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ABSTRACT 

The encoding of long low density parity check (LDPC) codes presents a challenge compared to its 

decoding. The Quasi Cyclic (QC) LDPC codes offer the advantage for reducing the complexity for 

both encoding and decoding due to its QC structure. Most QC-LDPC codes have rank deficient 

parity matrix and this introduces extra complexity over the codes with full rank parity matrix. In this 

paper an encoding scheme of QC-LDPC codes is presented that is suitable for codes with full rank 

parity matrix and rank deficient parity matrx. The extra effort required by the codes with rank 

deficient parity matrix over the codes of full rank parity matrix is investigated. 
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 الخلاصة

عمهُخ فك انتسمُص. ثُىمب ثفٍ حبل انسمىش انطىَهخ تمثم تحدٌ مقبزوخً  (LDPC)تسمُص فحص انتطبثق ذو انكثبفخ انىاطئخ ان عمهُخ 

تب عمبَتٍ انتسمُص وفك انتسمُص ثسجت ثىُخ انـ هنه محبسه نتقهُم حجم انتعقُد انرٌ تتطهجه ك (QC)انشجه دائسٌ  LDPCتسمُص انـ 

QC معضم حبلاد تسمُص انـ .QC-LDPC  ًَكىن نهب مصفىفخ انتطبثق ذاد زتجخ وبقصخ وهرا َؤدٌ انً شَبدح فٍ انتعقُد مقبزوب

ملائمخ  QC-LDPCَجسٌ استعساض طسَقخ نتسمُص  كبمهخ انستجخ. فٍ هرا انجحث ثحبلاد انتسمُص انتٍ َكىن نهب مصفىفخ تطبثق

نكلا حبنتٍ مصفىفخ انتطبثق انكبمهخ انستجخ وانىبقصخ انستجخ. وقد جسي حسبة انجهد الاضبفٍ انرٌ تتطهجه حبلاد مصفىفخ انتطبثق 

 تجخ انكبمهخ.ذاد انستجخ انىبقصخ عهً انجهد انرٌ تتطهجه حبلاد مصفىفخ انتطبثق ذاد انس
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1. INTRODUCTION: 

Low Density Parity Check (LDPC ) codes are subclass of linear block codes, it was first discovered 

by Gallager in 1962, but due to the available technology at that time and the codes computational 

demand the LDPC codes remained outside the fields of practice and research until it was 

rediscovered by McKay, 1999. The advantage of the LDPC codes over the algebraic codes comes 

from the fact that their decoding complexity is linear with code length which makes it practical to 

design long codes that approach Shannon channel capacity limit. The main disadvantage of the 

LDPC codes is that their encoding complexity is very high. The only competitor of LDPC codes is 

the turbo codes which are also Shannon limit approaching codes with slightly lower performance 

than LDPC codes but with better encoding complexity. The research in construction and encoding of 

LDPC codes is still an open field. 

An LDPC code is defined by the mn parity check matrix H that should be a sparse matrix from 

which Tanner graph is constructed. Tanner graph consists of two groups of nodes, the first is the 

variable nodes (or bit nodes) representing each bit in the code and the check nodes (or constraint 

nodes) representing the parity-check equations with connections, called edges, between the variable 

nodes and the check nodes each connection (or edge) represents a 1 in the H matrix. So, if there is a 

1 in the i
th

 row and the j
th

 column of H then the i
th

 check node would be connected to the j
th

 variable 

node as shown in Fig. 1. A cycle in a Tanner graph is defined as the number of edges counted 

starting from a certain node and ending in the same node, the minimum size cycle is called the girth 

which is an important parameter of the code because the larger the girth the better error correcting 

capability of the code. A code with no cycles is said to have infinite girth, and the minimum possible 

value of the girth is 4, Moreira, and Farrell, 2006. Codes with girth equal to 4 show degraded 

performance, so, the cycles of size 4 should be removed from the H matrix in the construction of an 

LDPC code. These size-4 cycles can be easily located in the H matrix if there are 4 1’s forming a 

rectangle. 

LDPC codes fall into two main categories, regular and irregular codes. If the rows and columns of H 

have a constant weight (number of bits), then the code is regular, if not, it is irregular code. Irregular 

codes have the advantage of larger girth and hence better bit error correction capability but their lack 

of structure makes the encoder and decoder implementation more complex. In regular code, the 

coding rate can be given in terms of the column weight wc and row weight wr 

 

r

c

w

w

n

m
R  11  (1) 

 

Here the equality holds if H is a full rank matrix. More will be said about rank of parity matrix later. 

 

2. CONSTRUCTIONS OF LDPC CODES: 

The construction of LDPC codes is basically the construction of its parity matrix H. There is no 

specific way for constructing LDPC code; instead there are constraints or guidelines. The first 

constraint is that the H matrix should be sparse, this is important for the decoding complexity 

reduction. The second is that there should be no two rows (or two columns) that have two 1’s in the 

same positions; this is called the row-column (RC) constraint which makes the LDPC code free of 

cycles of size 4. Basically there are two main categories of approaches used in construction LDPC 

codes; the first is the random-like LDPC codes such as Gallager, 1962 codes and Mckay, 1999 
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codes, progressive-edge-growth (PEG) codes, approximate cycle extrinsic message degree (ACE) 

codes. The second category is the structured quasi cyclic LDPC codes like protograph codes and 

codes based on the finite fields and finite geometry mathematics. In general the LDPC code that 

possesses a structure is preferred over the nonstructured codes because of the reduced complexity in 

encoding and decoding. The QC-LDPC codes are elegantly structured codes and can be encoded 

efficiently using shift registers. Song et al., 2009 prsented a unified approach for constructing QC-

