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BSTRACT 

Flutter is a phenomenon resulting from the interaction between aerodynamic and structural 
dynamic forces and may lead to a destructive instability. The aerodynamic forces on an oscillating 
airfoil combination of two independent degrees of freedom have been determined. The problem 
resolves itself into the solution of certain definite integrals, which have been identified as Theodorsen 
functions. The theory, being based on potential flow and the Kutta condition, is fundamentally 
equivalent to the conventional wing-section theory relating to the steady case. The mechanism of 
aerodynamic instability has been analyzed in detail. An exact solution, involving potential flow and 
the adoption of the Kutta condition, has been analyzed in detail. The solution is of a simple form and 
is expressed by means of an auxiliary parameter K. The use of finite element modeling technique and 
unsteady aerodynamic modeling with the V-G method for flutter speed prediction was used on a fixed 
rectangular and tapered wing to determine the flutter speed boundaries. To build the wing the Ansys 
5.4 program was used and the extract values were substituted in the Matlab program which is designed 
to determine the flutter speed and then predicted the various effects on flutter speed. The program 
gave us approximately identical results to the results of the referred researches. The following wing 
design parameters were investigated skin shell thickness, material properties, cross section area for 
beams, and changing altitude. Results of these calculations indicate that structural mode shape 
variation plays a significant role in the determination of wing flutter boundary. 
 

  الخلاصة   

هـي الظاهرة الـتي تنتـج مـن التداخـل بيـن القـوى الدينـاهوائيـة ودينـاميكيـة الهيـكل مـما يـؤدي الى حـالـة من ) الأرتجـاج(الـرفـرفـة 
حـريـة  باستخدام تحسـب القـوى الدينـاهوائيـة لمقطـع جنـاح مهتـز لـه درجتان مـن ال. عـدم الاستقرار وبالتـالي تدميـر وتحـطم الجنـاح

على دالة ويعتمـد أساس هذه .  حيـث إن المسألة تحـل باستخـدام التكـامـل المحدد،)(Theodorsen functionنظـريـة ثيـودرسـن
، والتي تكـون أساسا مكافئـاً لنظـريـة مقـاطع )  Kutta condition(وعلى شرط آوتـا ) potential flow(التدفـق الكامن 
 يتضمن التدفـق و تبني حقيقيالحـل ال. حيث يتم تحليـل الآلية الدينـاهوائيـة الغيـر مستقـرة بشكـل مفصـل.الـة الثـابتـة الأجنحـة للحـ

لحسـاب ). K) (auxiliary parametric( يمكن تمثيل الحـل باستخـدام العـامـل المسـاعـد. شـرط آوتـا وتحليـلـه بشكـل مفصـل
م تقنيـة العنـاصـر المحـددة و الـنمـوذج الى الجنـاح المستدق والجناح المسـتطيـل حيث تم اسـتخـدحـدود سـرعـة الـرفـرفـة ع

للتنبـؤ بسـرعـة ) V-g) (velocity - damping method(عامل التضاؤل -الدينـاهـوائى الغـير مستقـر مـع طـريقـة السرعـة
  )MATLAB(تسـتخـدم في بـرنـامـج الـ التي ء الجنـاح والقـيم المسـتخـرجة تم بنـا) ANSYS 5.4(الـرفـرفـة بـاستـخـدام بـرنـامـج 

حيـث إن البرنـامـج أعطى نتـائـج .ومنـه التنبـؤ بالمتغيـرات المؤثـرة على سـرعـة الـرفـرفـة. الذي صمم لحسـاب سـرعـة الـرفـرفـة
لمتغيرات التصميمية التالية للجناح سمك متغير للغلاف ومادة متغيرة تم بحث ا.  مطـابقـة تقريبـاً إلى نتـائـج البحوث المشـار إليها

اوضحت النتائج بان تغير النسق للهيكل يلعب دورا مهما في حساب سرعة . ومساحة مقطع متغيرة لقطع التقوية وارتفاع متغير
  .الرفرفة

    
KEY WORKS:     Flutter, V-g Method, Wings. 
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INTRODUCTION 

The problem of oscillating airfoils has 
been an important subject of unsteady 
aerodynamics because of its close link with 
flutter analysis. The sustained oscillation is a 
boundary between convergent and divergent 
motions. Hence, the speed thus obtained is the 
critical speed, above which flutter occurs.  

