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ABSTRACT 
A new approach for baud time (or baud rate) estimation of a random binary signal is presented. This 
approach utilizes the spectrum of the signal after nonlinear processing in a way that the estimation error can 
be reduced by simply increasing the number of the processed samples instead of increasing the sampling 
rate. The spectrum of the new signal is shown to give an accurate estimate about the baud time when there is 
no apriory information or any restricting preassumptions. The performance of the estimator for random 
binary square waves perturbed by white Gaussian noise and ISI is evaluated and compared with that of the 
conventional estimator of the zero crossing detector.  
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  الخلاصة
هذا الاسلوب يعتمد على طيف الاشارة بعد معالجتها بصورة غير خطيـة  ). او معدل الترميز( لتقدير زمن الترميز اسلوب جديد تم اعتماد

ارة الجديدة اظهـر    ان طيف الاش  . بحيث يمكن تقليل خطأ التقدير عن طريق زيادة عدد العينات المعالجة بدلاً من زيادة معدل اخذ العينات                

أظهر التقييم لأداء لعملية التقدير لاشارة ثنائية عـشوائية مـضافاً اليهـا      . تقدير دقيق لمعدل الترميز من دون معلومات او فرضيات مسبقة         

  .الضوضاء الكاوسي والتداخل الرمزي وأُجريت مقارنة مع طريقة كشف التقاطع الصفري
 
 

INTRODUCTION 
Many researches have been made for identifying the 
type of modulation of the unknown signal, now the 
interest is moved one step ahead to the estimation of 
the baud rate (or baud time) of the unknown signal. 
The estimation of the baud rate can be used with 
information obtained from the modulation 
identification to provide better knowledge about the 
characteristics of the signal, this sometimes referred 
to as signal identification [1, 2]. Besides that the 
knowledge of the baud rate is needed if the 
information contained in the unknown signal is to be 
extracted, since the baud rate is required for the 
timing recovery block of the demodulator. If the 
technique used for the clock recovery is PLL based, 
the baud rate is used to specify the center frequency 
of the VCO or if the spectral line technique is used, 
the baud rate is used to determine the center 
frequency of the BPF [5]. The quality of the baud 
time estimator is generally measured by the following 
criteria [1]: 

1- The amount of available apriory information. The 
less information available the better the system is. 
2- Time taken for the baud rate estimation or it can 
be measured as the amount of computation. 
3- The accuracy of the estimation. 
 
Several techniques have been developed for 
estimating the baud time, most of the techniques 
presented in the literature analyze the zero-crossing of 
the baseband signal. Wegener [1] presented detailed 
description of different approaches that rely on the 
zero crossings of the signal and no performance 
evaluation was presented. Gaby [2] presented an 
algorithm that relies both on zero-crossing and bit 
pattern analysis and he used second derivative of the 
filtered modulating signal to locate the baud 
transitions which is more general than the zero 
crossing because it works for the multilevel signaling. 
The second derivative helps locating the inflection 
point of smoothed (filtered) signal which is actually 
the baud transition point. Azzouz [3] used wavelet 
transform in his work and he also relied on the zero-
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crossings of the signal and he used the derivative if 
the signal to enhance the part of the signal where the 
zero-crossing occurs. Scheets [4] have used adaptive 
filtering of the random binary signal and monitored 
the coefficients of the adaptive filter, which gave the 
estimation of the bit time of the binary signal. His 
work was compared to the zero crossing method for 
estimating the bit time. Sills [5] developed an 
algorithm based on histogram of baud transition. 
Boulinguez [6] approach is based on time-frequency 
representation of the modulated signal combined with 
periodicity analysis using Kalman filter. 
These works although differ in the details of their 
approaches but they all share the same limitation of 
having their analysis in the time domain, such 
approach will limit the accuracy of the estimation by 
the choice of the sampling frequency as will be 
explained later. If high accuracy is needed the ratio of 
sampling frequency to the baud rate should by be 
high enough. This indicates the need of having 
apriory information available for estimating the baud 
rate. Also if filtering is used, the choice of the cutoff 
frequency will raise the same issue. 
 
