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Abstract 

Precision is one of the main elements that control the quality of a geodetic network, which defines as 
the measure of the network efficiency in propagation of random errors.  

This research aims to solve ZOD and FOD problems for a geodetic network using Rosenbrock 
Method to optimize the geodetic networks by using MATLAB programming language, to find the optimal 
design of geodetic network with high precision. 

ZOD problem was applied to a case study  network consists of 19 points and 58 designed distances 
with a priori deviation equal to 5mm, to determine the best points in the network to consider as control 
points. The results showed that P55 and P73 having the minimum ellipse of error and considered as control 
points. 
  FOD problem was applied to three cases of selected network to analyzed using the objective function 
of A-Optimality and D-Optimality, with selected range of movement of 300m to each point in each direction. 
The first case was a free network, the second case was with P55 and P73 as control points, and the third case 
was with P42 and P44 as control points. The results showed that the third case was the optimal design with 
high precision. 
 
Key Words: Micro – Geodetic networks – Optimization – Precision – Zero order design – First order 
design – Rosenbrock method – A-optimality – D-optimality. 
 

  الخلاصة
 العوامل الرئيسية التي تتحكم في جودة أو نوعية الشبكات الجيوديسية، وتعد الدقة قياسا لفاعلية الѧشبكة فѧي توزيѧع الأخطѧاء                      الدقة من  تعتبر         

  .العشوائية
ن الرتبѧѧة الأولѧѧى لѧѧشبكة جيوديѧѧسية باسѧѧتخدام طريقѧѧة     الدراسѧѧة إلѧѧى حѧѧل مѧѧسألة التѧѧصميم مѧѧن الرتبѧѧة الѧѧصفرية ومѧѧسألة التѧѧصميم مѧѧ       هѧѧدف هѧѧذه ت  

Rosenbrock ةѧѧتخدام لغѧѧسية باسѧѧشبكة الجيوديѧѧل للѧѧصميم الأمثѧѧاد التѧѧلإيج MATLABةѧѧث .  البرمجيѧѧة حيѧѧن الرتبѧѧصميم مѧѧسألة التѧѧق مѧѧم تطبيѧѧت
م، لتحديѧد أفѧضل نقѧاط الѧشبكة التѧي          ملѧ  5 مسافة تصميمية وبѧانحراف معيѧاري مقѧداره          58 نقطة و  19الصفرية على شبكة الدراسة التي تتألف من        

  . تمتلك اصغر منحني خطأ وبالتالي يمكن اعتبارها آنقاط ضبطP73 وP55فأظهرت النتائج أن النقطتين . يمكن اعتبارها آنقاط ضبط
-Aتѧѧم تحليѧѧل ثѧѧلاث حѧѧالات مѧѧن شѧѧبكة الدراسѧѧة مѧѧن خѧѧلال تطبيѧѧق مѧѧسألة التѧѧصميم مѧѧن الرتبѧѧة الأولѧѧى وباسѧѧتخدام دالتѧѧي الهѧѧدف            ثѧѧم 
Optimality و  D-Optimality     ،ةѧى دقѧق أعلѧذي يحقѧة الѧـمقدار        لتحديد التصميم الأمثل لشبكة الدراسѧشبكة بѧاط الѧة لنقѧز الحرآѧد حيѧم تحديѧوت 

، الحالة الثانية هي اعتبار الѧشبكة بنقطتѧي      )بدون نقاط ضبط  ( الحالة الأولى هي باعتبار الشبكة هي شبكة حرة          . لكل نقطة وفي آل اتجاه     متر 300
  . P44 وP42، والحالة الثالثة هي اعتبار الشبكة بنقطتي ضبط P73 وP55بط ض

وأظهرت نتائج تطبيق مسالة التصميم من الرتبة الأولى على الحالات الثلاثة، بان الحالة الثالثة من شبكة الدراسة تعتبر التصميم 
. الأمثل الذي يحقق أعلى دقة
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Introduction 
A geodetic network provides a frame work for 
setting out the main elements of (dams, bridges, 
power plants, tunnels ports, etc.) and for 
monitoring the position and deformation of these 
elements after construction, they can also be used 
to monitor crystal deformation, these networks are 
called local or micro networks, which are 
generally designed for a limited and specific 
purposes, but when used for multi-purposes, they 
are defined as national control networks, or 
reference networks which are play an important 
role when preparing the coverage maps of the 
country. The goal of designing, computing, 
measuring and adjusting procedure is to find the 
proper and optimal design of a geodetic network 
then establishing the points of the geodetic 
network by expressing their positions by (E, N) 
coordinates. To achieve the best network design, 
there are different techniques which are 
triangulation, trilateration, and combined control 
survey. The optimization problems of geodetic 
networks are classified into, Zero Order Design 
problem, ZOD, which define as searching for an 
optimal datum. First Order Design problem, FOD, 
which is define as the determination of the 
optimal position of the network points. Second 
Order Design problem, SOD, which is defined as 
weight problem, and Third Order Design problem, 
TOD, which is the optimal improvement of an 
existing network or an existing design. Sometimes 
FOD and SOD problems can be solved 
simultaneously; in this case the design problem is 
called a combined design problem, COMD. This 
research aims to solve ZOD problem and FOD 
problem of geodetic networks in order to find the 
optimal design of geodetic network in sense of 
high precision using least squares adjustment and 
Rosenbrock Method which solves nonlinear 
optimization problems, and using the objective 
function of A-Optimality and D-Optimality, with 
a constraint of the limits of movement for each 
point in each direction.  
 
Preparation of Geodetic Network 

Any geodetic project involved three steps 
which are: design (precision and reliability), 
adjustment (determination of geometry) and 
testing (validation of geometry), Teunissen, P. J. 
G., 2006, and the preparation of geodetic network 
contain design procedure, planning for survey, 
and optimization procedure. 
 