(Sadeghi, 2003); developed a code for 
the computation of three-dimensional 
aeroelastic problems such as wing flutter. (Bala 
Krishnan 2003); Investigated the initial 
mathematical theory of aeroelasticity centered 
on the canonical problem of the flutter 
boundary instability endemic to aircraft that 
limits attainable speed in the subsonic regime. 
(Massimo Bianchin 2003); Studied a 
methodology to merge state-space time domain 
realizations of a complete numerical 
aeroservoelastic model with flight mechanics 
equations 

 
UNSTEADY AERODYNAMIC FORCES 
OF THE TYPICAL SECTION MODEL:- 

The unsteady aerodynamic forces are 
calculated based on the linearized thin - airfoil 
.In this section, Theodorsen’s approach will be 
summarized and the flutter analysis will be 
conducted based on his approach (Theodore 
Theodorsen 1935). 

In Theodorsen’s approach, aerodynamic 
surfaces are modeled by flat plates. Theodorsen 
assumes that the flat airfoil is oscillating about 
the shear center (elastic axis) and unsteady 
flow is composed of two components, (a) non –
circulatory flow which can be expressed 
through the sources and sinks and (b) 
circulatory flow related to the flat vorticity 
surface extending from trailing edge to infinity. 
For each flow component, he obtained the 
velocity potential and then calculated the 
pressure using Bernoulli's theory. 
 
The Non-circulatory Flow:- 

By using Joukoweski’s conformal 
transformation (Theodore Theodorsen 1935), 
the airfoil can be mapped onto a circle. The 

velocity potential of a source (ε) on a circle 
( )11 , yx  can be expressed as:        
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Similarly, the velocity potential is due to a 
source (2ε) at on circle ( )11, yx and a sink 
 (-2ε) at on circle ( )11, yx − .  
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Since ( 21 xy −= ), the velocity potential is a 
function of (x) only. 
The downward displacement of the airfoil can 
be written as  
 

( )abxhz −+= α           
 
Then, up-wash will be  
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       Therefore, the velocity potential due to 
pitch angle ( )α will be                                                         
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Similarly, velocity potentials due to plunge 

motion, (
.
h ) and angular velocity, (

.
α ) are 

respectively expressed as: 
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           The total velocity potential due to non-
circulatory flow becomes:  
 

ϕϕϕϕ αα
.++=

hNC
      

           
22

.
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                                                                     (3) 
 
By Bernoulli theorem, the pressure is obtained 
as follows: 
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And the force (positive downward) and the 
pitching moment (positive nose-up) about the 
elastic axis will be expressed as:- 
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The Circulatory Flow:- 
           To satisfy the Kutta condition, 
Theodorsen employs a bound vortex 
distribution over the airfoil and a vortex over 
the airfoil wake. 
 
In order to consider wake, assume a bound 

vortex   ( =∆Γ γ dx ) at ( oX
1

), and a shed 

vortex ( ∆Γ− ) at ( oX ). 
Then, the velocity potential due to vortex is 
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Then,  
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The velocity potential can be expressed as  
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Where 

             ,11 ≤≤− x   ∞≤≤ ox1     
  It is to be noted that the vortex is moving 
away from the airfoil with velocity of (V). 
Therefore, by Bernoulli theorem, the pressure 
due to the vortex is  
 

  
⎟
⎠
⎞

⎜
⎝
⎛

∂
∆∂

+
∂
∆∂

−=∆ ΓΓ

x
V

t
p ϕϕρ2

          
 
