12
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Table 3 Damage scenario for in and out-of-Plane curved beam

Damage Damage Stiffness
Scenario Element | reduction %

D1 8 25

D2 11 50

D3 16 25

D4 25 50

D3 6.15 25

Ds 8.25 25

Table 4 Comparisons of modal frequencies for in-plane curved beam

Mode Natural Frequency(rad/sec) Error
No. | [Ki. Youngetal] | Present Numerical | (%)
Results Results
1 35698 396936 0.011
2 03122 93094 0.03
3 175731 1796.67 0.035

Table 5 First natural frequencies for the simply supported out-of- plane curved beam

Subtended Natural Frequency (rad/sec) Error
Angle Analytical | Numerical Presentl (%)
(degree) Results[Ki-| Results[ Ki-| Numerical '
' Young et al] Young et al]| Results
0 533000 53.3000 53266 0.06379
10 31.8648 31.8669 31.863 0.0056
20 199616 199614 19.9592 0.01202
30 13.9944 13.9931 13.9915 0.0207
40 10.5386 10.5372 10.5343 0.0408
50 8.2946 8.2888 8.28753 0.08523
60 6.7121 6.7012 6.70043 0.1739
70 5.5270 5.5090 550836 | 0.33725
80 4.5001 4.5707 4.57020 062838
90 3.8479 3.8048 3.87485 0.70038
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Table 6 Natural frequencies for out-of-plane curved beam

Damage on 0, ®; o (05

Scenario - -
D1 3.8583 45456 168.575 381.32 661.097
D2 3.8452 45113 168.525 37346 647.75
D3 3.8664 45.532 168.13 381.2 658.47
D4 3.867 45629 168.98 381.195 664.313
D5 3.8461 45286 166.86 379.147 565.786
D6 3.8372 45211 167.29 379.23 660.017

Table 7 Natural frequencies for in-plane curved beam

Damage o 5 5 o OF

Scenario - - -
D1 392.685 026.68 1796.3 1980.6 2897.9
D2 389.175 929.03 17479 1963.6 28694
D3 396.876 921.37 1795.6 19804 2885.7
D4 386.261 90581 1770.2 1960.9 29019
D5 386.182 878912 1767.5 19233 28258
Dé 374.657 §93.524 1768.9 1926.9 2858.3

Table 8 Identified stiffness parameters for out-of-plane curved beam based on
change in natural frequency

Test Stiffness Parameters
Element
No. Actual Identified | Error% | Identified Error %
by CGA by BGA

8 0.75 0.7491003 0.11 0.7449642 0.001
11 0.5 0.5002577 0.051 0500381 0.076
16 0.75 0.750383¢9 0.051 0.7500715 0.01
25 0.5 0.45995955 0.00001 0.5000152 0.003

6.15 0.75 0.7555629 0.48 . =

825 0.75 0.7334992 2.2 . =

14
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Table 9 Identified stiffness parameters for in-plane curved beam based on
change in natural frequency

Tast Stiffness Parameters
Element
No. Actual Identified Error % Identified Error %
by CGA by BGA
8 0.75 0.74954999 0.00001 0.7500007 0.0000%
11 0.5 05001478 0.03 0.4999847 0.003
16 0.75 (.7499G0595 0.00001 0.7499G88 0.0001
25 0.5 05000117 0.002 0.5000152 0.003
6.13 0.75 07514097 018 - =
825 0.75 0. 7481410 024 - =

Table 10 Identified stiffness parameters for out-of-plane curved beam based on MAC

Test Stiffness Parameters
Element
No. Actual Identified Error % Identified Error %
by CGA by BGA
8 Q.75 0.7505467 0.07 0.753685 0.5
11 0.5 0.5023270 046 0.5076601 1.5
16 0.75 0.7517007 022 0.7468184 0.42
25 0.5 05046008 0.92 0.5088810 1.77
6,15 0.75 0.7340752 2.2 . =
825 0.75 07702559 2.9 - -
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Table 11 Identified stiffness parameters for in-plane curved beam based on MAC

Test Stiffness Parameters
Element
No. Actual Identified Error % Identified Error Y
by CGA by BGA
& 0.75 0. 7430990 0oz 0.7757013 34
11 0.5 0.5044385 088 0.4923729 1.5
16 0.75 0.7547156 .63 0.7459007 0.54
25 0.5 05123102 24 0.5155471 31
6.15 0.75 0.7256023 32 = =
8.25 0.75 0.7829436 4.3 - =

Fig 1. Curved beam element
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Fig 2 Flowchart of suggested damage detection method using GAs
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