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ABSTRACTE

This paper presents an application of a Higher Order Shear Deformation Theory (HOST 12) to problem
of free vibration of simply supported symmetric and antisymmetric angle-ply composite laminated plates.
The theoretical model HOST12 presented incorporates laminate deformations which account for the effects
of transverse shear deformation, transverse normal strain/stress and a nonlinear variation of in-plane
displacements with respect to the thickness coordinate — thus modeling the warping of transverse cross-
sections more accurately and eliminating the need for shear correction coefficients. Solutions are obtained in
closed-form using Navier’s technique by solving the eigenvalue equation. Plates with varying number of
layers, degrees of anisotropy and slenderness ratios are considered for analysis. The results compared with

those from exact analysis and various theories from references.
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INTRODUCTION

Laminated composite plates and shells are
finding extensive usage in the aeronautical
and aerospace industries as well as in other
fields of modern technology. It has been
observed that the strength and deformation
characteristics of such structural elements
depend upon the fiber orientation, stacking
sequence and the fiber content in addition to
the strength and rigidities of the fiber and
matrix material. Though symmetric and
antisymmetric laminates are simple to analyze
and design, some specific application of
composite laminates requires the use of
symmetric and antisymmetric laminates to
fulfill certain design requirements. Symmetric
and antisymmetric angle-ply laminates are the
special form of symmetric and antisymmetric
laminates and the associated theory offers
some simplification in the analysis. The
Classical Laminate Plate Theory (Reissner E.
and Stavsky Y., 1961) which ignores the
of shear deformation

effect transverse

becomes inadequate for the analysis of
multilayer composites. The First Order Shear
Deformation Theories (FSDTs) based on
(Reissner E., 1945) and (Mindlin RD., 1951)
linear stresses  and

assume in-plane

displacements respectively through the
laminate thickness. Since FSDTs account for
layerwise constant states of transverse shear
stress, shear correction coefficients are needed
to rectify the unrealistic variation of the shear
strain/stress through the thickness. In order to

overcome the limitations of FSDTs, higher
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order shear deformation theories (HSDTs)

that involve higher order terms in the Taylor’s

expansions of the displacement in the

thickness  coordinate developed.

(Hildebrand et al., 1949) were the first to

WEre

introduce this approach to derive improved
theories of plates and shells. Using the higher
order theory of (Reddy, 1984) free vibration
analysis of 1isotropic, orthotropic and
laminated plates was carried out by (Reddy
and Phan, 1985). A generalized Levy-type
solution in conjunction with the closed form
solution was developed for the bending,
buckling and vibration of antisymmetric
angle-ply laminated plates by A. (Khdeir A.,
1989). The exact solutions were obtained for
the classical Kirchhoff theory and the
numerical results were compared with their
counterparts using the first order transverse
shear deformation theory. The comparisons
showed that the results obtained within the
classical laminated theory could be
significantly inaccurate. A selective review of
the various analytical and numerical methods
used for the stress analysis of laminated
composite and sandwich plates was presented
by (Kant and Swaminathan, 2001). Using the
higher order refined theories already reported
in the literature by (Kant, 1982), (Pandya and
Kant, 1988) and (Kant and Manjunatha,
1988), analytical formulations, solutions and
comparison of numerical results for the
buckling, free vibration and stress analyses of
cross-ply composite and sandwich plates were

presented by (Kant and Swaminathan, 2002).
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Recently the theoretical formulations and

solutions for the static analysis of
antisymmetric angle-ply laminated composite
and sandwich plates using various higher
order refined computational models were
presented by (Swaminathan and Ragounadin,
2004), 2006) and

(Swaminathan and Patil, 2008).

(Swaminathan et al.,

THEORETICAL FORMULATION

Higher Order Shear Deformation Theory
(HSDT 12)

For the first time, derived the equation of
based
deformation theory (HOST 12) in the present

motion on higher-order shear

study.
The assumptions of a higher order plate
theory can also be used within equivalent
single layer formulation from (Swaminathan
and Patil, 2008):

u(x,y,z,t) =u, (x,y,t)+ z0, (x,y,t)
+27u) (6, 3,0)+2°0; (x,1.1)

v(x,y,z, z‘) =V, (x,y,t)+ z0, (x,y, z‘)
+z°v (x,y,t)+ 20, (x,y,t)

w(x,y,z,t) =w, (x,y,t)+ z0. (x, y,t)
+ 2w (x, 3,0)+ 2°0. (x, 1)