Where: 

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−
−−

∂
∂

−=
∂
∆∂

∆Γ
−Γ

o

o

xx
xx

xx 1
11

tan2 22
1ϕπ

   
 

       xxx

x

o

o

−−

−
=

1
1

1
2

2

 
 



FLUTTER SPEED LIMITS OF SUBSONIC WINGS Prof. Dr. Muhsin J. Jweeg 
Ass. Prof. Dr. Shokat Al-Tornachi 
Eng. Tariq Samir Talib 
 

166 
 

         
xxx

x
x ooo −−

−
=

∂
∆∂

∆Γ
Γ 1

1

12
2

2ϕπ

            
The pressure at (X) due to the vortex at ( ox ) is 
 
          

xxx
x

x

x
Vp

oo

o

−⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−
−

+
−

−∆Γ
−=∆ Γ

1
1

1
1

1
2

2 2

2

2

2

π
ρ

  
 

                 
xxxx

xx
V

oo

o

−⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−−

−∆Γ
−=

1
112 22

22

π
ρ

                       
                                               (8) 
                                                                                

112 22 −−

+∆Γ
−=

o

o

xx

xx
V

π
ρ

                     
The force on the whole airfoil due to a vortex 

at )( ox will be  
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        The total force can be calculated by 

integrating with respect to )( ox  
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It has to be noted that the force and moment 
are functions of vortex strength )(γ .By 
applying Kutta condition at trailing edge the 
vortex strength can be determined. The total 

velocity potential is: 
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equation is obtained: 
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Finite. At (x=1)      Therefore, 
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The following expression is obtained from the 
above equation. 
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Then, the total force and moment on the airfoil 
will be as follows:  
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Where (c) is the Theodorsen function, and is 
defined as  
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Assume that the airfoil has a simple harmonic 
motion  
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Where  Vts =       
 
Then, Theodorsen function is expressed as 
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The Theodorsen function is frequently replaced 
by simple algebraic approximation as follows:-  
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The total force and moment resulting from the 
noncirculatory and circulatory flows are 

expressed as:  
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If a quasi-steady aerodynamic is assumed (The 
aerodynamic characteristics of an airfoil whose 
motion consists of variable linear and angular 
motions are equal, at any instant of time, to the 
characteristics of the same airfoil moving with 
constant linear and angular velocities equal to 
actual instantaneous values.), then C (k) 
becomes (1), and the force and moment will be  
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3. Flutter Equation Of The Typical Section 
Model. 
Equation of Motion:- 
     Consider the typical section shown in Fig. 
(3). 
 
                  
     

The model has a translation spring with 

stiffness )( hk and torsion spring, with 
stiffness )( Tk . These springs are attached to the 
airfoil at the shear center. Therefore, it is two 
degrees of freedom model ),( αh . And (h) is 
measured at the shear center (elastic axis).  
The downward displacement of any other point 
on the airfoil is 
  
    αxhz +=                                                    
 
Where (x) is a distance measured from the 
shear center. 
The strain energy and the kinetic energy are 
respectively given by  

22

2
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2
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2.
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      where (ρ) is the mass per unite length of 
the airfoil. 
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Define the following. 
 
  Mass        )( ∫= dxm ρ   
 
The second moment of inertia of the airfoil 
about shear center, 
 

 ∫ == 22
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The first moment of inertia of the airfoil about 
shear center, 
 

 ∫ == αα ρ mxxdxS         
 

Where )( αr is the radius of gyration and )( αx  
is a distance from the coordinate to the mass 
center. 
Then, the kinetic energy can be written as 
follows: 
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The virtual work due to the unsteady 
aerodynamic forces is  
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Where the force )( hQ is positive downward 

and moment )( αQ is positive nose-up. 
Lagrange’s equations provide the equation of 
motion of the airfoil. 
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The unsteady aerodynamic force and moment 
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Then, the equation of motion can be rewritten 
as:  
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where the mass ratio is defined as: 

(
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), (m) is the airfoil mass per unit 

length. 
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V-G METHOD FOR FLUTTER 
ANALYSIS:- 
The above flutter equation is expressed in the 
following matrix form. 
 

