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ABSTRACT 

         A multivariate multisite hydrological data forecasting model was derived and checked 

using a case study. The philosophy is to use simultaneously the cross-variable correlations, 

cross-site correlations and the time lag correlations. The case study is of two variables, three 

sites, the variables are the monthly rainfall and evaporation; the sites are Sulaimania, Dokan, and 

Darbandikhan.. The model form is similar to the first order auto regressive model, but in 

matrices form. A matrix for the different relative correlations mentioned above and another for 

their relative residuals were derived and used as the model parameters. A mathematical filter was 

used for both matrices to obtain the elements. The application of this model indicates it's 

capability of preserving the statistical characteristics of the observed series. The preservation was 

checked by using (t-test) and (F-test) for the monthly means and variances which gives 98.6% 

success for means and 81% success for variances. Moreover for the same data two well-known 

models were used for the sake of comparison with the developed model. The single-site single-

variable auto regressive first order  and the multi-variable single-site models. The results of the 

three models were compared using (Akike test) which indicates that the developed model is 

more successful ,since it gave minimum (AIC) value for Sulaimania rainfall, Darbandikhan 

rainfall, and Darbandikhan evaporation, while Matalas model gave minimum (AIC) value for 

Sulaimania evaporation and Dokan rainfall, and Markov AR (1) model gave minimum (AIC) 

value for only Dokan evaporation).However, for these last cases the (AIC) given by the 

developed model is slightly greater than the minimum corresponding value.   

 

Key words: forecasting, multi-sites, multi-variables, cross sites correlation, serial correlation, 

cross variables correlations, hydrology.  
 

 

 الخلاصة

حن اشخماق ًوْرس حٌبأ بالب٘اًاث الِ٘ذسّلْص٘ت  لوخغ٘شاث هخخلفت ّفٖ هْالع هخعذدة ّححم٘مَ باسخخذام حالت دساس٘ت.  حعخوذ فلسفت 

الٔ  بالإضافتالاًٖ لوعاهلاث الاسحباط الوكاً٘ت ّحلك الخٖ حْصذ ب٘ي الوخغ٘شاث فٖ الوْلع الْاحذ  الاسخخذامالٌوْرس علٔ 

الاسحباط الخسلسلٖ الزهٌٖ. الحالت الذساس٘ت ُٖ لوخغ٘شٗي فٖ رلارت هْالع, الوطش ّالخبخش فٖ السل٘واً٘ت, دّكاى ّ دسبٌذخاى.  

هعاهلاحَ بص٘غت الوصفْفاث . للٌوْرس هصفْفخٖ هعاهلاث الاّلٔ راث  اى الٌوْرس شبَ٘ بٌوْرس الاسحباط الخسلسلٖ ّلكي

 الخٌبؤّالزاً٘ت حوزل هعاهلاث بماٗا الاسحباط الٌسب٘ت. بٌ٘ج الٌخائش لذسة الٌوْرس علٔ  الاسحباطاث الٌسب٘ت هعاهلاثعٌاصش حوزل 

 الحساب٘ت ّالخباٗي, ّكاًج ًسب الٌضاط  بالأّساطبالوعلْهاث بصْسة صح٘حت ح٘ذ حن اسخخذام اخخباسٕ فحص الفشق 

علٔ الخْالٖ.  ّلغشض الوماسًت ب٘ي الٌوْرس الوشخك ّالٌوارس الوعشّفت فٖ ادب٘اث الوْضْع, حن بٌاء ًوْرس رّ  81,98)) 

ْرس لكل ث ًوالوخغ٘ش الْاحذ لكل هخغ٘ش هي الوخغ٘شاث الوسخخذهت)سخت ًوارس(ّ رلاد ًوارس هي ًْع الٌوارس الوخعذدة الوخغ٘شا
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ئش ُزٍ الٌوارس هع الٌوْرس الوشخك باسخخذام اخخباس )اكاٗكٖ( الزٕ ٗسخخذم لِزا الغشض.  بٌ٘ج الٌخائش باى هْلع . حن هماسًت ًخا