(1

1. The plate may be moderately thick.

2. The in-plane displacement u (X, y, z, t)
and v (X, y, z, t) are cubic functions of z.

3. The transverse displacement w (X, y, z,
t)of any point (x, y) cubic functions of z.

4. The transverse shear stresso,,, o,,are

parabolic in z.
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5. The in-plane stresseso,, oyand 7,

are cubic functions of z.
6. The normal to the mid-surface before
deformation are straight, but not
necessarily remaining normal to the

mid-surface after deformation.
7. The transverse normal strain o, is not

Zero.

The parameters u,, v, are the in-plane
displacements and w, is the transverse
displacement of a point (x, y) on the middle
plane. The functions 0, 0y are rotations of the

normal to the middle plane about y and x axes

*

parameters u v, ,w

0o?%"0% 70

respectively. The
6’:,0;,«9: and @, are the higher-order terms

in the Taylor’s series expansion and they

represent  higher-order transverse cross
sectional deformation modes. This is done by
taking into account the parabolic variation of
transverse shear stresses through the thickness
of the plate (Swaminathan and Patil, 2008).
The strain components will be derived,

based on the displacement, as:

€ P K € K
x xo x X0 X
€ £ K e K
Yo y Yo 4
T = +zy Ltz Tz
8 Sza KZ 820 O
| . ; )y @)
Xy xyo Xy € xyo Xy
{yyz} ) {goy } + Z{Kyz } + 22 {goi } + Z3 {K/:Z}
Ve . K. Q. U
where:
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Ouy
0x - - A 7]
o v, % Qll 912 913 914 0 0
o [T oy o, sz st 924 0 0
gxyu auO + avO O-z _ Q33 Q34 O 0
oy ox [T Q 0 0
ous o
& o (. Symmetric o, st
g’* = aavz /Z;z k L Q66_
Yo y * * (4)
* g K
gxyo auz " 61/; gx‘o K;c iﬂ i
o - ox g, & |8 |8
yo
€. 0. e | || L& | .0
o L2 * RS SRS S A
& zo 3 9 z SX,VU K;y 6j‘f,\’O K;y
00, g k.| |4 K.
ox P R
K. 20, * K. ¢ K.
K, oy
K, 2w where [0] from equ. [g|=[r] [o]r],
o 00x 00y [Q] given by :
oy ox (3)
00y
X
K Ox Qu=Ei(1-v23v32)/A
. 26y _
P -y Qi2=E1(vi2-v31v23)/A
v oy
K, oot 00" Qi3=E1(v31-v21v32)/A
X
+
oy 0x Qu=Ea(v32-vi2va1)/A
. S5a
K 2u) + aagxz Q33=Es(1-v31v23)/A (52)
O B P Qu=Gr>
o ay
00" Qs55=Go3
* z
sz _ ax Q66:G13
K 003
oy
0 owg .
T o where:
9.
’ 30" + owe A= (1-viova1 -v3v3o -v31viz -2viovasva) - (5b)
x * ox . . . .
p = p owy And the transformation matrix [T] is given by
+
Y v . .
4 ! Oy the transformation equations:
%
’ 30, + aava 0

Substituting eq. (2) in the stress- strain
relation of the lamina, the constitutive
relations for any layer in the (x, y) can be
expressed in the form:

é 11= QMC4
+2(Qu2+ 2Qs33)s°c™+ Qyos”
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é 12= (Q11 + Qa2 - 4Q33)s%c?

_ FQust+ch

015=Qi3¢” + Qu3s”

Q1= (Qi1 - Qi 2Quq) s¢°

_ HQiz- Q+2Qay)cs’

Q2= Quis*+2(Qu2 + 2Qs3)s7¢’
+Qnc*

= 2 2
023= Q38"+ Qasc

024=(Qi1- Quz - 2Qua)cs’
+(Q12 - Qa2 + 2Qua)sc’

03= Qi3

034= (Q31- Qs)cs

044= (Qi1 - 2Qi2+ Qu2- 2Qua)c* §°
+ Qs (c*+5%)

0 55= Q555" + Qgec”

0 56= (Qss- Qss)cs

é 66= Qss5"+QesC”

All other elements of [Q;;] and [@ij] are zero.