LDPC codes based on finite fields the construction is based on primitive elements, additive 

subgroups, and cyclic subgroups of finite fields.Tao et al., 2011 presented a search algorithm to first 

construct a QC-LDPC codes of column-row weigt (k,k) and girth g and then a random LDPC codes 

was derived with coumn-row weight (2,k) and girth 2g a girth of up to 36 was achieved. Park et al., 

presented a search method based on graph theoretic approach to detect subgraphs that cause short 

cycles in order to be avoided in the construction of the LDPC code, the design achieved codes of 

girth greater than 14. Huang and Lee, 2013 constructed a block circulant RS based LDPC codes 

which have the advantage over the random RS based LDPC codes interms of decoding complexity. 

Wang et al., 2013 constructed a high girth hierarchical quasi-cyclic (HQC) LDPC codes in the form 

of a hierachy of block circulant submatrices instead of the common block circulant based QC-LDPC 

codes. Since we are interested in the encoding of QC-cyclic LDPC codes an examples of 

constructing such codes will be provided later. 

 

3. DECODING OF LDPC CODES: 

Unlike algebraic codes like Reed-Solomon (RS) codes, LDPC codes can be decoded with 

complexity linearly proportional to code length and this is a very important feature of LDPC codes 

making it possible to implement long codes that can approach Shannon capacity limit. The decoding 

of LDPC codes is based on message-passing iterative algorithms, where messages are passed along 

the edges of the Tanner graph of the code between the variable nodes and the check nodes. The 

process is iterated until all parity check equations are satisfied or until a predetermined number of 

iterations is reached. In case of hard decision decoding the algorithm is called bit flipping where 

each bit of the code is recalculated using the remaining bits using all the parity check equations and 

based on the majority logic of the outcomes of the parity check equations, that bit may be flipped or 

kept as it is. In case of soft decision the information passed along the edges of the Tanner graph 

represents the probability (or likelihood) that each parity check equation is satisfied according to the 

possible of the code bit 0 or 1. This algorithm is called belief propagation and has many variations 

like the sum product algorithm. Although the message passing algorithms are in fact suboptimal 

algorithms but their impressive performance in error correction gives them significant advantage 

over algebraic codes. 

 

4. ENCODING OF LDPC CODES: 

Although the decoding of long LDPC codes is manageable in term of complexity, the encoding in 

general presents a challenge. In coding theory, a linear code such as the LDPC codes, the length of 

the code is n=k+m bits where k is the number of message bits and m is the parity bits, there is an 

mn parity-check matrix H and a kn generator matrix G such that GH
T
=0, where 0 is km zero 

matrix. If G is in systematic form then G=[Ik P
T
] where Ik is kk identity matrix and P

T
 is the 

transpose of the km P matrix. The G matrix can be obtained by transforming the H matrix to the 

form H=[P Im], where Im is mm identity matrix and GH
T
=0 is satisfied. Now, if H is the parity 
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matrix of an LDPC code then it is a sparse matrix (low density) and by applying the elementary row 

operation to H in order to get H=[P Im], the result is that H or particularly P is no longer a sparse 

matrix and that produce a dense G matrix Moreira, and Farrell, 2006. Therefore, if traditional 

brute force implementation of the encoding as v=uG, where v is the code vector and u is the 

message vector, and if we assume that on average that the P matrix has equal number of 1’s and 0’s, 

then the number of XOR gates needed for the encoding and the amount of storage required for 

storage of the P matrix will be proportional to km or (n-m)(n-k) that is almost proportional to n
2
 

and for very long codes this is a very big number that is impractical to implement. The alternative 

approach is that instead of encoding using the generator matrix G, the parity check matrix H is used 

for encoding, where the parity check equations are solved for the parity bits.  

 

vH
T
=0 (2) 

 

The first novel approach for solving the parity equations is by Richardson and Urbanke in 2001 

where the H matrix is decomposed using column permutation such that 

 











EDC

TBA
H  (3) 

 

Where T is the largest lower triangular matrix that can be obtained using column permutations with 

dimensions (m-g)(m-g) and E is a g(m-g) matrix. The form of the H matrix is called Approximate 

Lower Triangle (ALT). The algorithm is based on making the value of g (called the gap) as small as 

possible and this can make the complexity proportional to n+g
2
. Although Richardson’s algorithm 

works just fine for small values of g, the problem is that not every H matrix of LDPC codes can be 

decomposed into the form for Eq. (3) with small value of g by simple column permutations 

especially the quasi cyclic codes. In the case of QC- LDPC codes, the encoding can be performed 

using shift registers. Li et al., 2006 presented an elegant approach for encoding QC-LDPC codes by 

first constructing the generator matrix in systematic form with block circulant structure. The block 

circulant structure of the generator matrix makes it possible to use shift registers that are loaded with 

the first row of the generator matrix and by circularly shifting its contents the remaining rows of the 

circulant block is generated. This saves the amount of the required storage and the number of XOR 

gates. Li presented two methods for constructing the generator matrix, the first is for a full rank 

parity matrix where the generator matrix is a block circulant matrix, the complexity in terms of 

storage, logic gates and number of clocks is provided. The second method is for a rank deficient 

parity matrix where the generator matrix is not fully block circulant and the complexity is increased 

but no metric for complexity for this case was provided. Xia et al., 2008 proposed a method of 

construction of the H matrix using permutation matrices in a way to further reduce the computations 

required by Richardson’s method. Freundlich et al. 2008 worked on constructing LDPC codes 

having ALT with g=√  in order to make encoding complexity proportional to n. Huang et al. 2014 

used Galois Fourier Transform for encoding QC-LDPC codes. Lu and Moura, 2010 presented the 

label and decide algorithm suitable for linearly encoding LDPC codes that have tree or pseudo-tree 

structures. 
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5. ENCODING OF QC-LDPC CODES 