 
 

Design Procedure 
  The approximate positions for stations 

must be determined to be included in the survey. 
These positions can be determined from 
topographic maps, photo measurements, or 
previous survey data. The approximate locations 
of the control stations should be dictated by their 
desired locations, the surrounding terrain, 
vegetation, soils, sight-line obstructions, and so 
on. Field reconnaissance at this phase of the 
design process is generally worthwhile to verify 
sight lines and accessibility of stations. Moving a 
station short distance from the original design 
location may greatly enhance the inter visibility 
between stations, but not change the geometry of 
the network significantly. By using topographic 
maps in the process, clearances of sight-line can 
be checked by constructing profiles between 
stations. In the design process, considerations 
should be given to the abilities of the field 
personal, quality of the equipment, and 
observational procedures. After the design is 
completed, specifications for field crews can be 
written based on these parameters. These 
specifications should include the type of the used 
instrument, number of turnings for angle 
observations, accuracy of instrument leveling and 
centering, miscolosure requirements, and many 
other items. When approximate station 
coordinates are determined, a stochastic model for 
the observational system can be designed. Once 
the stochastic model is designed, simulated 
observations are computed from the station 
coordinates, and a least squares adjustment of the 
observations is to be done. Since actual 
observations have not been made, their values are 
computed from the station coordinates. When the 
adjustment has been completed, the network can 
be checked for geometrically weak areas, 
unacceptable error ellipse sizes or shapes and so 
on. This inspection may dictate the need of any or 
all of the following, Ghilani, C. D., and Wolf, P. 
R., 2006: 

1. More observations. 
2. Different observational procedure. 
3. Different equipment. 
4. More stations. 
5. Different network geometry and so on. 

 
Planning for Survey 

In past, the planning of survey based on 
empirical standards, experience and intuition. This 
procedure depends on its validity on the pattern of 
new work conforming closely to that of the past 
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experience. Any deviation in design can only be 
assessed intuitively and may have adverse effects 
on the precision of survey. By classical methods, 
the observational precision may be assessed by 
examining triangle and other miscloses. The size 
of the corrections to the observations after an 
adjustment is also of assistance in this assessment. 
The actual implicit requirement of the survey is 
that stations be coordinated to some specified 
positional accuracy. In order to assess the 
positional accuracy, error ellipses may be 
calculated for each station and their dimensions to 
compare with the specification, related to the 
adjustment reveal any weaknesses, the field part 
must revisit the scheme to take additional 
measurements, and this is an expensive 
proposition. Some recent articles suggested the 
use of simulated observations to analyze a 
proposed scheme of survey. All these 
requirements to analyze the scheme need the 
knowledge of three components: 

1. The approximate coordinates of stations. 
2. The type of the proposed observations 

(Distances, Directions, Azimuths, etc.) 
and their position in the network. 

3. The anticipated precision for each type of 
observation. 

With this information, it is possible to calculate 
the error ellipses for the stations, and verify the 
desired accuracy can be attained. The effect of 
additional or fewer measurements and changes in 
observational accuracy can also be assessed, by 
repeating the above procedure varying 
requirements 2 and 3.  In this way, the most 
economical method to achieve the desired 
accuracy may be determined before any field 
measurements have been taken. In other words, 
the network has been "Optimized", Allan, J. S., 
and Hoar, G. J., 1973. 
 
Optimization Procedure 

The optimization and design of a geodetic 
control network play an important role in network 
analysis. Optimization means maximizing or 
minimizing an objective function which 
represents the criteria adopted to define Quality of 
a Geodetic Network. Generally, the quality of a 
geodetic network is characterized by precision, 
reliability, and economy. Precision may be 
expressed by the covariance matrix of the 
coordinates, displacement or deformation 
parameters, etc. So, the precision is the measure 
of the network characteristics in propagation of 
random errors, while reliability describes the 
ability of the redundant observation to check 

observation errors. Finally, economy is expressed 
in terms of the observation program, e.g., the cost 
of observation, transport….etc, Kuang, S. L., 
1991. 
A network can be designed in such way that, 
Schmitt, G., 1982: 
- The postulated precision of the network 
elements, e.g. coordinates or displacement of 
points, can be realized, 
- It becomes sensitive against statistical testing 
carried in measurements, and it resists against 
undetected gross errors, and 
- The construction of the points and the 
performance of the measurements satisfy some 
cost criteria. 
In mathematical terms the quality of geodetic 
network means, Amiri-Simkooei, A. R., 1998: 

 
αp(precision)+αr(Reliability)+αc(cost)-1→ max  (1) 
 
where: 
 αp, αr and αc are the weight coefficients for 
precision, reliability and cost, respectively. 
There are two methods that can be used to solve 
the design problem: 
1. Trial and error method: which can be 

summarize in the following steps, Amiri-
Simkooei, A. R., 2007: 

a. Specify precision and reliability criteria 
(e.g. ellipse of error). 

b. Select an observation scheme (stations, 
observations and their precision). 

c. Compute the values of the quantities 
specified as precision and reliability criteria 
(e.g. covariance matrix and redundancy 
numbers). 

d. If the computed criteria are close to those 
specified in (a), then go to the next stage; 
otherwise alter the observation scheme (by 
adding the observations or increasing the 
weight if they are not satisfied, or by 
removing the observations or decreasing 
the weights if they are too optimistic) and 
return to (c). 

e. Compute the cost of the network and restart 
from (b) with completely different scheme 
(e.g. Trilateration instead of triangulation). 

f. Stop when it is believed that the optimum 
(minimum cost) network has been found. 

In other words – in trial and error method, the 
objective function is computed with a suggested 
solution for the problem, and if the suggested 
solution does not satisfy the objective function, 
the solution is changed a bit and the objective 
function is computed again. This process is 
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repeated until the requirement is satisfied. The 
solution in the trial and error method depends on 
the experience of the designer. However, in some 
cases the solution might not even be found, but 
what might it interesting is its ease of use and lack 
of complicated mathematical models in its 
solution, Sahabi, et al., 2006. 
2. Analytical method: which offer specific 

algorithms for the solution of particular 
design, which are used to describe a method 
that solves a particular design problem by a 
unique series of mathematical steps, Kuang, 
S. L., 1991. The analytical approach gives 
some advantages rather than other existing 
methods for network optimization, as follows: 
Ð Any type of geodetic observable can be 

considered. 
Ð Any condition or constraint can be 

considered. 
Ð All the criteria of precision, reliability and 

cost can be considered simultaneously in 
the optimal design. 

Ð The optimization procedure can be 
performed in the sense of FOD and SOD 
separately or simultaneously. 

Ð This methodology can be used for the 
optimal design of one, two, or three 
dimensional networks.  

The main disadvantage of the analytical method 
is: the proper formulation of the mathematical 
model can be difficult. This also holds for solution 
of the problem in an analytical way, Simkooei, A. 
R., 2007. 
 
Adjustment Computations by Least 
Squares 

The development of the theory of least 
squares adjustment is based on the variance law 
for independent observations. The mathematical 
concept of weights is presented as a function of 
the variance (squares of standard deviations), 
while the use of weights, in conjunction with the 
variance law, leads to the idea of the variance 
factor. The square root of the variance factor is 
usually referred to as the standard deviation of an 
observation having unit weight, Gale, L. A., 
1965. 
 The principle and the equations of least squares 
and adjustment with constraints are explained in, 
Mikhail, E. M., 1976. 
 