The entire collection of forces and
moments resultants for N-layered laminated
are defined as:

(5d)

N, o (62)
N, ? o, J
v .
Nz 74 O-z
Qll _QIZ 913 914
— i Q22 Q23 Q24
= symmetric Q.. 93 .
L Q44 k
8)(0 K
“t gyo “t K)
I dz+ I
Zig gzo Zia K
gxyu K
g«:() K
z, 5*, Lo | i
+ I Tz dz+ _[ Yz dz
Zkfl 820 ZAI 0
& K‘
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N’ O,
N'| ”%lo,
’ :I "V 2z
Ni AL
N, Ty,
Qll _QIZ 213 914
_ u sz Q23 Q24
= symmetric Q.. Q.,
L Q44 P
(6b)
£, K,
Zy gw s Zy Kv ,
j Tz dz+ I L2 dz
Z,, | €5 7, | K.
EX.VU K'Xy
E, K,
Zk A *
g, LK
+ vzt dz+ I 6 z dz
th*] 820 Zkfl
xyo K-xy
M, o
M| e
X
. =I o, zdz,
M Wy
2 .
M Wk
Xy
Qll _QIZ 913 214
:i sz Q23 Q24
= symmetric Q.. Q,,
L Q44 k
(6¢)
gYD K
e, x|,
I zdz+ f z" dz
Zkfl EZU ZAI K
8)(}’0 K
£, K,
(R B L
+ oz dz+ j 0
Zkfl zo kl
xyo K
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M; o,
M| e
Th= .[ z'dz
0* |0,
M T,
Xy k
Qu _Ql2 QIS 914
_ i Q22 Q23 Q24
k=1 symmetric én QM
L Q44 k
(6d)
gm Kx
Zk g)(’ 3 Zk Ky 4
J z dz+ I Lz dz
Zya gzo Zya Kz
€ 0 K,
g K,
z, 5*, Z | e
+ vz dz+ I Y iz0dz
Zk—l 8;70 Zk—l O
gxyo ny
}12
o) L)
Qx 7% sz k
_i{st st}
k=t Q56 Q66 k (6¢)
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A
i
g wlr.),

_ u st Q56
= st Q66 i

Zy z (i
I ¢y 2 dz+ I P dz
Zg ¢x Zg sz

Laminate Constitutive Equations

(6f)

(6g)

(6h)
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where the overall laminate stiffnesses Ajj,
Bij, Dij, Eij, Fij, Gij and H;; are:
(4,,8, F,,G,,H,

ij 2 ij 2 ij 2

D,

ij b

E.

ij b

% 8
- .[Q@'/('k)(l’Z’Z2’ZB=Z4aZS526)dZ ()
B

i,j=1,2,3,4,5,6,7)
If Aj;, Bjj, etc, are written in terms of the ply

stiffness Q}k) and the ply coordinates zx and
Zx-1, the following is obtained:

(4,,B,,D,.E,,F,,G,,H,)=

GO T T T i T
o )

1 k n _ n)

n Qij (Zk+1 Zk
k=1

(n=1,2,3,4,5,6,7)

)

Volume 18 February 2012

273

Journal of Engineering

NI ST &
Ny 4, 4, 4,4, B, B, B;B,|| D, D, D;D, E, E, E,E, c
N A, Azs 4, B, B, B, D, D, D, E, E,E, '
. e,
N~ ’433 ‘434 B, B, D, D, E, E, g'
| |l A, | |sm B, ||sym D,| |sym E, ||| G
Nj“ D, D, D,D,|| B, E, E;E,| | £, FE, FF, Z
v Dzz l)z3 1)24 Ezz E23 Ez4 Ez Es F24 Y
N, D, D, E,E, AR
]\];y SYM D, || SYM E:M_ _SYM E, K,
M El Ez Es E4 i Gu G12 G13 G14 5:,,
]\/[y FE, E,E, G, G23 G, &,
M F;s F;4 G33 G34 5‘;
MZ SYM E, _S YM G, g
(H, H, HH]| "
M 11 12 134114 P 7
]\/Ii SYM ]—]22 1—123 1—124 K;: ( )
’ H.H, ||y
0 SYM a9
M L - K
xy Xy
Qy {Ass A56 :| |:Bss Bss :| |:D55 D56 :| |:E55 Ess :| ¢y
Q-‘ Ase Aeo B 56 B 66 D 56 D 66 E 56 E 66 ¢X
Qy |:D55 D56 :| |:E55 E56 :| |:Fss FS6 :| Ky
Q: _ Dse Doe Ese Eee Fse Foe Kx*z
S, {Fss Fss} {Gss GS(,} 9,
Sx F. 56 F, 66 Gse Geo ¢X
Sy SYM |:H55 H56 :| Kyz
S j i H 56 H 66 | || K ;