Given that the parity matrix H is a block circulant matrix, which is given in the form 

 

][ 21

321

22221

11211

HH

AAAA

AAA

AAA

H 





















abaaa

b

b







 (4) 

 

Where H is ab array of sparse qq circulant matrices Ar,s where 1≤r≤a and 1≤s≤b making H a 

sparse QC parity matrix of dimension aqbq. The H matrix is better partitioned as two parts H=[H1 

H2], the first part H1 is (b-a)a array of circulants and the second part is aa array of circulants and 

by applying the appropriate matrix operations, the H2 part is converted to the identity matrix and the 

H matrix is transformed as H=[H1 H2][P Im] as discussed earlier. 

 

Since the circulant matrix is the building block of the QC-LDPC parity matrix, it is worthwhile at 

this point to discuss its main properties, Lu and Moura, 2010. First the matrix multiplication is 

commutative, if A and B are circulants then AB=BA. Second the circulant matrix is characterized by 

its first row which is called the generator row, the subsequent rows are simply the circular shift of 

this generator row. If the generator row consists of one nonzero element, then each row and column 

will have only one nonzero element and circulant will be a permutation matrix and it is called 

circulant permutation matrix CPM. If the generator row is represented as a polynomial of x where 

the powers of x are the position and the coefficients are the elements of the generator row, then there 

will be a one-to-one mapping between circulants and binary polynomials, and the matrix addition 

and multiplication is replaced by polynomial addition and multiplication modulo x
q
+1. This is called 

isomorphism where mathematically it is represented by, Joyner, et al. 2004 

 

)()()( BABA      (5a) 

)()()( BABA    (5b) 

 

Where (·) is any one-to-one onto mapping. The polynomial ring is referred to as GF2[x]/[1+x
q
], 

where GF2 represent the binary field {0,1}. In a ring not every element has an inverse, therefore if α 

and  are elements of a ring and α=0, it is possible to have α0 and 0, in this case α and  are 

called zero-divisors and zero-devisors do not have multiplicative inverse. In our case of binary 

polynomials GF2[x]/[1+x
q
]  there are some examples of zero-divisor polynomials like Lu and 

Moura, 2010 
 

0)1)(( 12  qxxxx   (6) 
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Where (1)=0 which means that (x) has even number of terms, here both polynomials multiply to 

zero meaning that both polynomials are zero-divisors and hence have no inverses and the 

corresponding circulants will be rank deficient. Another example is 

 

)1( 2 pqpp xxx     (7) 

 

Where p is a divisor of q, here shifting by p positions will generate the same polynomial and the 

corresponding circulant will have repeated rows and hence will be rank deficient. The fact that rings 

having elements with no multiplicative inverse makes the equation 

 

 x  (8) 

 

Does not always have a solution where α and  are elements of a ring. Interestingly Eq. (8) can have 

a solution even though the element α does not have a multiplicative inverse but for a certain 

condition. To see this, consider the ring of integers modulo- n (mathematically referred to as Z/Zn) 

where n is any integer. Equation (8) can now be written as Joyner, et al. 2004 

 

nx mod   
qnx    
  qnx  

 

The above equation can have a solution if gcd(α,n) divides  Meyer, 2000, where gcd(α,n) is the 

greatest common divisor of α and n. Note, as a special case, if n is a prime then the ring becomes a 

field and every element has a multiplicative inverse and Eq. (8) always have a solution, on the other 

hand gcd(α,n)=1 which always divides . Although this result is shown to apply to ring of integers, 

it also applies to ring of polynomials and hence circulants and the condition of Eq. (8) to have a 

solution modifies to gcd(α(x),x
r
+1) divides (x) where α(x) and (x) are the generator polynomials 

of the circulants α and . From the above it can be seen that Eq. (8) can have a solution even if the 

circulant α is not a full rank matrix, but still there is no guarantee that Eq. (8) always has a solution. 

In general it is desirable to transform the H matrix into the form given by Eq. (9) using elementary 

row operations. 
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),(2,1,

),(22,21,2

),(12,11,1

 (9) 

 

Where Pr,s are qq block circulant matrices, 1≤ r ≤a, 1≤s≤b-a, Iq is an qq identity matrix and 0 is 

the all zero matrix, P is an a(b-a) array of circulant. It can be seen from the transformed form of H 

in Eq. (9) that the H matrix is a full rank matrix, i.e., rank=aq. The form of Eq. (9) can only be 

obtained if the original parity matrix H in Eq. (4) is a full rank matrix Li et al., 2006, and this is true 
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if the partition matrix H2 is invertible and hence P=H1H2
-1

. In terms of polynomials if h2(x) is the 

matrix of polynomial corresponding to the partition of circulants H2, then H2 is invertible if and only 

if det[h2(x)] is not a zero-divisor, Lu and Moura, 2010. An example of such matrix is shown in Fig. 