بم٘ت الوخغ٘شاث ًخائش ّالخبخش لذّكاى اها ف٘وا ٗخص  دسبٌذخاى للوطش فٖ السل٘واً٘ت ّبالٌسبت الٌوْرس اعطٔ الل الم٘ن للاخخباس 

 الاخخباس اعلٔ بمل٘ل عي الم٘ن الصغشٓ الوٌاظشة. كاًج ل٘ن

1. INTRODUCTION 

Weather generation models have been used successfully for a wide array of applications. They 

became increasingly used in various research topics, including more recently, climate change 

studies. They can generate series of climatic data with the same statistical properties as the 

observed ones. Furthermore, weather generators are able to produce series for any length of time. 

This allows developing various applications linked to extreme events, such as flood analyses, 

and draught analysis, and hence putting proper long term water resources management to face 

the expected draught or flood events. There exist in the literature many types of stochastic 

models that simulate weather data required for various water resources applications in 

hydrology, agriculture, ecosystem, climate change studies and long term water resource 

management.  

Single site models of weather generators are used for forecasting a hydrological variable at a 

single site independent of the same variable at the near sites, and thus ignoring the spatial 

dependence exhibited by the observed data. On the other hand single variable forecasting models 

are used for forecasting a hydrological variable in a site independent of the other related 

variables at the same site, thus ignoring the cross variables relations that physically exist between 

these variables. Tobler, 1970, mentioned in the first law of geography that “everything is related 

to everything else, but near things are more related than distant things.” The most commonly 

used multi-sites stochastic weather models are of the form proposed by  Richardson, 1981. for 

daily precipitation, maximum temperature, minimum temperature, and solar radiation , Wilks, 

1999.These models forecast a hydrological variable at multiple sites simultaneously, hence 

simulate the cross sites dependency between these sites. The Multi-variables models are similar 

to the multi-sites model but simulate the cross variables dependency that exists between some 

variables at a certain site. The two models forms are similar but using cross sites correlations in 

the first one , while the second one uses the cross variables correlations. Much progress had been 

made principally in the last 20 years to come up with theoretical frameworks for spatial analysis 

Khalili , 2007.Some models, such as space–time models have been developed to regionalize the 

weather generators. In these models, the precipitation is linked to the atmospheric circulation 

patterns using conditional distributions and conditional spatial covariance functions Lee et al., 

2010. The multi-site weather generators presented above are designed using relevant statistic 

information. Most of these models are either complicated or some are applicable with a certain 

conditions. In real situation both cross variables and cross sites correlation may exist between 

different hydrological variables at different sites. There exist in the literature some relatively 

recent some trials to account for the spatial variation in multi-sites. Calder, 2007, had proposed 

a Bayesian dynamic factor process convolution model for multivariate spatial temporal processes 

and illustrated the utility of the approach in modeling large air quality monitoring data. The 

underlying latent components are constructed by convolving temporally-evolving processes 

defined on a grid covering the spatial domain and include both trend and cyclical components. 

As a result, by summarizing the factors on a regular spatial grid, the variation in information 

about the pollutant levels over space can be explored. Al-Suhili et al., 2010, had presented a 

multisite multivariate model for forecasting different water demand typesat different areas in the 

city of Karkouk, north Iraq. This model first relate the each demand type with explanatory 

variables that affect its type, using regression models, then obtaining the residual series of each 

variable at each site. These residual are then modeled using multisite Matalas models for each 

type of demand. These models were coupled with the regression equation to form the multisite 
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multivariate variation. The last two cited research are those among the little work done on 

forecasting models of multi-sites multivariate types. However these model are rather 

complicated, and/or do not model the process of cross site and cross variables correlation 

simultaneously, which as mentioned above the real physical case that may exist. Hence 

researches are further required to develop a simplified multisite multivariate model. In this 

research a new straightforward multisite-multivariate approach is proposed to develop such a 

model that describe the cross variables and cross sites correlation structure in the forecasting of 

multi variables at multi sites simultaneously. This model was applied to a case study of monthly 

data of two hydrological variables, rainfall and evaporation at three sites located north Iraq, 

Sulaimania, Dokan, and Darbandikhan. 