 In the proposed approach it is assumed that no 
apriory information available and the approach is 
developed to depend on the spectrum of a non-linear 
processed version of the input signal. This nonlinear 
processing introduces impulses at multiples of the 
baud rate in the spectrum, and by identifying the 
position of these impulses the baud rate or baud time 
is estimated. Very high estimation accuracy can be 
obtained about the value of baud time Tb when high 
resolution of the spectrum is available which is 
achieved by simply increasing the amount of the 
processed samples for the same sampling frequency. 
The quality of the spectral estimator is compared to 
that of the conventional estimator based on 
generating histogram (clusters) of the zero crossings 
[1], [2]. The analysis will be presented for a two 
levels (M=2) and four levels (M=4) signals. For 
simplicity of explanation of the approach, the two 
level signaling will be considered and the terms bit 
time and bit rate will be used rather than baud time 
and baud rate. The algorithm that will be presented 
works perfectly on the multilevel signals (M>2) 
without any modifications. 
 

Effect of Sampling Frequency on Bit Time 
Estimation 
Before starting with the details of the spectral 
estimator, it is useful to elaborate about the sampled 
signals bit time. In sampled data domain, the time is 
represented by samples rather than seconds because 

the time is quantized to sampling intervals or sample 
time Ts given by 
 

sf
1T =s  (1) 

 
Where fs is the sampling frequency in samples/sec. 
Therefore any time-related information, like the bit 
time, is given in terms of number of samples. In other 
words the bit time will be represented as multiple of 
Ts. According to above, the bit time in the sampled 
data domain can be found by [1] 
 

s

b

T
TT =  (2) 

 
Where, 

- Tb is the bit time in seconds 
- Ts is the sample time in sec/sample 
- T is the bit time in samples 

Or  
 

b

s

R
fT =  (3) 

 
Where, Rb is the bit rate. According to eq. (3) T may 
not be an integer only if the sampling rate is an 
integer multiple of the bit rate and since the bit rate is 
unknown, actually the problem here is to estimate the 
bit rate, we cannot assume T an integer. 
As mentioned earlier, previous works relied on time 
domain processing of the signal. The disadvantage of 
a time domain approach is that the need of high 
sampling frequency compared to the bit rate. The 
reason of that is illustrated in Fig. 1, where in Fig. 1a 
a sampled binary signal is shown, its bit time T=12 
samples. In Fig. 1b the same signal is sampled with a 
half the sampling frequency of the one in Fig. 1a 
which made the bit time T=6 samples. In case (b) the 
quantization of time is not as fine as in case (a), 
therefore the estimation of the bit time in case (b) will 
be less precise than case (a).  
In Fig. 1c another binary signal is shown with bit rate 
twice as much as in case (a) and sampled with the 
same sampling frequency, which made the bit time 
T=6 also. So, to have the same estimation precision 
as in case (a) the sampling frequency needs to be 
doubled. In summary the estimation of bit time in 
time domain raises the problem of having the 
estimation accuracy dependant on the sampling 
frequency. It will be explained that using the 
frequency domain feature of the signal does not make 
high values of the sampling frequency a requirement 
for the estimation precision. 
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Spectral Properties of Random Binary Signal 
In this work the estimation of the bit time is based on 
the frequency domain as a feature of the signal. The 
spectrum of the signal gives an idea about the bit time 
because it is directly affected by the bit time. For 
example the power spectral density (psd) of a random 
binary (non-return to zero) signal x(t) is in the form 
of the well known sinc function [8]. 
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It is clear from eq. (1) that the bit time Tb shrinks or 
spreads the spectrum according to its value. Moreover 
this spectrum contains nulls (zero values) at multiples 
of the bit rate (the reciprocal of the bit time). But 
unfortunately, this form of spectrum can only give a 
rough estimate about the bit time, mainly because of 
the difficulty of locating the nulls in the presence of 
noise. 