Differential Equations of Equilibrium of
Laminated Plates

The equilibrium differential equations in
terms of the moments and forces resultants for

a plate are (Swaminathan and Patil, 2008):
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N, +N, =Lii,+1,0,
+ L +1,0
N, +N, =13 +L0
+17, +1,0
0.+0, +P =13 +1,0
+L0 +1,0
M, +M, -0 =1,
+1.0 +Lii, +1.0
M, +M, —0O =L,
+1,0, + 1V, + 1.0

h .
SX,X +‘S‘y,y _M +5(B) :12‘4/0

N +N, -2S =Lii,

XNy X
+1,0 + 1L, +1.0
]\];,y +]V:y,x _2‘51' =13i}0
+1,0,+1V,+1,0

C K ,
Qx,x +Qxy,y _M +Z (B) =I3M6

M:,x +M:y,y _3Q: =14i/20
+1.0 +Lii +1.0
M;,y +M:y,x _3Q; =14“}0 +159‘y
+1,3, + 10

X,

3
.S, SN+ (D)=L + 1D

+IL +1.0

The following plate inertia can be

introduced:

(1,.1,,1,,1,,1,,1,,1,)=

sL3zsdystsslgsly

Zk+1

N k
> p(k)(l,z,zz,z3,24,zs,z(’)dz
k

=1 7

(10)

(1)
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If the material for all the layer is identical,

that is if the density p"is the same for all k,

then
1221421620 ( 1 2)

Exact Solution for Simply Supported

Rectangular Plates

The exact analytical solution of the
differential eq. (1) (HOST 12) for a general
laminate plate under arbitrary boundary
conditions are impossible task. However,
closed-form solution for ‘simply-supported’

rectangular plates is to be considered.

The following simply supported boundary

conditions are assumed (see fig. 1).

B. C. of cross-ply laminated plate associated
SS-1:

At edges x =0 and x = a:
U():O, W():O, HyZO, 9220, MXZO,
=0, wy=0, 6,=0 60 =0 M =0,

N.=0, N'=0.

Atedges y = O and y = b: (13)

u0=0, W():O, GXZO, 9220, MyZO,
wy=0, wy=0, =0, 6 =0, M =0,
N,=0, N =0.

B. C. of angle-ply laminated plate associated
SS-2:

At edges x=0and x=a;

uo=0; wo=0; H_V=0; 9:= ; Mx=0; Nxv=0;
uy=0; wy=0 6,=0 =0 M =0 N =0.

Xy

(13b)

At edges y=0and y =15
vo=0; w,=0; 6,=0, 0.=0; M,=0; N,=0;
g,=0, w,=0 =0 6=0 M=0 N, =0
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| a |

Fig. 1 Geometry and the co-ordinate system
of a rectangular plate of thickness h
Equation of Motion in Terms of

Displacements HOST12

For the first time, the equations of
motion to the HOSTI2 eq. (1) can be

expressed in terms of displacements
4y, vy, ,,6.,0,,0.,u;,v:,w,,6.,0°,6.) by

Substituting eq. (6) into eq. (10) as in (Salam
Ahmed A., 2008).

Free Vibration Solution by HOST12

The following form of solution satisfies
the differential the equations of motion and
the boundary condition eq. (13), when the
applied load q (x, y, t) on the right hand side

of the equations of motion is set to zero.

w, = Y. w,,, sinaxsin fye

m,n=1

i@yt
2
iyt

w, = >.w,, sinaxsin fye" ",

[yt

0.=>.0., cosaxsinfye,
m,n=1

* S * ] [ Oy 4

0. = > 6. cosaxsinfye ",

. (14a)
0, =0, sinaxcosfye™,

m,n=l1

M=
* : iyt
2.0, sinaxcos fye ",

m,n=1

3
I

_ : : : 1@t
0. =>6., sinaxsin e,
m,n=1

zzzzz

S
I
NgB
T
=.
=]
8
=.
=]
=
m\.
S}

m,n=1

For antisymmetric cross-ply laminates:
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u, = Yu, cosoxsinfye™,

m,n=1

* _ * . ia)yplnf
u, = Y u, cosoxsinfye™”,

m,n=1

. (14b)
— 1 s
v, = DV, sinaxcosfe™”
m,n=l1
* _ 2 * . i(umyf
v, = DV, sinaxcosfe
m,n=1
For antisymmetric angle-ply laminates:
— ] i”)nv/
u, = Y u, sinaxcosfe™,
m,n=1
* _ = * . l(l&”nt
u, = Y u, sinoxcosfe™,
m,n=1
(14 ¢)