2 where the 1’s are shown as black dots. 

 

The QC-LDPC code can be encoded using Linear Feedback Shift Registers (LFSR) and simple logic 

circuits. Since for the case of a full rank QC parity check matrix H, the P matrix is also QC and this 

makes it possible to store only the generator row of each Pr,s circulant in a shift register (SR) and 

generating the remaining rows by cyclically shifting the SR contents. Therefore the H matrix in Eq. 

(9) can be reduced to an a(b-a) array of 1q vectors by taking the generator rows pr,s of the 

circulants Pr,s and the result is an r(b-a)q parity generator matrix PG as below 
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 (10) 

 

The remaining rows of the circulants Pr,s can be expressed as the cyclic shift of pr,s denoted as pr,s
(t)

 

where t is the shift, 0≤t≤q, and pr,s
(0)

=pr,s
(q)

=pr,s. 

 

By representing the codeword in systematic form as c=[u v] where u is the message bits vector of 

length q(b-a) bits and v is the parity bits vector of length aq bits, the problem of encoding reduces to 

evaluating the v vector. Since each codeword c satisfies the parity equations given by the H matrix, 

then cH
T
=[u v] [P Im]

T
=0, so v=uP

T
. Using the form of the H matrix in Eq. (9), the parity bits vi, 

1≤i≤m=aq can be expressed in terms of the message bits uj, 1≤j≤k=n-m=(b-a)q as 

 

aqipuv
qab

j

jiji  




1
)(

1

,  (11) 

 

Where vi is the i
th

 parity bit of the vector v and pi,j is the matrix element in the i
th

 row and j
th

 column 

of the matrix P. The direct realization of Eq. (11) is referred to as brute force realization, it is 

inefficient in terms of cost and it is general to any structure of the parity matrix H. An efficient 

realization of Eq. (11) would obviously require the utilization of the QC structure of the parity 

matrix P. This suggests dividing both the message vector u and the parity vector v into blocks of 

size q resulting in (b-a) q-size message blocks us 1≤s≤b-a, u=[u1 u2 … ub-a] and a q-size parity 

blocks vr 1≤r≤a, v=[v1 v2 … va]. According to this, Eq. (11) can be rewritten as 
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Where 1≤r≤a, 0≤t≤q-1, and the notation [ ]
T
 is used for transpose. From Eq. (12), the r

th
 block of the 

parity vector vr is obtained by fixing r and incrementing the shift index t from 0 to q-1. Note that the 

product inside the summation is a row-vector product and can be expressed as 

 





q

t
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r,stsr puw
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
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pus  (13) 

 

Where us
l is the l

th
 element of the block vector us, 1≤l≤q, and ),(

,

t

srp  is the l
th

 element of the generator 

row pr,s after shifting t positions. The quantity wr,s,t represents the partial sums generated by Eq. (13) 

which will be summed by Eq. (12) to produce the respective parity bit. The circuit implementation 

of Eq. (13) is shown in Fig. 3 and it is the building block of the encoder, it consists of a shift register 

and modulo-2 adder (XOR), so it is referred to as shift register-adder (SRA) and it is one of the 

encoder implantation adopted by Li Li, et al., 2006. The overall encoder implementation is shown in 

Fig. 4, the number of the SRA’s in the encoder will equal to b-a blocks, each block will be parallel 

loaded a times with the generator rows of the r
th

 row of the PG matrix and shifted q-1 times. The 

contents are multiplied by the message vector u and the results are added modulo- 2 (XOR) to 

generate parity bit pi with every clock cycle, which will be a total of m=aq which is the number of 

the parity bits. In case of rank deficient H matrix there will be more SRA’s as will be shown later. 

 

6. PARITY MATRIX WITH RANK DEFICIENCY 

Transforming a QC sparse rank-deficient parity matrix as in Fig. 5 into the form of Eq. (9) results in 

a random P matrix and not a block circulant as in Fig. 6. In this case, there will be no way of 

efficient implementation of the encoding of the corresponding LDPC code. The main aim of this 

paper is to present and algorithm that transforms the H matrix into a form that is as close as possible 

to the form of Eq. (9) while maintaining the QC structure. This will make it possible to make the 

encoding using the circuit of Fig. 4 with some modifications. Specifically speaking, a rank deficient 

H matrix cannot be diagonalized while keeping the QC structure and since the latter is more 

important, the goal will be to make H2 matrix a sparse lower triangular matrix, so the parity bits can 

be evaluated in back substitution manner. The core of the approach of this paper is to work the 

Gauss-Jordan elimination on circulant blocks rather than on individual bits. This is to guarantee that 

the H matrix remains in the QC format because the result of addition and multiplication of circulants 

is also a circulant this is obvious from the circulant-polynomial isomorphism. Since in this case the 

H matrix is rank deficient, it is expected that there is a number of redundant parity equation and a 

number of redundant (free) parity bits. The application of Gaussian elimination algorithm on bit 

level will make the matrix in reduced echelon form Meyer, 2000 where some of the diagonal 

elements are zeros and some rows will be an all zero row. The column positions of the zero diagonal 

elements correspond to the free parity bits or simply free bits and basically can be used as message 

bits. The all zero rows represent the redundant parity equation.  

The application of Gauss-Jordan algorithm on circulant block level to H matrix in order to 

diagonalize the H2 matrix, two objectives are needed to be accomplished 

1- Set every block Ar,s above and below the block diagonal of H2 (i.e. sr+ba) to all zero matrix. 