  
 
In Fig. 2a and 2b the spectrum of a random binary 
signal with SNR equals to 100 dB and 10 dB is 
shown. It is possible to estimate the bit rate (and 
hence the bit time) if the first null is located, but due 
to the presence of noise, the exact location of the null 
is lost. This is expected since the noise mostly affects 
the small values of the spectrum. 
 
To tackle this problem, the proposed approach is to 
introduce impulses (or spectral line) at the locations 
of the nulls, because the impulses are easier to locate 
and more immune to noise. But the spectrum of 
random binary signals of most formats do not contain 
these impulses, actually the impulses in the spectrum 
is a characteristic of a periodic signal [8,9]. To 
introduce these impulses into the spectrum of the 
binary signal we first need to look at the spectrum of 
the general random binary signal f(t) with the 
following properties [8]  

1. Each pulse is of Tb duration. 
2. The two possible states in each interval are 
represented by the waveforms f1(t) and f2(t) with 
corresponding Fourier transforms F1(ω) and F2(ω). 
3. The probability that f1(t) is selected in any 
interval is p and the probability that f2(t) is selected is 
q=(1-p). 
4. The choice of f1(t) and f2(t) in any interval is 
statistically independent of that in any other interval. 
The psd of such signal is given by  
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Where, ωb=2π/Tb. The second term of eq. (5) can be 
used to estimate the bit rate (and hence bit time) 
because it is in the form of impulses at multiples of 
bit rate that can be easily detected even in the 
presence of noise. To have this term produced when 
p=q=0.5, two conditions should be satisfied 
 
F1(ω) ≠ –F2(ω) (6a) 
F1(nωb)  ≠ 0 and F2(nωb) ≠ 0 (6b) 
 
The first condition to make F1(ω) and F2(ω) do not 
cancel each other, and the second condition is to 
make the weight of the impulses nonzero. 
Now if we consider the usual case of the binary signal 
where f1(t)= A and f2(t)= −A and the both cases are 
equally likely to occur (p=0.5). It is clear that the first 
condition is not satisfied (and it can be shown that the 
second is also not satisfied). Therefore, the impulses 
term vanishes in the spectrum of such signal and 
strictly speaking, for this case eq. (5) will be reduced 
to eq. (4). 
 
Proposed Spectral Approach for Bit Time 
Estimation 
To introduce the impulses term of eq. (5) we need to 
modify the signal f(t) in such a way that the two 
conditions given by eq. (6) are satisfied. There is no 
unique way to modify the signal f(t) in order to 
satisfy these conditions. The approach introduced in 
this paper is to differentiate the signals and taking the 
absolute value (a different approach can use squaring 
instead of absolute value). The new signal g(t) will 
have the conditions of eq. (6). 
   

dt
)t(df)t(g =  (7) 

 
 

 
g(t) is now in  the form of positive impulses at every 
bit change of f(t) and zero elsewhere, as shown in 
Fig. 3. 
 It can be seen that g(t) has all the above mentioned 
properties with  
 
g1(t) = 2Aδ(t)  (8a) 
g2(t) = 0  (8a) 
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with Fourier Transforms 
 
G1(ω) = 2A (9a) 
G2(ω) = 0  (9b) 
 
It can be seen that G1(ω) and G2(ω) satisfy the two 
conditions in eq. (6). From eq. (5) and eq. (9) the psd 
of g(t) is 
 

∑
∞

−∞=

ω−ωδ
π

+=ω
n

b
2

bb

2

g )(A
T
2

T
A)(S  (10) 

 
This proposed approached has made the new signal 
g(t) in a way that the value of the spectral component 
at the bit rate frequency as high as possible (impulse), 
instead of zero as it was in the case of f(t) before 
processing. The impulses of the spectrum of g(t) can 
now be detected even in the presence of noise (as 
shown in Fig. 4), because the effect of noise on the 
spectral component of the bit rate of g(t) will be much 
less than the noise effect on the zero (null) value for 
the same spectral component of f(t). This will make it 
much easier to detect this impulse, and from its 
location the bit time can be estimated 