Variance - Covariance Matrix 

Variance – covariance matrix of 
coordinates of the analyzed network is a basis for 

calculations of the relative positional errors. They 
allow the calculations of the following quantities 
that are frequently used in describing the 
positional accuracies which is called post analysis 
process, Moffitt, F. H., and Bourchard, H., 
1987. The following symbols will be used: 
(σE , σN ) = standard deviation of coordinates. 
(σmax , σmin ) = semi – major and semi – minor axes 
of standard error ellipse. 
(σd , σa ,  σA ) = standard deviations of observed 
distance, directions (azimuths) and angles. 
The covariance of a pair of coordinate values 
belonging to one or two points denoted by 

),(
jjii NENE σσ  is a measure of statistical 

dependence of the two values, if the two 
coordinates or two observation values are 
uncorrelated then their covariance equals zero. 
The algorithm for computing the variance – 
covariance matrix is as follows: 
 

r
wvv t

=2
0σ                                                     (2) 

 
∑xx = σo

2
 (Bt w B)-1                                              (3) 

 
 where: 
   ∑xx = variance-covariance matrix of adjusted 
unknowns, 
   σo

2 = variance of unit weight, 
   B= the coefficients matrix, 
   w = the weight matrix, and 
   r = redundancy. 
It is important to know that ∑xx is square and 
symmetrical. For instant, for two points i and j in 
a network, ∑xx will be a matrix of the form: 
 

∑xx = 
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              (4) 

 
Ellipse of Error 

The variance or standard deviation are 
measures of precision  for the one dimensional 
case like an angle or a distance, but in the case of 
two dimensional problems, such as the horizontal 
position of a point, error ellipses may be 
established around the point to designate precision 
regions for a different probabilities. The 
orientation of the ellipse relative to the E, N axes 
system, Fig. 1, depends on the correlation 
between E and N. If they are uncorrelated, the 
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ellipse axes will be parallel to E and N.  If the two 
coordinates and of equal precision, or σE = σN , the 
ellipse becomes a circle. Considering the general 
case where the covariance matrix for the position 
of point p is given as, Davis, et al., 1981: 

 

∑ = 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
2

2

NEN

ENE

σσ
σσ                                                (5) 

 
The semi major and semi minor axes of the 
corresponding ellipse are computed as in the 
following: 

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−++= 2222222

max 4
2
1

ENENEN σσσσσσ      (6) 

 

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−−+= 2222222

min 4
2
1

ENENEN σσσσσσ      (7) 

 
The orientation of the ellipse is determined by 
computing ( )θ  between the E axis and the semi 
major axis from: 
 

22
2

2tan
NE

EN

σσ
σ

θ
−

=                                               (8) 

 
where: 
   θ = is laid off counter clockwise from the 
positive E-axis. 
 
Mathematical Model in Adjusting 
Horizontal Geodetic Network 

The adjustment of geodetic networks still 
one of the most important problems in surveying 
for many applications such as designed for 
monitoring. With advance development of 
computers, the method of adjusting the geodetic 
networks by "variation of coordinates" technique 
become the most preferred one, Jabiry, J. M., 
2007. The variation of coordinates is the most 
common method to adjusting the traditional 
geodetic networks such as triangulation networks, 
trilateration networks, intersection, resection, 
hybrid networks and traversing as well as in 
engineering applications such as displacement 
computation of heavy structures like dams and 
towers. The reason for the prevalence of using this 
method is its suitability for computer 
programming because it taken specific pattern 
depending on the type of observations and their 
relation to the fixed and unknown points, and it is 
based on assumption coordinates for unknown 
points, calculated by lengths and observed 

directions by error does not exceed 1/4000 for 
lengths and 1 minute for directions to be solve 
with minimum iteration, AL-Joboori, B. S., 2010. 
The following equation is the final linearized 
observation equations for an observed distance see 
Fig. 2, where coordinates of i, j are known.                               
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Free Net Adjustment or Inner Constraints 

The datum problem is very important in 
geodetic networks and there are various methods 
for defining a datum. The definition of the best 
datum for a geodetic network can be called as the 
ZOD. There exist three methods for obtaining the 
adjusted coordinates of net points. If the datum is 
not defined for a geodetic network, one can say 
that there exists infinite number of solution for the 
coordinates of the net points, in other word, the 
points can get infinite values as coordinates. In 
order to restrict the values, some constraints 
should be included in our adjustment process, so 
that they convert our infinite number of solutions 
to finite number. These constraints should be 
defined so that the network becomes translation-
free, rotation-free, and free of expansion or 
contraction. These characteristics can be included 
in adjustment process using minimum constraint, 
inner constraint, or even over constraint least 
squares adjustment. There are various literatures 
for mathematical description of these methods like 
(Teunissen, P.J.G., 1982), Eshagh, M., 2006. 
In a free network adjustment the system of normal 
equation is singular because of the rank defect (no 
external datum). Different approaches for the 
solution of a free net are available, but the 
solution is always chosen where the trace of the 
covariance matrix of the estimated parameters is a 
minimum. The geometric interpretation of the 
minimum trace is that there should not be any 
translation, rotation or scaling changes from the 
given approximate values of the unknown 
parameters. One of the advantages of free net 
adjustment is the fact that it can better identify the 
existence of certain unmodeled systematic error in 
the system, as the solution is not influenced by 
external factors, Remondino, F., 2006. If a 
square, symmetric matrix, such as N, is of full 
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rank, then all of its eigenvalues are nonzero, and 
it's eigenvectors from an orthogonal basis for the 
row space. If it is not full rank, it has order u, rank 
(h < u), and therefore defect (u-h). Such as matrix 
will have (u-h) zero eigenvalues. The h 
eigenvectors associated with nonzero eigenvalues 
will form an orthogonal basis for the row space, 
and the (u-h) eigenvectors associated with the 
zero eigenvalues will form an orthogonal basis for 
the null space. The locus of solutions to the rank – 
deficient equations and the intersection point of 
the solution space and the row space are shown 
schematically Fig. 3. This strategy will have the 
following characteristics: 

1. It will resolve the deficiency from the datum 
defect and it will therefore permit a unique 
solution to the system of equations. 

2. Of all the possible solutions to the rank – 
deficient system, it will select the one with 
minimum magnitude and minimum 
variance. 