This is equivalent to solving the matrix equation 
BAX   (14) 
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for the X matrix where A is a diagonal block of H2 (Ar,r+b-a) and B is nondiagonal block that is in the 

same column i.e B=Ak,r+b-a, kr. So, by applying the elementary row operation 

 

XHHH ,:,:,: rkk   (15) 

 

The Ak,r+b-a block will be eliminated. Here the notation Hk,: means the k
th

 row of the matrix H. 

2- Set every block on the diagonal (Ar,r+b-a)  to the identity matrix Iq. This is equivalent to solving 

the equation 

 

qIAX   (16) 

 

For the X matrix where A is a diagonal block Ar,r+b-a. By applying the elementary row operation 

 

XHH ,:,: rr    (17) 

 

The Ar,r+b-a block is converted to the identity matrix. Because the elementary row operations 

involved in the steps above are applied on the block circulant level, the blocks Ar,s remain circulants 

and hence maintain the QC structure of the H matrix. If the solutions, X, of Eqs. (14) and (16) exist 

for each step, the H matrix will be converted to the form of Eq. (9) and the circuit of Fig. 4 can be 

used for the encoding. Solving Eqs. (14) and Eq. (16) is performed by augmenting the matrix A and 

the first column of matrix B and Iq respectively and performing Gauss-Jordan elimination. After 

diagonlizing matrix A, the last column of the augmented matrix will be the first column of matrix X 

and the remaining columns of matrix X is generated by circular shifts of the first column. This is 

explained in Eq. (18) below 

 

]|[]|[ 1:,1:, XIBA q  (18a) 

]|[]|[ 1:,1:,
XIIA qq   (18b) 

 

Unfortunately, for a rank-deficient H matrix, the solution of Eqs. (14) and (16) does not exist for all 

the steps and hence the H matrix cannot be reduced to the form of Eq. (9). In order to evaluate the 

parity bits in a cost efficient manner, the H parity matrix will be transformed as below 

 

][][ 21 TPHHH   (19) 

 

Where P is the dense parity matrix in a block circulant form and T is a sparse lower block triangular 

matrix also in block circulant form. The parity bits are evaluated in terms of the message bits and the 

previously evaluated parity bits unlike the work presented by Li et al., 2006 where the parity pits are 

evaluated in terms of the message bits only. 

In order to evaluate the parity bits, the location of the free parity bits must be determined in advance 

and this is achieved by applying Gauss-Jordan elimination to the H matrix on the bit level and the 

free parity bits are identified where there is a zero pivot. The column indices of the matrix T where 
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the free bits appear are stored in the set FP. The location and number of the free parity bits are used 

to define two vectors, fn and fl. The vector fn=[fn1, fn2,…,fna] is 1a vector where a is the number 

of block columns of the T matrix, the components of fn are the number of free bits in each block 

column of the H2 matrix. The vector fl=[fl1, fl2,…,flqa] is 1aq vector and it is a q fold extension of 

the fn vector, i.e. each component of the fn vector is repeated q times in the fl vector. To explain 

this, consider the example where H is an array of 3x6 circulants each circulant is a 1010 matrix. 

This makes the H2 matrix to have 3 block columns and 30 bit columns, so the fn and fl vectors will 

have 3 and 30 components respectively. Assuming that two free bits appeared in the 1
st
 and 11

th
 

columns of the H2 matrix, then FP={1,11}, and since q=10, this means that the 1
st
 and 2

nd
 block 

columns of H2 each has one free bit and the 3
rd

 does not have any, so fn=[1 1 0]. The first 20 

components of fl, fl1-fl20, will be all 1’s and the last 10 components, fl21-fl30 will be all 0’s. It has 

been mentioned earlier that the Gauss-Jordan elimination is implemented starting from last column 

instead of the first and this makes the free parity bits to appear in the beginning of each block 

column. These definitions help in relating the parity bit index to the respective row index of the H 

matrix which is actually the equation used to evaluate the parity bit. This is because of the presence 

of the free bits; the evaluated parity bit will no longer have the same index which is represented as i 

in Eq (11). So, Eq. (11) will be modified to 

 

FP1
1

1

,'

)(

1

,'  








iaqitvpuzyv
i

k

kik

rab

j

jijiii  (20) 

Where  

 

iflii '  (21) 

 

Eq. (21) gives a correction factor for relating the evaluated parity bit and the evaluating parity 

equation, so the example above will have the parity bits evaluated as follows: the parity bits 1 and 

11 are not evaluated as they are free, parity bits 2-10 and 12-20 will use equations 1-9 and 11-19 

respectively (i=i’-1), equations 10 and 20 are redundant and parity bits 21-30 will use equations 21-

30 (i=i’). The temporary variables yi and zi correspond to the first and second summation of Eq. (20) 

respectively and they will help in the encoder description later. The bits components vk in the second 

summation are not all parity bits, some of them are the free bits that can either be extra message bits 

or simply set to zero according to the designer’s preference, they are given the same parity bits 

notation only as a matter of convenience. Because the matrix T is a sparse matrix as will be seen in 

the results section, the summation over k actually does not involve many computations as it might 

seem, since only few entries ti,j are nonzero.  

 

The algorithm of conveting the H matrix in the form of Eq. (19) is presented by the steps below. 