Vo = ZVOW cosaxsin ,@,eiwm,;’

m,n=1

v, = DV, cosaxsinfe ™,

m,n=1

By substituting eq. (14) into the
equations of motion and expressing the a
result in matrix form the following is

obtained:

[&]-w, [m]}A}= o} (15)

The elements of the matrix [K] (Stiffness
Matrix) [M] (Mass Matrix) are given in
(Salam Ahmed A., 2008).

RESULT AND DISCUSSION

In the following, it is assumed that the
material is fiber-reinforced and remains in the
elastic range. The boundary conditions are
SSSS, and the analytical procedure (HOST
12) is used in this work.

The material properties are :-
E»=6.92 x10° N/m’, E;= 40E,,
G12 =G13 =0.5E3, G23 =0.6E,, v;,=0.25
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Dimensions of plate:

a=lm , b=Im , h=0.02m

Table 1 Effect of degree of orthotropy of
individual layers on the fundamental
frequency of simply supported symmetric

square laminates: a/h=5, @ =10xwl(ph’ / E, )%

No. E1/E2
of Source
laye 3 10 20 30 40
IS
Exact | 264|328 3.82 [ 410 | 430
74 | 41 | 41 | 89 | 06
262 13263.70 | 3.94 | 4.11
\ GTTR | "e6 | 79 | 11 | s6 | 50
Present | 2.52 | 3.21 | 3.68 | 3.94 | 4.11
HOST | 71 | 97 | 34 | 42 | 98
12% | 454 | 1.96 | 4.99 | 4.00 | 4.20
error | % | % | % | % | %
Exact | 265|340 [3.97 [ 431 [ 4.53
87 | 89 | 92 | 40 | 74
2.64 [ 338|394 | 428|451
5 GTIR |\ 16 | 02 | 39 | 09 | 06
Present | 2.50 | 3.29 | 3.89 | 4.24 | 4.49
HOST | 09 | 13 | 05 | 76 | o1
12% | 593|344 |222]1.53|1.04
error % % % % %
Exacy | 2:60 | 344 | 4.05 | 4.42 | 4.66
40 | 32 | 47 | 10 | 79
264 |3.42 ] 4.03 | 4.40 | 4.65
; GTIR ' "o | 02 | 10 | 08 | 33
Present | 2.45 | 3.27 | 3.92 | 4.31 | 4.57
HOST | 08 | 29 | 04 | 20 | 80
12% | 8.00 | 4.94 | 331 | 2.46 | 1.92
error % % % % %

"Values in parenthesis the give percentage
error for natural frequency with respect to
exact solution mentioned above (Bose P. &
Reddy J. N., 1998). GTTR (General Third
Order Theory of Reddy) (Bose P. & Reddy J.
N., 1998).
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5
> 454 =
c 4
5
2 3.5
@ 3 e
T 251 —e—3-Layers
S 5 ---m--- 5-Layers
E 15 | —n—T7-Layers
©
c 1
S5
%05
O T T T T
0 10 20 30 40 50
E1/E2

Fig. 2 Effect of degree of orthotropy of
individual layers on the fundamental
frequency of simply supported symmetric
square laminates using (HOST 12):
a/h=5,5 =10x0l(ph’ / E, )