This solution is known in the geodetic and 
photogrammetric literature as the inner constraint 
solution, or sometimes as the free net solution. 
This presentation is useful for understanding the 
geometry of the problem, but there are easier 
ways to construct the needed constraint matrix. 
The eigenvectors just described provide a basis of 
the null space of the rank – deficient matrix. But, 
as with any vector space, there are many (an 
infinite number of) such bases. In the adjustment 
of geodetic nets, the relationships between the 
observations and the point coordinate parameters 
are expressed by condition equations: for 
example, the angle or the distance condition 
equations in geodetic applications. These 
equations all contribute relative information rather 
than absolute information about the point 
positions. The usual procedure to introduce 
absolute information is by constraining (fixing) 
certain point coordinate components. These points 
are referred to as control points. Without such 
control points, or other constraints, the system of 
normal equations would be rank deficient and 
hence not uniquely solvable. The rank deficiency 
is equal to the minimum number of constraints 
that would be needed to bring the system to full 
rank. In the case of a horizontal network with only 
angle observations, the rank deficiency is four. In 
the case of a horizontal network with at least one 
distance observation, the rank deficiency is three. 
The rank deficiencies are referred to as datum 
defect, since the presence of the necessary control 
points would define the datum. Of course, there 
may be other causes of rank deficiency, such as 

insufficient observations to define a point, these 
are another matter altogether, and are referred to 
as configuration defects. In one introduces just 
enough constraint equations to satisfy the datum 
defect, and then these are known as minimal 
constraints. Different sets of minimal constraints 
have the interesting property that, although the 
point coordinate estimate may vary, the 
observation residuals are invariant. Thus, for 
residual analysis only any minimal set of control 
points is as good as another. However, in practice 
the choice of control point is very important. The 
new network must be consistent with existing 
networks at shared points. There are many 
mathematical techniques that could be used to 
solve for the generalized inverse, they are: 

1. Orthogonal bordering. 
2. Pseudo inverse. 
3. Singular value decomposition (SVD). 
4. Orthogonalization (QR). 
5. There is another common approach is, AL-

Joboori, B. S., 2010: 
 

( ) ( ) CCCCCCCCwBBN ttttt 11 −−+ −+=         (10) 
 
For the purpose of illustration, consider the 
geodetic horizontal triangle network in Fig. 4, 
as an example. If only the three angle 
observations shown are made and no control 
points are introduced, then the resulting 
normal equations, of size [ ]66×  have rank 
two and rank deficiency of four. The fixing of 
two control points, or four point coordinates, 
would resolve this datum defect. These 
constraints can be implemented very simply 
by eliminating the effect by replacing the 
unknowns with numerical constant. However, 
for generality we assume that the constraints 
are implemented by the general method of 
bordering, (Helmert Method), where: 
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In which N and t pertain to the normal equations, 
where N=Bt w B and t=Bt w f. 
 For the horizontal 2-D network in Fig. 4, with no 
distance observations, the following constraint 
matrix will have the same effect as the (harder to 
compute) eigenvectors: 
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 in which approximate coordinates x°, y° of three 
points are used. If distance observation were 
present then the datum defect would be one less, 
and the fourth row of the matrix in eq. (3) will be 
canceled. In order to demonstrate the plausibity of 
this solution, it will be shown that the rows of the 
matrix in eq. (3) are orthogonal to the coefficients 
of the angle condition equation. This condition 
equation represents the one most widely used in 
two dimensional, horizontal triangulation 
networks. For the clockwise angle at point (i), in 
Fig. 3, from point (j) to point (k), the following 
row vector represents the coefficients of the 
linearized angle condition equation, Mikhail, et 
al., 2000. 
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If one takes the inner product of B with the rows 
of C, the result is a vector of zeros. In other 
words, the rows of C are orthogonal to B. 
 

[ ]000000=tBC                              (14) 
 
The development will summarize for the two 
dimensional case, a simple extension can be to 
make the adjusted coordinate the approximate 
coordinates, oX . 
 

( ) o
a XRkTX .1 α++=                                    (15) 

 
in which T is the translation vector, (1+k) is the 
scale factor, and Rα is the matrix of a small angle. 
Written as: 
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Assuming a small angle and scale vector near 
unity, and assuming that products of small 
quantities may be disregarded, we obtain: 
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So this represents a step in the iterative solution. 
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The last two equations can be combining to 
obtain: 
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Rearranging in a matrix form yields: 
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The above equations can be written for every 
point in the network as: 
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By considering this to be over determined system 
of equations, then: 
 

∆≈ Bf                                                              (22) 
 
Then it could be solved in the least squares sense 
by the usual normal equations: 

( ) fBBB tt 1−
=∆                                                 (23) 

 
Now suppose that we would like to enforce the 
condition between the point coordinates before 
and after the iterative correction where will be no 
net shift, rotation, or scale change. 
In other words, 
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This can be done by setting 
 

0=fBt                                                            (25) 
 
or, it can be written as, 
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The geometric interpretation of the inner 
constraint solution is that when advancing from 
one iteration to the next, there will be no net shift, 
rotation, or scale change between the approximate 
and refined coordinate positions. Thus, rather than 
arbitrarily fixing two points (four coordinate 
components) out of many, one fixes four 
geometric relationships. All points then equal play 
roles in connecting the network to the coordinate 
system. This can have dramatic effects upon the a 
posteriori confidence ellipse of the network 
points. If a point is fixed, then its confidence 
ellipse vanishes. For a three point network, after 
fixing two points, all of the error is cast into the 
uncertainty of the third point. With the inner 
constraint or free net solution, however, each 
point has a finite confidence ellipse that reflects 
its strength of determination in the network.  
 
First Order Design problem (FOD) 

Determination of the optimum geometric 
design for geodetic network is one of the classical 
design problems in geodesy, known as the first-
order design problem, Berné, J. L., and Baselga, 
S., 2004. When trying to define the best geometric 
configuration of a new geodetic network, the 
range of situation can vary from the case where 
the possible location of the station is so 
constrained by exterior conditions - visibility, 
natural features, private properties, etc. – that 
there is almost no choice for the most adequate 
location because there is no margin of movement, 
to the case where any possible location within an 
area is acceptable. As the margin of choice grows, 
there is an increasing need for reliable criteria to 
determine the most appropriate network design. 
Criteria for appropriateness should rely on the 
minimum in determination at the defined points, 
considering both the type and the number of 
observations to be done. Some mathematical 
methods are required to search for the best design. 