 

2. THE MODEL DEVELOPMENT 

 The multivariate multisite model developed herein, utilizes single variable lag correlations, 

cross variables lag-correlations, and cross sites correlations.  

 In order to illustrate the model derivation consider Fig.1 shown. This figure illustrates the 

concept of two variables, two sites and first order model. This simple form is used to simplify the 

derivation of the model. However, then the model could be easily generalized using the same 

concept. For instant, Fig. 2 is a schematic diagram for a multivariate multisite model of two 

variables, three sites and first order time. The concept is that if there will be two-variables, two 

sites, and one time step (first order), then there will exist (8) nodal points. Four of these represent 

the known variable, i.e. values at time (t-1); the other four are the dependent variables, i.e. the 

values at time (t). As mentioned before Fig. 1 shows a schematic representation of the developed 

multisite multivariate model and will be abbreviated hereafter as MVMS (V, S ,O),where V: 

stands for number of variables in each site , S: number of sites , and O : time order, hence figure 

(1) can be designated as MSMV (2,2,1), while Fig. 2 MVMS (2,3,1).  

This model can be extended further to (v-variables) and / or (s-sites) and / or (o- time) orders as 

will be shown later .The model concept assume that each variable dependent stochastic 

component at time t can be expressed as a function of the independent stochastic component for 

all other variables at time (t), and those dependent component for all variables at time (t-1) at all 

sites. The expression is weighted by serial correlation coefficient, cross-site cross-correlation 

coefficient, cross-variable cross coefficient and cross-site, cross-variable correlation coefficient. 

In addition to that; the independent stochastic components are weighted by the residuals of all 

types of correlations. These residual correlations are expressed using the same concept of 

autoregressive first order model (Markov chain). Further modification of this model is to use 

relative correlation matrix parameters by using correlation values relative to total sum of 

correlation for each variable, and the total sum of residuals as a mathematical filter ,as will be 

shown later.  

A model matrix equation for first order time lag, O=1, number of variables=V, and number of 

sites=S, could be put in the following form: 

 

[ ϵt]v*s,1 = [ρ]v*s,v*s*  [ϵt-1] v*s,1   + [σ ] v*s,v*s * [ξt]v*s,1                                                                                                     (1) 

 

Which for v=2,s=3,and =1 

 

[ ϵt]6,1 = [ρ]6,6*  [ϵt-1] 6,1   + [σ ] 6,6 * [ξt] 6,1                                                                                     (2) 

 

Where : 
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where:  

ρ1,1 = ρ [(x1, x1), (s1, s1), (t, t-1) ]= population serial correlation coefficient of variable 1 with 

itself at site 1 at site 1, for time lagged 1  

 

ρ1,2= ρ [(x1, x2), (s1, s1), (t, t-1) ]= population cross correlation coefficient of variable 1 at site 1 

with variable 2 at site 1, for time lagged 1 

 

ρ1,3= ρ [(x1, x1), (s1, s2), (t, t-1) ]= population cross correlation coefficient of variable 1 at site 1 

with variable 1 at site 2, for time lagged 1 

 

ρ1,4= ρ [(x1, x2), (s1, s2), (t, t-1) ]= population cross correlation coefficient of variable 1 at site 1 

with variable 2 at site 2, for time lagged 1  

 

ρ1,5= ρ [(x1, x1), (s1, s3), (t, t-1) ]= population cross correlation coefficient of variable 1 at site 1 

with variable 1 at site 3, for time lagged 1  

 

ρ1,6= ρ [(x1, x2), (s1, s3),(t,t-1) ]= population cross correlation coefficient of variable 1 at site 1 

with variable 2 at site 3, for time lagged 1,the definition continues… , finally  

 

ρ6,6= ρ [(x2, x2), (s3, s3), (t, t-1) ]= population serial correlation coefficient of variable 2 at site 3 

with variable 2 at site 3, for time lagged 1.  