 

1- Locating the free bits: As explained earlier, the free bits are used as extra message bits, in this 

case the coding rate will be  

 

bq

n

b

a

bq

nqab

n

k
R

fpfp



 1

)(
 

 
(22) 
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Where nfp is the total number of the free parity bits. Gauss-Jordan algorithm is applied to the H 

matrix on the bit level to diagonlize H2 and after identifying the free bits; FP, fn and fl are 

determined as described earlier. The diagonalizatoin of H2 may not be so straightforward, because 

rank(H2) should be equal to rank(H), if it is not, then column permutations is performed on the 

block level to preserve the QC structure of the H matrix. In order to have rank(H2)=rank(H), any all 

zero row in H2 there should be a corresponding all zero row in H1. 

2- Pivoting: For the s
th

 column, b-a+1≤s≤b, find the block circulant Ak,s, 1≤k≤a, whose rank is 

maximum and move it to diagonal position by making block row interchange between the k
th

 block 

row and the r
th

 block row where r=s-(b-a).  

3- Solve Eq. (14) using Gauss-Jordan elimination: Because of the pivoting performed in the 

previous step, the possibility for having a solution for Eq. (14) is maximized since in this case the 

circulant A will have the maximum possible number of linearly independent rows and hence 

minimum number of linearly dependent rows that will be reduced to all zeros rows when 

transforming the augmented matrix [A|B:,1] to the reduced echelon form, and it is known that the 

system [A|B:,1] is consistent if a row of the form, Meyer, 2000. 

 

[0 0 0,….0 | x], x0 (23) 

 

Never appears. If Eq. (14) fails to have a solution for at least one block Ar,s, the s
th

 column of the is 

permuted with a block column in the left side of H. This column permutation is repeated so that Eq. 

(14) should have a solution for all circulants above the diagonal position in order to have all blocks 

circulant above the diagonal are eliminated by the next step, this is necessary to transform H2 to the 

lower block triangular matrix T. The column permutation of this step must be performed in 

accordance with the column permutations in the first step such that if step 1 and step 3 require 

column permutation at block columns s1 and s2 respectively with s1>s2, the column permutation at s1 

is performed. The column permutation is performed with a left side (lower index) column; the 

algorithm is stopped and started all over. 

5- Elimination of blocks above and below the diagonal: For every column in H2, this process is 

performed a-1 times using Eq. (15). This step is very much related to the previous step because it 

depends on the solution of Eq. (14). 

6- Transform the diagonal blocks to identity matrix: This is performed by Solving Eq. (16) using 

Gauss-Jordan elimination. This step is very much like step 3 but with different purpose, here it is 

required to find the matrix X that is the inverse of the diagonal matrix (Ar,r+b-a) and by multiplying 

the rows by the inverses of the diagonal blocks (with the elimination step) the H2 matrix is 

converted to a diagonal matrix, but that does not happen if H is rank deficient and in this case some 

of the diagonal blocks will be rank deficient. If a diagonal block is rank deficient, it does not mean 

that it should be left as it is because it is no longer sparse due to the row operations of step 4. Since 

we know that there are free bits located in the H2 matrix and these free bits are located by the first 

step, then the entries of the row generator of the diagonal block corresponding to these free bits need 

to be set to 1’s in order to be taken into account in the evaluation of the parity bit that comes next to 

these free bits. The polynomial of the generator row of the diagonal of T should be 





rnf

i

i

rr x
0

,t  (24) 
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Note that if the r
th

 column of the H2 (or T) matrix does not have free bits then nfr=0 and hence the 

polynomial in Eq. (24) reduces to the polynomial of the identity matrix which is 1.The augmented 

column of Eq. (16b) is modified accordingly; this will make Eq. (16) to have a solution.  

 

Due to the rank deficiency of the H matrix and the presence of the rank deficient circulants in the 

block diagonal positions, it is expected that not all nondiagonal block circulants are eliminated even 

after exhausting all possible column permutations in step 3, but it is still possible that the H2 matrix 

can be transformed into the T matrix. Now by looking at Fig. 7 where the H matrix for two typical 

different cases is shown, important common features can be observed upon which the circuit 

implementation shown in Fig. 8 is made as described below.  

 

1- The P matrix is a dense block circulant matrix and it corresponds to the temporary variable yi 

shown in Eq. (20). The implementation of this part is similar to the implementation of the full rank 

case shown in Fig. 4. 

2- In the T matrix, the diagonal blocks corresponding to the columns where the there are free bits, 

there is no identity matrix, instead there are multiple parallel bit level diagonals which are 

consequence of Eq. (24). The number of these diagonal blocks is denoted by d. For this part, the 

corresponding temporary variable zi given by Eq. (20) can be expressed as.  

 







1

)1(

i

fnik

kqri

r

vz     (25) 

 

Where i=(r-1)q+t, fnr+1≤t≤q-1, 1≤ r ≤d. Equation (25) is a reduced form of the second summation in 

Eq. (20) where the positions of 1’s only are taken into account. An important case is that when there 

is only one free bit per block column, in such case d=nfp, fnr=1 and Eq. (25) reduces to 

 

1)1(  iqri vz  (26) 

 

The implementation of this part is made by first parallel loading the free bits corresponding to r
th

 

block column of T into the first SR and after evaluating the current parity bit vi=yi+zi using the left 

summator, it will be serially shifted into the SR for the evaluation of the subsequent parity bit and so 

on until the SR is full. This is repeated d times and the parity bits are linearly shifted continuously 

into the subsequent SR’s until all the d SR’s are full, the parity bits will appear in reverse order in 

the SR’s as shown in Fig. 8. 