Development of the Estimator for the 
Sampled Signals 
As explained earlier, in the sampled data domain the 
bit duration is represented by the number of samples 
per bit T, where T can be obtained by eq. (2) and eq. 
(3), note that T may not be an integer. 
Now the signal in question f(t) will be represented 
after sampling as f(n). From this sampled signal the 
formula of eq. (7) will be in the form 
 

)1n(f)n(f)n(g −−=  (11) 
 
In sampled data domain the differentiation is replaced 
with difference [9, 10]. This processing is adequate at 
high values of signal-to-noise ratio, but at low values 
of signal-to-noise ratio the time domain impulses 
created at the bit changes may not be so distinct 
because they come as the difference of two samples 
only. An alternative and more practical modifying 
formula is 
 

( )∑
=

−−−−−=
L

0i
)1Lin(f)in(f)n(g  (12) 

 
Note that eq. (11) is a special case of eq. (12) for 
L=0. This formula takes a window of 2(L+1) samples 
and sums a group of (L+1) consecutive samples and 

the group of the next (L+1) consecutive samples and 
takes the difference between the two sums. This 
produces some averaging of the noise and hence 
reducing its effect. Besides the time-domain impulses 
will have a non-zero width which in turn makes the 
frequency-domain impulses have a decreasing weight 
[8]. This makes it easier to detect the impulse at ω=ωb 
(which will be referred to as the bit rate impulse) as 
the largest impulse other than that at ω=0.  
Now the spectrum of g(n) can be obtained using Fast 
Fourier Transform (FFT) and it will be denoted by 
G(k) where k is the frequency index. Since G(k) is 
defined over discrete values of the spectrum and the 
bit rate (or bit time) has a continuous range of values, 
the bit rate impulse would not appear exactly at one 
of these discrete values except for the special case 
where[9] 
 

k
f
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s

b =  (13) 

 
where N is the number of FFT points and k is any 
integer. If this expression is not satisfied, which is 
usually the case, the impulse will be split into two 
impulses at successive values of the frequency index 
k. Let these two values of k be kb and kb+1, the 
estimate of the impulse location bk  can be obtained 
as the weighted average of kb and kb +1 with G(k) and 
G(k+1) as their weights respectively, i.e. 
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The estimate of the number of samples per bit is 
obtained by 

bk
NT =  (15) 

 
This equation, despite its simplicity, has a very 
interesting feature. As has been explained earlier in 
section 1, the bit time T cannot necessarily be an 
integer value, and that the precision of time domain 
approach for the bit time estimation can only be 
enhanced by increasing the sampling frequency. 
Equation (15) is telling us that the estimate of the bit 
time is the ration of two numbers, one is the number 
of the processed samples N and the other is the 
frequency index bk . It is clear that the value of a non 
integer number is better approximated by the ratio of 
large integers, which is the case for eq. (15) when N 
is increased. This is when compared with the time 
domain approach is a very big advantage because to 
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have a better estimation precision in the frequency 
domain approach, it only requires to increase the 
number of the processed samples as will be seen in 
the results presented in the next section, which is a 
much easier condition to satisfy than increasing the 
sampling rate, which usually a hardware requirement. 

Performance Evaluation against Awgn and Isi 
The estimator performance against band limited 
channel and AWGN is to be investigated now. A 
random binary signal of 15 kb/s bit rate is simulated 
and sampled with a sampling frequency of 100 
ksample/s, this makes T=6.667 samples/bit. This 
choice of values was to show that in presented 
approach there is no need to have high values of T in 
order to have good estimation accuracy unlike other 
works were the choice was T=30 in [4] and T=96 in 
[3]. Also our choice of is T is a non-integer value to 
avoid any loss of generality. Channel and noise 
model in continuous time is in the form 
 

∫ +−= )()()()( tndtshtf τττ  (16) 