One of the most rigorous approaches is to 
determine the position of all the stations to be 
located by means of minimizing the hyper volume 
of error hyper ellipsoid inherent to the solution. 
The system of equations for the parametric least 
squares method in its parametric form, and for any 
kind of observations (angles, distance, etc.) can be 
used and as the aim is to minimize the hyper 
volume of the hyper ellipsoid define by ∑ xx this 
involves minimizing its determined  

 
Min.  det. (∑xx)  
or                                                                       (27) 
Max.  det. (∑xx)-1 
  
The question of finding optima for the 
determinant function (and even to calculate the 
determinant function itself) is far from being a 
trivial problem. Moreover, if the desired solution 
has to be not a local but the global optimum, the 
solution is almost unattainable, at least from the 
classical mathematical point of view. 
 
Measures and Criteria for Precision 

The precision measures and criteria of a 
geodetic network are based on the covariance 
matrix of estimated coordinates. One measure of 
precision takes the form of scalar function of the 
elements of the covariance matrix of the 
coordinates varieties. The purpose is to fill the 
need for an overall representation of the precision 
of a network, Kuang, S. L., 1991. 
A scalar function (objective function) may be one 
of the following, Berné, J. L., and Baselga, S., 
2004. 

1. A – Optimality 
This refers to minimizing the trace in the 
covariance matrix. As a result, the   average 
variances of the parameter estimates are 
minimized. 

 
f = trace (∑xx) → min                          (28) 
 

2. D – Optimality 
This seeks to minimize the covariance matrix 
determinant. It has the statistical significance 
of minimizing the volume of the error hyper 
ellipsoid.        

 
f = det (∑xx) → min                             (29) 
 
 

3. E – Optimality 
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This aims to minimize the largest eigenvalue 
of the covariance matrix for the parameter 
estimates. 

         
           f = λ max → min                                      (30) 
 

4. S – Optimality 
   This related to network stiffness and 

supposes an eigenvalue and eigenvector 
approach to the problem of optimization in 
terms of network stiffness, i.e. the 
maximum flattening of the eigenvalue 
spectrum. 

            
           f = λ max - λ min → min                            (31) 
 

5. Criterion Matrices 
  These consist of defining a desired matrix for 

the result – the criterion matrix – and then 
finding the solution that is closest to this 
ideal assumption. They sometimes appear 
together with some of the other methods. 

 
Rosenbrock Method for Unconstrained 
Optimization Problems 
Rosenbrock Method falls within the numerical 
category of optimization methods. The method, 
due to, Rosenbrock, H. H., 1960, uses a direct 
search technique making use of the 
Orthogonalization principle of Gram-Schmidt in 
order to give an acceleration in both the direction 
and the step length. The method is fully explained 
in many references, Rosenbrock, H. H., 1960, 
Kuester, J. L., and Mize, J. H., 1973, Bazaraa, 
M. S., and Shetty, C. M., 1979, AL-Fahdawi, D. 
KH., 2000, Al-Hity, A. A, 2006. It can be 
reviewed by the following algorithm: 
1. Choose initial values for the design variables 

and set of step sizes (λ1, λ2, λ3,…, λn) (where 
n is the number of independent variables). 
Also choose a set of search directions (S1

j, 
S2

j, S3
j,…, Sn

j) which are usually selected as 
being parallel to the basic axes when j=1, 
and evaluate the function. 

2. Sequentially search parallel to each of the n 
directions in turn, adopting the new point if 
the move is successful (objective function is 
less than or equal to the previous one) and 
retaining the last point if the move is 
unsuccessful. If a move is successful the step 
length is multiplied by a factor (α), (α >1) 
then this direction is next searched in its turn. 
If the move is unsuccessful then the step 
length to be used for the next search is (β) 
times the previous length (0 < β < 1) and the 

direction of move is reversed. However 
Rosenbrock recommended the use of (α = 3) 
and (β = 0.5) as suitable values. 

3. The search of step (2) continues until at 
success is followed by a failure in every 
direction, Himmelblau, D. M., 1972. 

4. Compute the new set of direction (S1
j+1, S2

j+1, 
S3

j+1, Sn
j+1) for use in next (j+1)th stage of 

method by using the Gram-Schmidt 
Orthogonalization procedure. 

a. Compute a set of independent direction (P1, 
P2, P3,…, Pn) as 
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where: 
ai = The algebraic sum of the all the successful 
step length in the corresponding direction. 
Si

j = The direction and i= 1,2,3,…,n  
P1 = The vector joining the starting point and the 
final obtained after the sequence of the searches in 
the ( )thj  stage. 
P2, P3,…, Pn = The algebraic sum of the successful 
step length in the all directions except the first 
one, and so on these linearly independent vector 
P2, P3,…, Pn can be used to generate a new set of 
orthogonal directions.  
 

b. Set  D1
j = P1

j                                           (33) 
with: 
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with: 
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5. Take the best point obtained in the present 

stage, and repeat the same procedure of 
searching from step (2). 

 
i.e.   new [x j

L,i] = old [x j
L,i]+λi [S j

L,i]                (36) 
where: 
   L = variable index, L=1,2,….,n 
   i = direction index, i=1,2,......,n 
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   j = stage index. 
 
6. The procedure terminates when the 

convergence criterion between initial and 
final value of the objective function is 
satisfied. 

 
Case Study Geodetic Network  

A trilateration network part of Mosul 
Dam Network was selected as a case study for the 
purpose of application of the proposed 
optimization network technique. The network 
consists of 19 points, six of the observations 
pillars are on the dam body, and 58 designed 
distance with standard deviation equal to 5mm as 
shown in Fig. 5, Table 1 lists the initial 
coordinates of the network points. This initial 
coordinates were based on the epoch 36. Table 2. 
lists the designed distances of the network.  The 
designed distances were derived from the 
observed distances of Mosul Dam Network in 
epoch 36 from AL-Kanani, Y. H., 2009. The 
designed distances difference slightly from the 
observed distance for study purpose. Additional 
designed distances were added to make a 
difference in the original network and to 
strengthen the network to get the more realistic 
control points. These distances were from P44 to 
P54, P55 to P3, P42 to P52, P42 to P61, P01 to 
P71, P61 to P71, and from P71 to P73. 
 
ZOD Application to the Case Study 

During the design stage of the geodetic 
networks, a selection of some control points must 
be made. The ZOD used to select the best points 
which can be detected to be the control points for 
the network of the case study. A program using 
MATLAB language was prepared to solve ZOD 
as shown in Fig. 6. which shows a flow chart 
describing the steps of free network program, this 
program has a capability of: 
1. Compute the free network adjustment by 

calculating the general inverse or the so-called 
false inverse through Helmert Method. 

2. Compute the post-analysis for the adjustment 
including variance-covariance matrix and 
compute the elements of ellipse of error. 