  [ ] [ ]
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Where ( ijK ) is the stiffness matrix,    ( ijM ) 
mass matrix, and ( ijA ) is the aerodynamic 
matrix. Note that the aerodynamic is function 
of the reduced frequency, (k). 
V-g method assumes first the artificial 
structure damping, (g).    
 
[ ] [ ]ijij KigK )1( +=                                          
 
This artificial damping indicates the required 
damping for the harmonic motion. The 
eigenvalue of the equation of motion 
represents a point on the flutter boundary if the 

corresponding value of (g) equals the assumed 
value of (g).     

For a given reduced frequency, (
V
bk ω

= ) will 

be a complex eigenvalue problem. 
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The Eigen value is:- 
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ANSYS ANALYSIS OF WING 
MODEL:- 
  The wing model analysis in the Ansys 
program is by using the suitable element for 
the work. The (Shell 93) may be used for skin 
and the spar web and the (Beam 4) (3D elastic 
beam) is used for the stiffeners in the isotropic 
case 
  
FLUTTER PROGRAM: - 

The combination between the (ANSYS 
5.4) and the (MATLAB 7.0) is employed. The 
program is solved by using the Theodorsen’s 
theory with velocity damping (V-g) method. 
The inputs of program for the wings model are: 

1. From (ANSYS 5.4) the natural    
frequencies are taken. 

2. The static unbalance, frequency ratio, 
mass ratio, radius of gyration and non-
dimensional location of airfoil elastic 
axis. 

3. Density of air at any altitude. 
 

And the outputs of program are: 
1- The bending and torsional mode shapes 

for both rectangular and tapered wings 
as shown in Figures a to d. 
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2- The relation between the non- 
dimensional parameter (1/k) with 
structural damping. 

3- Calculation of the flutter speed.  
 
RESULTS AND DISCUSSIONS:-   

 
RESULTS OF COMPARISON: - 
    By using analytical and numerical 

solution for the case where (µ=60, rα = 0.4, xα = 
0.2, a = -0.3) it is found that the results in the 
work are approximately equal to the results in 
references as shown table 1.The following 
parameter are to be investigated  
 
 Effect of the Changing Wing Skin 
Thickness 
          The shell thickness is one of the main 
important variables in the wing design; 
therefore the effect of variation thickness from 
(0.001m) to (0.0035m) was studied in the 
reduced frequency, flutter speed and mass for 
two types of wing (rectangular wing and 
straight-tapered wing).   
 
Rectangular Wing 

Table (2) shows the shell thickness 
effects on the vibration modes. For the 
configuration (3x5) with area (A=44mm2) and 
thickness (0.001m) the first two natural 
frequencies are equal to (20.016 HZ, 101.15 
HZ), with mass (8.231kg), Figs. (5) and (6) 

show the reduced frequency (
k
1 =

αωb
V f =1.66) 

and frequency ratio (
αω

ω f =0.351). For these 

values (ωf =35.503HZ, Vf =474.751m/sec). But 
when the thickness increases to (0.0035m) the 
first two natural frequencies are equal to 
(19.489HZ, 108.7HZ) with mass (20.704kg), 
Figs. (15) and (16) show the reduced 

frequency (
k
1 =

αωb
V f =2.66) and frequency 

ratio (
αω

ω f =0.322) and (ωf =35.0014HZ, Vf 

=817.115m/s). From Figs (7), (8) (9), (10) 
(11), (12) (13) and (14) it is found that the 
reduced frequency is increased while the 

frequency ratio decreases therefore; the flutter 
speed is increased with thickness i.e. mass 
increases and the effect of thickness on the 
flutter speed is under  investigation.  