 
Where s(t) is the baseband transmitted signal that is 
assumed to be a rectangular NRZ signal since this 
format is the most widely used format, h(t) is the 
combined impulse response of the transmitter filter, 
channel filter and the receiver filter, which is 
responsible for introducing the intersymbol 
interference (ISI) into the received signal. The term 
n(t) is the AWGN, and the signal-to-noise ratios is 
defined in terms of SNR per bit [4] where 
 

n

s
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TP
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Ps and Pn are variances of the signal and noise 
samples, respectively. Equation (17) reflects more 
accurately the noise power inside the signal 
bandwidth than the standard SNR=Ps/Pn.  
The effect of transmission over a band limited 
channel is important in the evaluation of this work 
not only because it is a practical factor that affects 
most of the communication systems, but it also 
affects the shape of the transmitted pulse. And since 
our work depends mainly on the wave shaping, it is 
expected that the performance would be degraded by 
the presence of the band limiting (or ISI) because it is 
expected to soften the sharp edges of the transmitted 
rectangular pulse. In simulation, eq. (16) needs to be 
transformed into sampled data format 
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Where n is the time index and K is the total number 
of samples of the combined impulse response h(n) 
which is referred to as the channel memory. The 
summation in eq. (18) represents the weighted sum of 
the delayed versions of the transmitted signal s(n), it 
should be noted that in some literatures, the discrete 
nature of eq. (18) comes from sampling the signal 
with sampling rate equals the symbol rate, i.e., one 
sample per symbol, this means that the delay of s(n) 
only occurs at multiple of the symbol time, which is 
generally not the case. In our work the summation of 
(18) is of the samples of the signal due to the 
sampling rate mentioned earlier which is greater than 
the symbol rate, i.e., more than one sample per 
symbol and that the delays occur at fractions of the 
symbol time. This representation of the ISI is more 
practical and will affect the value of the transmitted 
symbol as well as the shape of the wave of the 
symbol, unlike the one sample per symbol model that 
only affects the value of the transmitted symbol only. 
In regards to the amount of the ISI introduced by the 
channel, the value of the channel memory K is 
sometimes used, but this is not an accurate measure 
because the values of h(k) are not considered. A more 
informative parameter is the channel bandwidth, 
since the channel effect is band limiting and our 
signal s(n) is a baseband signal h(n) is chosen as an 
FIR LPF and its bandwidth will be the measure 
adopted here for the amount of ISI in our simulation.  
The number of taps K of the FIR LPF is chosen to be 
101, and considering the value of T=6.667, this is 
equivalent to about 15 symbols interference. Hanning 
window is chosen and the results were obtained for 
different values of the cutoff frequency which is 
expressed as a relative frequency or digital frequency 
given by 

sf
fr =  (19) 

Note that comparing the above equation with eq. (2), 
it defines the digital frequency corresponding to the 
baud rate as 1/T which for our case is 0.15. Fig. 5 
shows an example of a signal in three conditions; the 
clean signal, signal with ISI and the signal with ISI 
and noise. 
The spectrum of the signal g(n) is estimated using the 
periodogram averaging method [10]. It was found 
that the number of 10 periodograms which is a 
convenient number to avoid increasing the number of 
calculations and it was found sufficient to produce 
very acceptable results  
The results are obtained for standard deviation or root 
mean square (RMS) of the estimation error given by 
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Where Ns is the number of signal segments and it is 
chosen 100 signal segments for this work. The results 
are presented as graphs of the error root mean square 
against the number of samples N of each signal 
segment and different graphs are made for different 
values of SNR, this will show how the estimation 
error is decreased with the increase of the number of 
samples N, which is the basic idea of this paper.  
 
The performance of both the spectral estimator and 
the conventional zero-crossing estimator are 
examined over a range of signal-to-noise ratio for 
segments of different numbers of samples. The root 
mean square of the estimation error ERMS is plotted 
versus number of processed sample N in Fig. 6 and 
Fig. 7, each graph is for a different value of SNR, and 
it is obtained for 100 different signal segments. Two 
curves are used for the spectral estimator one with 
L=1 and the other with L=2. These graphs show 
clearly the superiority of the spectral estimator over 
the zero-crossing estimator which is a time domain 
based estimator. From these figures, it can be seen 
that the estimation error can have large values at 
low values of SNR as in Fig. (6a). This is 
because the bit rate impulse is not distinct and it 
can be mistaken by any other spectral component 
which makes the error value very high. 
 