3. Plot of the points and the ellipse of errors for 
each point in the network. 

The results of application of the ZOD, semi-
major, semi-minor axis and area of the ellipse of 
errors, for each point presented in Table 3.  Fig. 7 
presents the ellipses of error for each point in the 
network exaggerated by a factor of 30000.  The 
ellipse of error for the network points varies 

between 24.50mm2 and 146.24 mm2.  Points P66, 
P55, and P73 have the smallest ellipse of error 
compared to the other points. Because of, Point 
P66 is lie on the dam body, therefore; points P55 
and P73 considered as the best points and selected 
as control points. 
 
FOD with High Precision 
 First Order Design problem is one of the 
classical design problems that face surveyors. By 
using FOD one can determinate the optimum 
geometric design for a geodetic network through 
optimizing station positions. The variables in 
FOD problem are the observations "design 
matrix" or (B-Matrix geometry of the network).  
To solve FOD problem, one of the optimization 
methods was selected that is "Rosenbrock 
Method". A program was prepared using 
MATLAB language to solve FOD with precision 
using Rosenbrock Method based on the equations 
from (32) to (36), and using least square 
techniques. The two objective functions to solve 
FOD with high precision are: 
 

1. A-Optimality: 
 

Objective function = Min. trace (Qxx)              (37) 
 
Constraint:                EL ≤ Ei ≤ EU 
                                  NL ≤ Ni ≤ NU 
 

2. D-Optimality: 
 

Objective function = Min. det. (Qxx)                (38) 
 
Constraint:                EL ≤ Ei ≤ EU 
                                  NL ≤ Ni ≤ NU 
where: 

   ∑xx = 2
oσ  Qxx , 

  Qxx =(BtwB)-1, 
  12 =oσ  in design stage, 
   Ei and Ni = coordinates of points, 
   i = number of point, 
   EL and EU= lower and upper limit in X-direction 
for each point, and 
   NL and NU= lower and upper limit in Y-
direction for each point. 
A program was prepared using MATLAB 
language to solve A-Optimality and D-Optimality. 
FOD applying to the network of case study after 
applying ZOD and selecting the points P55 and 
P73 as control points, then the FOD was applied 
to the network of case study in three cases. The 
case which satisfies the best condition of precision 
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will be identified as the optimal design of the 
micro geodetic network.   These cases are: 
• The 1st case: considering the dam points are 

fixed, and the other points are moving. 
• The 2nd case: fixing the dam points, and using 

the resulting points from the ZOD results as 
control points, these points are P55 and P73. 

• The 3rd case: fixing the dam points, and using 
the points which are used by the general 
directorate for survey as control points, these 
points are P42 and P44. 

In FOD, different values of range of movement of 
50,100, and 300m were tried. It was found that 
when the range of movement of 50 and 100m , the 
movements in the points of the network were not 
clear . 300m as a range of the movement in each 
direction for each point was selected and 
assuming no obstacles to exist. The upper and 
lower limits of movement for each point can write 
as:  
          Ei

o - 150 m ≤ Ei ≤ Ei
o + 150 m 

          Ni
o - 150 m ≤ Ni ≤ Ni

o +150 m 
  
The limits of movement for each point of the 
network in E and N directions computed and 
presented in Table 7. The final coordinates of 
network points obtained according to the FOD 
will be compared to the lower and upper limits, 
obtained below. If the final coordinates within the 
limits of movement, the solution continue to the 
next step of calculation of FOD until exceeding 
the limits of movement of all points. FOD with 
high precision, high reliability, and high precision 
and high reliability were applied to the three 
cases, mentioned above. 
 
FOD with High Precision Application to 
The Case Study 

In FOD with high precision computations, 
The initial coordinates of points were used to 
calculate the initial value of the objective 
function. Then the prepared program of FOD with 
high precision applied to each case to compute the 
final coordinates of the points that satisfy the 
range of movement. The final value of the 
objective function of each case was computed. To 
make sure that the errors in the final positions of 
points are less than the errors in the initial 
positions and the errors not distributed between 
points of the network, area of the ellipse of errors 
has been added to the computations. The results of 
applying FOD with high precision to the three 
cases were as follows: 

 

1. The 1st case: the initial value of the objective 
function was 905348144335858*10-17, which 
is equal the trace of Qxx matrix with [26×26] 
and the final value of the objective function 
was 672977706671926*10-17. This indicates 
that there was an improvement in the value of 
the objective function. Table 4. lists the initial 
and final easting and northing coordinates for 
each point with their standard deviations and 
area of ellipse of error for each point.  It can be 
noticed that the improvement in the standard 
deviation in most of points and this lead to 
improvement the area of the ellipse of error 
and all that indicates the improvement in 
precision, see Fig. 8. 

 
2. The 2nd case: the initial value of the objective 

function, A-Optimality, was 
767947323337789*10-17, for a trace of Qxx 
matrix with [22×22] and the final value of the 
objective function was    
558262174843364*10-17. Table 5 presents the 
results of application of the FOD with high 
precision. The value of the objective function 
and the results of application of the FOD 
indicated that there was an enhancement in the 
value of the objective function, in the standard 
deviation in most of points, and in the area of 
the ellipse of error. All of these enhancements 
of sure will be reflected on the improvement of 
precision, see Fig. 9.  

 
 
3. The 3rd case: the initial value of the objective 

function, A-Optimality, was 
68147035762434*10-17, which is equal the 
trace of Qxx matrix with [22×22] and the final 
value of the objective function was 
496224444075659*10-17. The results of 
applying FOD with high precision to the 3rd 
case are list in Table 6. that lists the final 
coordinates of  network points, the standard 
deviation, and area of ellipse of error for each 
point.  There was an improvement in the value 
of the objective function, in the standard 
deviation in most of points, and in the area of 
the ellipse of error. With these enhancements 
the network becomes more precision than the 
initial network, see Fig. 10.  

The objective function values of the 2nd case and 
the 3rd case was better than the objective function 
values of the 1st case. The results of FOD with 
high precision of the 3rd case were better than that 
of the 2nd case. Therefore, the 3rd case network 
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was considered as optimal design due to its high 
precision. 
Different values of the constants α and β of the 
Rosenbrock Method than the used values of 3 and 
0.5 respectively, in the above analysis were 
investigated. These values were α=1, 1.5, and 2, 
and β=0.1 and 0.25. Results showed that these 
values gave almost similar results of that when 
α=3 and β=0.5 were used. The precision of all 
cases were analyzed by using D-Optimality as 
objective function, which means the determinates 
of Qxx matrix. The results of applying FOD with 
high precision to all cases using D-Optimality 
indicate that there was an improvement in the 
precision. The obtained improvement is exactly as 
that obtained by applying FOD with high 
precision using A-Optimality. 
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List Of Symbols 
 

 

Symbol                                Symbol    
B  Coefficient matrix.    