3- There are nonzero block circulants below the d rank deficient diagonal blocks mentioned above. 

These circulants that are not eliminated can be either dense as in Fig. 7a or sparse as in Fig. 6b. 

These nonzero block circulants appeared in one row for all the LDPC codes tested by this algorithm. 

To evaluate the parity bits in the next block column (r=d+1), the previously evaluated parity bits 

will be required which are now all stored in the SR’s from the previous step. Noting that the 

subsequent column has no free bits and the diagonal block is identity matrix, the evaluation of the 

temporary variable zi is made by adding the previously evaluated parity bits that correspond to the 

nonzero pits in these nonzero circulants of T that are not eliminated 
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These nonzero positions can be picked up by hardwiring and directly added by XOR gates without 

using AND gates, these hardwiring are shown as random taps in Fig. (8) taken from the SR’s to the 

right summator. The block circulant structure of T is employed such that the contents of the SR’s are 

now circularly shifted in order to generate the subsequent rows of the respective circulants of T. A 

2-to-1 multiplexers are used in the input of the SR’s in order to control the choice of linear shifting 

and the circular shifting and also to control the evaluation of vi according to Eq. (25,26) or Eq. (27), 

all multiplexers have a common control signal x. The complexity of this part is not much affected by 

the nonzero circulants being sparse or dense as long as they appear in one raw since hardwiring is 

used. If more than one row appears with non zero circulants in the T matrix, AND gates will be 

needed as used in the SRA described earlier. The cases that were considered in this work have all 

resulted in a single nonzero block raw in the T matrix, which suggest the using of hardwiring and no 

AND gates are needed for the implementation of the zi part.  

4- The next diagonal blocks where d+2≤r≤a are identity matrices and all circulants to the left are 

zero circulants, therefore zi=0 and hence vi=yi and no further process is needed. 

 

7. RESULTS 

Before discussing results, the construction of a QC-LDPC code is presented. In general the 

construction of QC-LDPC codes is based on finite fields or finite geometry. The codes used in this 

work are based on finite field and the construction is explained as follows, Ryan and Lin, 2009: Let 

GF(p) be a finite field of p elements where p is a prime number or a power of a prime. Let α be a 

primitive element of the field such that every nonzero element can be represented as α
i
 where 

0≤i<q=p-1 with the special case of 0= α
-

 by convention. Define the 1q vector 

 

(α
i
)=[ 0 1…q-1] (28) 

 

where i=1 and the remaining q-1 components are all zeros, this is called the location vector of the 

element α
i
 and  (0) is the all zero 1q vector. Generate a qq A matrix whose rows are the location 

vectors of the elements α
j
α

i
 0≤j<q. Note that the first row of A is the location vector of α

i
 and the 

subsequent rows are each the right cyclic shift of the row above by one position. Now A is a 

circulant permutation matrix (CPM) assigned for each element of GF(p) and it is called the 

dispersion matrix of the element α
i
. It is clear that for any two different elements of GF(p) their 

dispersion matrices are different CPM’s over GF(2). Now construct the circulant matrix  

 



Journal of Engineering Volume   22  May  2016 Number 5 
 

 

102 

 





















































 






0111

1011

1101

1110

32

312

21

12

1

0





















qqq

qq

q

qw

w

w

W  (29) 

 

Where the generator row w0=α
i
-1, 0≤i≤q-1, next replace each element of W by its respective 

dispersion CPM to obtain the array of CPM’s 
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Where the CPM Ai is the dispersion matrix of the element α
i
-1, 0≤i≤q-1. Hqc,disp is a qq array of 

CPM’s each of size qq and the diagonal blocks are qq matrices. The QC-LDPC code parity 

matrix H is taken as an ab subarray from the Hqc,disp matrix where 1≤a<b≤q, if this subarray is 

chosen such that it lies either above or below the main diagonal of Hqc,disp, then it contain no zero 

submatrix and hence will have a constant row and column weights and therefore will make a regular 

QC-LDPC code. The constructed QC-LDPC code satisfies the RC-constraint mentioned earlier and 

hence has a girth of at least 6, Ryan and Lin, 2009. The choice of the parameters a and b controls 

the choice of the code size (n=bq) and the code rate which is at least (b-a)/b. In this work the H 

matrix is chosen as the subarray from the bottom left corner of Hqc,disp, this will impose the condition 

a+b≤q in order to have a regular code, otherwise the code is irregular. The values of p are all chosen 

as prime numbers. Table 1 below shows the chosen code parameters along with the amount of 

component needed by the circuit of Fig. 8 in terms of number of FF’s and XOR gates. It has been 

noticed that for all codes used in the result analysis that after the block diagonalization, the free bits 

are distributed such that there is one free bit in each block column, this means that d=nfp. Different 

codes parameters are used for the analysis, the codes length ranges from n=48 to n=5000 with 

coding rate of R=0.5 to R=0.72. It has been assumed that the P matrix has an equal number of zeros 

and 1’s and it will be taken as a benchmark for measuring the extra hardware required by the T 

matrix which is due to the rank deficiency of the matrix H. As discussed before there will be extra 

FF’s and XOR gates needed to work on the part of the T matrix where there are some block 

circulants that are not eliminated. Table 1 shows both the numbers of these FF’s and XOR gates and 

there percentage relative to the number of FF’s and XOR’s needed by the P part. This is due to the 

fact that the effort required to implement the P matrix part is the same whether the H matrix is full 

rank or rank deficient. The number of FF and XOR gates needed by the P matrix according to the 

circuit implementation of Fig. 4 is k and k/2 respectively because all the information bits are needed 

to be stored and the number of XOR gates equals the number of 1’s (which are assume to equal the 

number of 0’s) in the generator rows pr,s. The number of FF’s and XOR gates required by the T 
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matrix are shown under the column title FF and XOR respectively and their percentages are shown 

under the column titles F and X.  