 
On the other hand, if the bit rate impulse is 
correctly located, the error will be very small and 
it is mainly due to the discrete nature of the FFT. 
The most important observation is that, the error of 
the spectral estimator decreases significantly with the 
increase of the number of FFT points N. On the other 
hand the error of the zero-crossing estimator showed 
a slight decrease with the increase of N. This is an 
expected result, since for the spectral estimator, the 
increase of N increases the resolution of the spectrum 
and hence more accuracy is achieved about the bit 
rate impulse location, and for the zero-crossing 
estimator no increase in the sampling rate means no 
improvement in the estimation error.  
The comparison between the L=1 and the L=2 curves 
shows that the L=2 curve has a better results only at 
lower values of SNR, and this is the point of using the 
modified formula of eq. (12), which is for better 
performance against noise. While for higher values of 
SNR the difference between L=1 and L=2 curves is 
not distinct because in both cases the location of the 

bit rate impulse kb is detected correctly, and the only 
cause of error is the discrete nature of the FFT which 
depends on the number of samples N. The 
performance of the spectral estimator is also 
evaluated for the multilevel signaling and the results 
are shown in Fig. 7 and no modifications were made 
in the algorithm. The conventional zero-crossing do 
not work in this case and a more general symbol 
transition detection approach can be used like the one 
introduced in [2]. In regards to the performance 
against ISI, it was found that the lowest value of 
channel bandwidth at witch the baud time can be 
estimated is at r=0.08. At lower values of r the 
estimator was unable to produce acceptable results, 
this is because lowering the value of r means that 
more spectral components of the received signal is 
lying in the high attenuation spectral region of the 
channel which produce high amount of ISI. It must be 
noted that this value of r is directly related to the 
chosen value of T which means that if the value of T 
increased (by lowering the baud rate) and hence the 
spectrum of the signal is shrunk inside low 
attenuation spectral region of the channel, the amount 
of ISI will be lower and acceptable estimation results 
can be obtained. As has been explained by eq. (19) 
that the equivalent digital frequency of the baud rate 
is1/T=0.15, this indicate that when r=0.08, about half 
of the spectrum of the signal is in the stop band of the 
equivalent LPF of the channel. 
Another advantage of this method is that the amount 
of computations is not very large, because the main 
part of this algorithm is the FFT, although it takes 
more computations than that of the zero crossing 
technique which is the best in this side. It is known 
that the amount of computations of the FFT is usually 
measured as the number of complex multiplications 
which is given by Nlog2N, where N is the number of 
samples On the other hand, special techniques can be 
used for efficient calculation of FFT of real data 
which reduces the amount of calculations to the half 
[10]. 
 
Conclusions 
A new approach of baud time estimation, which 
depends on frequency domain, has been presented. 
This approach has the main advantages over the time 
domain approaches, which is to overcome the 
limitation imposed by the value of sampling 
frequency on the estimation accuracy. In addition to 
that the approach is very simple and flexible and it 
used to binary signals and multilevel signals.  
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Fig. 1 Example showing the effect of changing 
sampling frequency and bit rate on the sampled 

binary signal. 
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Fig. 2 The FFT of a random binary signal f(t) with 
1200 bps samples with 10k samples/s. 
(a) SNR=100 signal, (b) SNR=10 dB 
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Fig. 3 f(t) random binary signal and g(t) its processed 
version. 
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 (b) 
Fig. 4 The FFT of the modified random binary signal 

g(t). (a) noise free signal, (b) signal with noise 
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(c) 

Fig. 5 a binary signal before and after adding the 
perturbing factors. (a) clean signal, (b) signal with ISI 

(r=0.08), (c) signal with ISI and noise (r=0.08, 
SNR=20dB). 
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(f) 

Fig. 6 The RMS of the estimation error for M=2 and different values of SNR and r. 
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Fig. 7 The RMS of the estimation error for M=4 and different values of SNR and r 
 