 
Tapered Wing 
          Table (3) shows that the effects of 
thickness are high on the flutter speed. For 
thickness (0.001m) the first two natural 
frequencies are equal to (31.807HZ, 128.22 
HZ), with mass (7.4752kg) and Figs. (17) and 
(18) show the reduced frequency 

(
k
1 =

αωb
V f =2.97) and frequency ratio 

(
αω

ω f =0.416) and (ωf =53.33HZ, Vf 

=765.671m/s). And for thickness (0.0035m) 
the first two natural frequencies are equal to 
(32.446HZ, 138.75HZ), with mass (18.721kg), 
Figs. (27) and (28) show the reduced 

frequency (
k
1 =

αωb
V f =4.956) and frequency 

ratio (
αω

ω f =0.396) and (ωf =54.945HZ, Vf 

=1381.891m/s). Figs (19), (20), (21), (22), 
(23), (24), (25) and (26) show the thickness 
effect on flutter speed for taper wing type. 

From the static solution (Mechanical 
and Electrical Systems, Operation Manual, 
Boeing Commercial Airplane Company 
1984). the optimum thickness is taken for the 
wings (0.001m) for rectangular wing and 
(0.003m) for tapered wing. 
 
 EFFECT OF THE USED MATERIAL 
          One of the important and necessary 
factors in the wing design is the material that is 
used. The material chosen gives the high 
resistance with little weight (high resistance to 
weight ratio). Therefore, three types of 
materials to build the wing structure are tested 
in this work. 
 
Rectangular Wing:- 
          From Table (4) the (adv. Aluminum) is 
used in the wing design. For configuration 
(3x5) with thickness equal to (0.001m) the first 
two natural frequencies are equal to (21.20HZ, 
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107.49HZ) with mass (8.5437kg) and Figs. 
(29) and (30) show the reduced frequency 

(
k
1 =

αωb
V f =1.688) and frequency ratio 

(
αω

ω f =0.337) and (ωf =36.22HZ,  Vf 

=513.018m/s). And for the same thickness for 
(7075-T6) the first two natural frequencies are 
equal to (20.016 HZ, 101.15 HZ), with mass 
(8.231kg) and Figs. (5) and (6) show the 

reduced frequency (
k
1 =

αωb
V f =1.66) and 

frequency ratio (
αω

ω f =0.351). For these 

values (ωf =35.503HZ, Vf =474.751m/sec). 
From Table (5) and for the same thickness 
when using the (Ti6A14V) the first two natural 
frequencies are equal to (19.825HZ, 
101.21HZ) with mass (13.02 kg). Figs. (33) 
and (34) show the  reduced frequency 

(
k
1

=
αωb

V f =2.044) and frequency ratio 

(
αω

ω f =0.327) and (ωf =33.095HZ,  Vf 

=584.624m/s). From above it is clear that the 
effects of the materials (7075-T6) and 
(Adv.Aluminum) are approximately equal in 
angular flutter frequency but the difference in 
the flutter speed is equal to (7.45%) using the 
same mass. But when using (Ti6A14V) the 
angular flutter frequency is less than the (7075-
T6) and (Adv.Aluminum) while the flutter 
speed is greater with high value of mass. The 
percentage between (Ti6A14V) and (7075-T6) 
is equal to (18.7%), and (Ti6A14V), 
(Adv.Aluminum) is equal to (12.2%). The 
percentages differ because of the wing mass 
difference.  
 