Table 2 shows analytical solutions of the
variation of natural frequencies with respect
to side-to-thickness ratio a/h for different
E1/E2 ratio for two and four layered a simply
supported antisymmetric angle-ply (45/-
45/...) square laminated plate E1/E2 = open,
E2 = E3, G12 = G13 = 0.6E2, G23 = 0.5E2,
v12=v13 =023 =0.25.
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Table 2 Analytical effect of degree of
orthotropy and (a/h) ratio of individual layers
on the fundamental

frequency @ = (wa’ / h)x(p/ E, )%

No. a/h
of E, Source
laye | /E; 2 4 10 100
IS
GTTR 4‘5231 6.1223 | 7.1056 | 7.3666
3 HOZSTI 4‘6915 62572 | 7.2879 | 7.5013
1.87
Error% | 'y | 220% | 2.56% | 1.82%
GTTR 4'9274 72647 | 8.9893 | 9.5123
jo | HOSTL | 5.031 5 4041 | 9.1163 | 9.6453
2 2
Error % 1;;5 191% | 1.41% | 139%
2 0
J— 5.1781 £.0490 10.2641 11.5538
HOSTI | 5272 10772 | 11.673
20 5 22 | sac0a | 1] .
175
Error% | ') | 138% | 123% | 1.17%
0
OTTR 5.?;32 8426 12.591 1 14.8666
HOSTI | 5381 13.076 | 14.741
40 ; P sso3s | y
0.92
Error% | %7 | 0.57% | 127% | 0.50%
GTTR 4'6849 64597 | 7.6339 | 7.9545
3 HOZSTI 4’7862 6.6133 | 7.8131 | 8.1412
Error % 2(';::3 237% | 234% | 2.35%
J— 5.2106 < 3447 112111 12.1535
HOSTI | 5.330 11577 | 12.635
10 5 B0 garsa | 12 :
Error % 2;;0 156% | 145% | 0.79 %
4 0
TR 5.4(1)14 03306 14.;173 16.7992
HOSTI | 5.530 14612 | 17.103
20 ; 220 | 94007 | 1 )
2.16
Error% | 0 | 1.73% | 0.96% | 0.65%
0
5.567 | 10073 | 17.877 | 23.449
GTIR | ™7 ] 3 9
4o | HOSTI | 5614 | 10.153 | 17.926 | 23591
2 7 5 8 2
0 0'85 0 0 0
Error% | > | 0.80% | 030% | 0.60%
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*Values in parenthesis the give percentage
error for natural frequency with respect to
mentioned above
(Swaminathan and Patil, 2008). GTTR
(General Third Order Theory of Reddy)
(Swaminathan and Patil, 2008).

exact solution

18
16 1
14 1

—e—2-Layers

—=—4-Layers

Fundamental frequency

0 20 40 60 80 100
a/h

Fig. 3 Analytical effect of degree of (a/h)
ratio of individual layers on the fundamental
frequency using (HOST 12): E, /E, =20,

@ =(wa’ h)x(p/E,)?

120

20
> 18 4
c 16 -
S
2 144
£ 121
< 10
G 8- —e— 2-ayers
% 6 —a—4-Layers
©
c 4
=}
L 2 4
0 T T T T
0 10 20 30 40 50

E1/E2
Fig. 4 Analytical effect of degree of

orthotropy of individual layers on the
fundamental frequency using (HOST 12):

a/h=10, @ = (wa’ I h)x(p/ E,)"

It is also demonstrated that increasing the
fundamental frequency with increases the
degrees of orthotropy (Ei/E;) for laminate
plate due to the increase plate stiffness. The
number of layers has different effects in

laminated plates. As the span-to-thickness
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ratio

(a/h) increases, the fundamental

frequency decreases, due to the decrease in

the stiffness of the plate, but the factor of

nondimensional is gives opposite relation.

CONCLUSIONS

1.

Analytical formulations and solutions to
the natural frequency analysis of simply

supported  antisymmetric

angle-ply
composite and sandwich plates hitherto
not reported in the literature based on a
higher order refined theory which takes in
to account the effects of both transverse
shear and transverse normal deformations
are presented. The accuracy of the
present computational model with 12
degrees of freedom in comparison to
other higher order model with five
degrees of freedom has been established.
The effect of degree of (a/h) ratio
becomes more pronounced as the number
of layers increases. Increasing the ratio
(a/h) from (2 to 20) the natural frequency
very increases and from (20 to 100)
remains stable roughly for (E/E»= 20).
The effect of degree of orthotropy
(E1/E2) becomes more pronounced as the
number of layers increases (for the same
laminate thickness). Increasing the ratio
(E1/E2) from (10 to 40) increases the
natural frequency for (a/h = 5 ) and
(a/h=10).
It has been concluded that for all the

parameters considered Reddy’s theory very

much over predicts the natural frequency
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values both for the composite and sandwich

plates.
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