C  Constraints matrix.    

COMD Combined Design.    

EL and EU  Lower and upper limit in X-direction for each point    

FOD First Order Design.    

g  Constant terms in constraint equation.    

GDS General Directorate for Survey.    

n  No. of observations.    

NL and NU  Lower and upper limit in Y-direction for each point  

Qxx  Covariance matrix    

Si
j  The direction and ni ,........,3,2,1=    

SOD Second Order Design.    

TOD Third Order Design.    

vs  Residual of observation.    

w  The weight matrix.    

ZOD Zero Order Design   
∑xx  Variance-covariance matrix of adjusted unknowns.   
αp, αr and αc  Weight coefficients for precision, reliability and cost.   
θ  The angle of ellipse orientation.   
ρ"  206265    
σo

2  Variance of unit weight.   
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Table 1. The initial coordinates of the network points. 
 

Point Easting, m Northing, m Notes 
P61 70384.0000 49113.0000 on Dam body 
P62 70795.0000 48989.0000 on Dam body 
P63 71178.0000 48873.0000 on Dam body 
P64 71571.0000 48754.0000 on Dam body 
P65 71963.0000 48636.0000 on Dam body 
P66 72272.0000 48402.0000 on Dam body 
P51 69547.0000 49265.0000 
P52 69856.0000 48865.0000 
P53 70582.0000 48516.0000 
P54 71138.0000 47976.0000 
P55 71754.0000 47914.0000 
P71 69904.0000 49524.0000 
P72 70620.0000 49999.0000 
P73 72344.0000 48898.0000 
P01 68672.0000 49162.0000 
P32 71705.0000 50937.0000 
P03 73417.0000 47589.0000 
P42 70191.3921 48310.7710 
P44 71851.7091 47153.8040 

 

 
Table 2. The designed distances. 

 
Station Occupied Station Sighted Distance, m Station Occupied Station Sighted Distance, m 

P42 P53 441.8518 P53 P62 518.6125 
P42 P66 2083.2556 P53 P63 694.6583 
P42 P55 1612.8824 P53 P66 1693.9374 
P42 P54 1004.4418 P53 P55 1317.6971 
P44 P55 766.7708 P53 P54 774.9212 
P44 P66 1317.3135 P54 P55 619.3717 
P44 P03 1625.3395 P54 P63 897.8043 
P03 P44 1625.3431 P54 P64 890.3940 
P03 P66 1404.1610 P54 P65 1056.1644 
P03 P73 1692.5980 P54 P66 1211.3027 
P72 P51 1299.9509 P55 P53 1317.6951 
P72 P32 1434.6604 P55 P64 860.3537 
P72 P61 916.6018 P55 P65 751.2943 
P72 P63 1256.2973 P55 P66 711.2337 
P72 P52 1367.2003 P61 P62 429.9238 
P73 P32 2137.0400 P62 P63 400.1617 
P73 P63 1166.4082 P63 P64 409.8950 
P73 P64 786.8815 P64 P65 410.0221 
P73 P65 462.5056 P65 P66 388.0540 
P73 P66 501.2474 P32 P63 2130.4762 
P52 P62 946.6672 P32 P66 2598.0246 
P52 P61 582.6254 P71 P72 859.0721 
P52 P72 1367.1868 P44 P54 1088.1253 
P52 P51 505.5532 P55 P03 1694.8752 
P52 P01 1221.3664 P42 P52 647.2145 
P51 P01 881.4129 P42 P61 825.4356 
P51 P71 441.1126 P01 P71 1284.3542 
P51 P61 849.7613 P61 P71 631.4236 
P51 P53 1277.4954 P71 P73 2519.5667 
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Table 3. The semi-major, semi-minor axis and area of ellipse of errors for each point in the network. 
 

Point Semi-major axis, 
m 

Semi-minor axis,  
m 

Area of ellipse of error,  
mm2 Point Semi-major axis, 

m 
Semi-minor axis,  

m 
Area of ellipse of error,  

mm2 
P61 0.0043 0.0034 45.93 P55 0.0034 0.0028 29.91 
P62 0.0064 0.0035 70.37 P71 0.0057 0.0030 53.72 
P63 0.0036 0.0030 33.93 P72 0.0055 0.0030 51.84 
P64 0.0046 0.0035 50.58 P73 0.0035 0.0030 32.99 
P65 0.0041 0.0036 46.37 P1 0.0133 0.0035 146.24 
P66 0.0030 0.0026 24.50 P32 0.0058 0.0031 56.49 
P51 0.0044 0.0029 40.09 P3 0.0068 0.0032 68.36 
P52 0.0038 0.0034 40.59 P42 0.0044 0.0030 41.47 
P53 0.0046 0.0026 37.57 P44 0.0056 0.0033 58.06 
P54 0.0039 0.0029 35.53  

 
 
 

Table 4. The results of FOD with high precision in 1st case. 
Easting, m Northing, m σE, m σ N, m Area of ellipse of error, mm2

Point Initial Final Initial Final Initial Final Initial Final Initial Final 
P51 69547.0000 69631.8139 49265.0000 49258.8553 0.0036 0.0036 0.0070 0.0058 73.26 65.94 
P52 69856.0000 69748.9006 48865.0000 48763.9506 0.0033 0.0033 0.0049 0.0048 49.44 50.71 
P53 70582.0000 70485.2286 48516.0000 48422.7215 0.0027 0.0027 0.0037 0.0036 32.41 32.76 
P54 71138.0000 71047.7465 47976.0000 47888.4522 0.0031 0.0031 0.0032 0.0032 29.86 30.47 
P55 71754.0000 71668.9221 47914.0000 47831.2088 0.0032 0.0032 0.0028 0.0027 28.98 28.95 
P71 69904.0000 69823.3478 49524.0000 49649.1831 0.0042 0.0040 0.0066 0.0060 81.60 78.61 
P72 70620.0000 70645.6995 49999.0000 50049.1453 0.0062 0.0060 0.0034 0.0033 65.01 62.17 
P73 72344.0000 72491.2871 48898.0000 49042.3992 0.0027 0.0029 0.0035 0.0032 30.56 33.10 
P01 68672.0000 68813.7930 49162.0000 49208.4240 0.0041 0.0042 0.0186 0.0129 239.93 171.91 
P32 71705.0000 71842.0263 50937.0000 50869.5914 0.0077 0.0073 0.0030 0.0031 73.96 71.95 
P03 73417.0000 73350.6781 47589.0000 47719.5048 0.0053 0.0044 0.0081 0.0072 95.12 83.26 
P42 70191.3921 70319.8802 48310.7710 48247.4835 0.0032 0.0032 0.0042 0.0039 41.69 41.27 
P44 71851.7091 71841.3424 47153.8040 47276.6001 0.0068 0.0057 0.0035 0.0037 76.29 67.45 
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Table 5. The results of FOD with high precision in 2nd case. 
 