 

 

 

Table 1. The number of FF’s and XOR gates needed to implement the T matrix part for QC-LDPC 

codes with different parameters. 

Code Parameters Results Parameters Code Parameters Results Parameters 

p a b n k R d FF XOR F X p a b n k R d FF XOR F X 

13 4 8 96 48 0.50 3 36 3 75.0 12.5 19 6 13 234 126 0.54 4 72 4 57.1 7.4 

13 4 9 108 60 0.56 2 24 2 40.0 8.3 19 6 14 252 144 0.57 3 54 29 37.5 53.7 

13 4 10 120 72 0.60 1 12 9 16.7 37.5 31 7 14 420 210 0.50 6 180 6 85.7 5.7 

13 5 10 120 60 0.50 1 12 5 20.0 16.7 31 7 15 450 240 0.53 6 180 6 75.0 5.7 

17 5 10 160 80 0.50 4 64 4 80.0 10.0 31 7 16 480 270 0.56 6 180 6 66.7 5.7 

17 5 11 176 96 0.55 4 64 4 66.7 10.0 31 8 16 480 240 0.50 7 210 7 87.5 5.8 

17 5 12 192 112 0.58 3 48 3 42.9 7.5 31 8 17 510 270 0.53 7 210 7 77.8 5.8 

17 5 13 208 128 0.62 2 32 14 25.0 35.0 31 8 18 540 300 0.56 7 210 7 70.0 5.8 

17 5 14 224 144 0.64 1 16 9 11.1 22.5 31 8 19 570 330 0.58 7 210 7 63.6 5.8 

17 6 12 192 96 0.50 3 48 17 50.0 35.4 31 8 20 600 360 0.60 7 210 7 58.3 5.8 

17 6 13 208 112 0.54 2 32 16 28.6 33.3 31 8 22 660 420 0.64 7 210 7 50.0 5.8 

17 6 14 224 128 0.57 1 16 7 12.5 14.6 31 8 24 720 480 0.67 5 150 71 31.3 59.2 

17 7 14 224 112 0.50 1 16 9 14.3 16.1 31 8 28 840 600 0.71 1 30 13 5.0 10.8 

19 4 8 144 72 0.50 3 54 3 75.0 8.3 53 10 20 1040 520 0.50 9 468 9 90.0 3.5 

19 4 9 162 90 0.56 3 54 3 60.0 8.3 53 15 50 2600 1820 0.70 1 52 21 2.9 5.4 

19 5 10 180 90 0.50 4 72 4 80.0 8.9 53 15 30 1560 780 0.50 14 728 14 93.3 3.6 

19 5 11 198 108 0.55 4 72 4 66.7 8.9 53 20 40 2080 1040 0.50 11 572 281 55.0 54.0 

19 5 12 216 126 0.58 4 72 4 57.1 8.9 73 20 40 2880 1440 0.50 19 1368 19 95.0 2.6 

19 5 13 234 144 0.62 4 72 4 50.0 8.9 73 25 50 3600 1800 0.50 21 1512 725 84.0 80.6 

19 6 12 216 108 0.50 5 90 5 83.3 9.3 101 25 50 5000 2500 0.50 24 2400 24 96.0 1.9 

 

It can be seen that the number of FF is directly proportional to the value of d and actually it equals 

dq, (see Fig. 8). The number of XOR gates is not exactly proportional to d because as has been 

mentioned earlier that the block circulants that has not been eliminated in the T matrix can be either 

dense or sparse and that affect the number of the XOR gates. A frequency analysis of the value X 

shows that about 65% of the codes have the value of X below 10%. This means that many codes 

have their T matrix with sparse nonzero block circulants which significantly reduces the number of 

XOR gates. 

 

8. CONCLUSION 

An encoding scheme of QC-LDPC codes that have rank defficien H matrix is presented. The low 

density block circulant H matrix is diagonlized on the block level so each pariy bit is evaluated in 

terms of the message bits, free parity bits and the previously evaluated parity bits. In this way the 

parity bits can be evaluated serially. Extra logic is needed for the renk deficient case ove the full 

rank case which is investigated and the results shows that QC-LDPC codes of certain parameters can 

have a very small amount of the extra logic compared to the overall required logic. 
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Figure 1. Tanner graph of girth equals to 6. 

 

 
Figure 2. The diagonalizationof a full rank QC parity matrix. 
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Figure 3. An SRA block of a QC-LDPC encoder. 
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Figure 4. Encoder circuit of QC LDPC code with full rank parity matrix. 

 

 
Figure 5. A QC parity matrix with rank deficiency. 

 

 
Figure 6. Bit level diagonalization of a rank deficient H matrix of Fig. 2. 
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(a) T matrix with nonzero dense circulant 

 
(b) T matrix with nonzero sparse circulants 

Figure 7. Block level diagonalization of a rank deficient H matrix. 
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Figure 8. The encoder circuit of QC LDPC code with rank deficient parity matrix.  