TAPERED WING 

From Table (6),and when using the 
(adv. Aluminum) in the wing design with 
changing thickness, it is seen that for 
configuration (3x5) with thickness equal to 
(0.003m) the first two natural frequencies are 
equal to (34.306HZ, 146.07HZ) with mass 
(17.098kg), Figs. (31) and (32) show the  

reduced frequency (
k
1 =

αωb
V f =4.769) and 

frequency ratio (
αω

ω f =0.429) and (ωf 

=62.66HZ,  Vf =1399.903m/s). And for the 
same thickness for (7075-T6) the first two 
natural frequencies are equal to (32.387HZ, 
137.75HZ), with mass (16.472kg), Figs. (13) 
and (14) show the reduced frequency 

(
k
1

=
αωb

Vf =4.675) and frequency ratio 

(
αω

ω f
=0.421) and (ωf =57.992HZ, Vf 

=1294.144m/sec). From Table (7) and for the 
same thickness when using the (Ti6A14V) the 
first two natural frequencies are equal to 
(32.07HZ, 136.88HZ) with mass (26.055kg), 
Figs. (35) and (36) show the reduced 

frequency (
k
1

=
αωb

Vf =5.79) and frequency ratio 

(
αω

ω f =0.405) and (ωf =55.436HZ, Vf 

=1592.679m/s). From above, it is found  that 
the effects of the materials (7075-T6) and 
(Adv.Aluminum) are different  in angular 
flutter frequency but the flutter speed 
difference percentage is equal to (7.5%) with 
the same mass approximately. But when using 
(Ti6A14V) it is found that the angular flutter 
frequency is less than the (7075-T6) and 
(Adv.Aluminum) while the flutter speed is 
greater with high value for mass. The 
percentage difference between (Ti6A14V) and 
(7075-T6) is equal to (18.7%) and (Ti6A14V) 
(Adv.Aluminum) is equal to (12.2%). These 
differences are because of the wing mass 
difference. 

From above, the material (7075-T6) is 
recommended for both wings rectangular and 
taper because it gives good results for flutter 
speed and angular flutter frequency with little 
mass. 
Figs. (1) and (2) show the bending and torsion 
mode shapes and the corresponding 
deformations of the material, type (7075-T6) in 
configuration (3x5) and shell thickness 
(0.001m) with beam cross section area of 
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(44x10-6m2). These deformations are due to 
free vibration in the rectangular wing. Figs. (3) 
and (4) show the bending and torsion mode 
shapes and the corresponding deformations of 
the material, type (7075-T6) in configuration 
(3x5) and shell thickness (0.003m) with beam 
cross section area of (44x10-6m2).  These 
deformations are due to free vibration of the 
tapered wing. 
 

          CONCLUSIONS 
From the results achieved in this work the 
following points may be concluded. 
Increase of radius of gyration (rα) tends to 
increase the flutter speed especially for higher 
mass ratio. The static unbalance (xα) increases 
(the distance between the rotation center and 
center of gravity) the flutter speed decreases 
because of the strong coupling between 
heaving and pitching motion.  

• The flutter speed is sensitive to the ratio 
of uncoupling natural frequencies, 
where the increasing of the frequency 
ratio increases the flutter speed and the 
flutter speed has a minimum near 

( 1=
αω

ωh ).With structure damping 

omitted the typical section model is 
neutrally stable until (V = Vf) for (V = 
Vf) the bending and torsion frequencies 
merge and for (V > Vf) the system is 
unstable. 

• With including structure damping (g) 
for small (V) all values of structure 
damping (g) are stable and flutter speed 
is sufficiently large (V) where structure 
damping (g) changes its sign from 
negative to positive. 

• The higher wing aspect ratio decreases 
the flutter speed, while the increasing 
of the taper ratio increases the flutter 
speed. The flutter speed changes 
linearly with the altitude and it is 
increased with increasing the altitude. 
Flutter prevention can be summarized 
by adding mass or redistribute mass so 
that (xα < 0) mass balance, increases 
torsional stiffness i.e. increase (ωα), 

Increasing or decreasing (
αω

ωh ) if it is 

near one (for fixed ωα), adding damping 
to the structure and require the aircraft 
to be flown below its critical mach 
number. 
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