Easting, m Northing, m σE, m σ N, m Area of ellipse of error, mm2
Point Initial Final Initial Final Initial Final Initial Final Initial Final 
P51 69547.0000 69632.2526 49265.0000 49258.8593 0.0036 0.0035 0.0066 0.0054 66.97 60.10 
P52 69856.0000 69753.4218 48865.0000 48768.4718 0.0033 0.0033 0.0047 0.0047 46.28 47.01 
P53 70582.0000 70489.7498 48516.0000 48427.2428 0.0024 0.0023 0.0034 0.0033 24.96 25.08 
P54 71138.0000 71052.2678 47976.0000 47892.9734 0.0026 0.0025 0.0030 0.0030 23.71 24.07 
P71 69904.0000 69904.0369 49524.0000 49648.8212 0.0039 0.0042 0.0066 0.0056 73.87 67.92 
P72 70620.0000 70543.8264 49999.0000 49998.9320 0.0061 0.0056 0.0034 0.0033 62.33 58.10 
P01 68672.0000 68817.0506 49162.0000 49303.9264 0.0041 0.0041 0.0181 0.0125 229.83 161.93 
P32 71705.0000 71844.1505 50937.0000 50868.6863 0.0072 0.0069 0.0029 0.0029 64.91 63.73 
P03 73417.0000 73349.9212 47589.0000 47720.7375 0.0045 0.0039 0.0070 0.0066 71.32 65.48 
P42 70319.8802 70320.8827 48247.4835 48247.0789 0.0028 0.0028 0.0041 0.0038 35.32 34.81 
P44 71841.3424 71977.0182 47276.6001 47277.1503 0.0059 0.0051 0.0033 0.0034 60.65 55.65 

 
Table 6. The results of FOD with high precision in 3rd case. 

 
Easting, m Northing, m σE, m σ N, m Area of ellipse of error, mm2

Point Initial Final Initial Final Initial Final Initial Final Initial Final 
P51 69547.0000 69632.2357 49265.0000 49258.8599 0.0036 0.0036 0.0063 0.0053 65.01 58.55 
P52 69856.0000 69754.1618 48865.0000 48769.2118 0.0031 0.0031 0.0043 0.0042 40.00 41.33 
P53 70582.0000 70490.4898 48516.0000 48427.9827 0.0024 0.0023 0.0034 0.0036 26.21 26.88 
P54 71138.0000 71052.0077 47976.0000 47892.7134 0.0025 0.0025 0.0028 0.0027 21.65 21.61 
P55 71754.0000 71674.1833 47914.0000 47926.5815 0.0026 0.0023 0.0026 0.0027 21.27 21.07 
P71 69904.0000 69828.2941 49524.0000 49671.9188 0.0041 0.0042 0.0065 0.0058 78.22 74.23 
P72 70620.0000 70595.8732 49999.0000 49998.9351 0.0060 0.0056 0.0034 0.0033 61.31 57.25 
P73 72344.0000 72482.8647 48898.0000 49034.1665 0.0027 0.0027 0.0035 0.0035 29.88 31.43 
P01 68672.0000 68805.7023 49162.0000 49293.4201 0.0041 0.0044 0.0176 0.0121 226.34 157.64 
P32 71705.0000 71834.2848 50937.0000 50873.3644 0.0075 0.0071 0.0031 0.0031 71.94 69.54 
P03 73417.0000 73354.3575 47589.0000 47712.3250 0.0027 0.0027 0.0055 0.0051 45.82 43.88 
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Row space of the matrix 

(a vector space) 

Locus of solutions for 
the Rank-deficient 

system. 

Parallel to null space 
(not a vector space) 

Minimum length. 

Minimum variance 
solution 

Table 7. The limits of movement for points of the network. 
 

Limits of Ei
o, m Limits of Ni

o, m 

Point
Lower Upper Lower Upper 

P51 69397 69697 49115 49415 
P52 69706 70006 48715 49015 
P53 70432 70732 48366 48666 
P54 70988 71288 47826 48126 
P55 71604 71904 47764 48064 
P71 69754 70054 49374 49674 
P72 70470 70770 49849 50149 
P73 72194 72494 48748 49048 
P1 68522 68822 49012 49312 

P32 71555 71855 50787 51087 
P3 73267 73567 47439 47739 

P42 70041.3921 70341.3921 48160.7710 48460.7710 
P44 71701.7091 72001.7091 47003.8040 47303.8040 

 
 
 

 
                 Figure 1.  ellipse of error                                              Figure 2.  Distance observation. 
 
 

 
       

 
      

 Figure 3.  Intersection of solution space and                     Figure 4.  Triangle network with only       
              row space for a rank-deficient system,                                           angle observation                                 
                   after Mikhail, et al., 2000.  
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Figure 5. The selected network as a case study 
 
 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
               
                           
 

 
               Figure 6. Flow chart of ZOD program.      

START 

Formulate of Observation Equations 

Solution of normal equation By Generalized Inverse (Helmert Method) 

Computation of variance – covariance matrix

Input approximate 
coordinates of points 

Formulate of Normal Equations 

Computation of ellipse of errors elements

Plotting the points and the ellipse of errors 

Formulation of Constraints Matrix to solve deficient of rank defect 

END 
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Figure 7. The ellipses of error for each point in the network. 
 

 
 

   
 
 
 
 
 
 
 
 
 
 
 
 
                           
                              
                                     
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                          Figure 8. Flow chart of FOD with high precision program. 

START

Computation of variance – covariance matrix

Input approximate coordinates of points

Computation of ellipse of errors elements

Printing coordinates of points and Plotting the points and the ellipse of errors 

Input limits of movement (search domain)

Formulate of Observation Equations 

Formulate of Normal Equations 

Computation of 

A-Optimality = trace (Qxx ) OR D-Optimality = det. (Qxx) 

If final coordinates of 
points within search 

domain?

Yes No  

Using flow chart of Rosenbrock Method to 
find and calculate the optimal solution

END 
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Figure 9. The initial and final network of the 1st case. 
 
 
 
 

 
 
 
 
 
 
 
 

Figure 10. The initial and final network of the 2nd case. 
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Figure 11. The initial and final network of the 3rd case. 