 

The designated (ρ i,j ) is used for simplifying .That is variables at site 1 ,as 1, and 2,for this 

model ( in general to 1,2,…v),then for variables at site 2,as 3 ,and 4 (in general from v+1 to 2v 

and so on) hence (r1,v+1) stands for the correlation between variable 1 at site 1,and variable 1 at 

site 2 and so on.  

ϵ:  is the Stochastic dependent component. 

 

ξ:  is the Stochastic independent component. 

 

σ i,j :  are the residual of the correlation coefficient  ρi,j. 

 

The matrix, Eq. (2) can be written for each term, for example, for the first term: 

ϵ(1,s1,t) = ρ1,1 * ϵ(1,s1,t-1) + ρ1,2 * ϵ(2,s1,t-1) + ρ1,3 * ϵ(1,s2,t-1) + ρ1,4 * ϵ(2,s2,t-1)+ 

 

ρ1,5 * ϵ(1,s3,t-1) + ρ1,6 * ϵ(2,s3,t-1) +σ 1,1 * ξ(1,s1,t) + σ 1,2 * ξ(2,s1,t) + σ 1,3 * ξ(1,s2,t) + σ 1,4 *  

 

ξ(2,s2,t) + σ 1,5 * ξ(1,s3,t) + σ 1,6 * ξ(2,s3,t)                                                                                       (8)  

 

Similar equations could be written for the other variables. The correlation coefficient in each 

equation is filtered by a division summation filter, as in the following equation: 

 

 

      
    

∑        
     
   

.                                                                                                                (9) 

 

Where        is the relative correlation coefficient of row i and column j of the matrix in 

 eq.(6). The corresponding  σ values are estimated using the following equation: 
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     √      
                                                                                                              (10) 

 

Then these  σ i,j are also filtered using equation similar to eq.(9) as follows: 

 

      
    

∑        
     
   

                                                                                                         (11) 

 

Then the model matrix equation is the same as that appear in Eq.(2), replacing ρi,j values by the 

corresponding relative values      in the matrix Eq.(6), and σi,j with the corresponding relative 

values σri,j in the matrix Eq.(7) .  The model can be generalized to any number of variables and 

number of sites. 

 

3. THE CASE STUDY AND APPLICATION OF THE MODEL. 

In order to apply the new developed (MVMS) model explained above the Sulaimania 

Governorate was selected as a case study. Sulaimania Governorate is located north of Iraq with 

total area of (17,023 km2) and population, 2009. 1,350,000. The city of Sulaimania is located 

(198) km north east from Kurdistan Regional capital (Erbil) and (385) km north from the Federal 

Iraqi capital (Baghdad). It is located between (33/43- 20/46) longitudinal parallels, eastwards and 

31/36-32/44 latitudinal parallels, westwards. Sulaimania is surrounded by the Azmar Range, 

Goizja Range and the Qaiwan Range from the north east, Baranan Mountain from the south and 

the Tasluje Hills from the west. The area has a semi-arid climate with very hot and dry summers 

and very cold winters. Barzanji, 2003. 

The variables used in the model among other meteorological recoded data are (rainfall and 

evaporation) for monthly model as a two main variables that are expected to be useful for 

catchment management and runoff calculation. Data were taken from three meteorological 

stations (sites) inside and around Sulaimania city, which are Sulimania, Dokan dam, and 

Darbandikhan dam meteorological stations. Dokan dam metrological station is located (61 km) 

north east, and Darbandikhan dam metrological station is located (55 km) south east of 

Sulaimania city. While Dokan dam meteorological station is located (114 km) north east of 

Darbandikhan dam metrological station .The sites coordinates are given in Table 1, Barzinji 

,2003.The Satellite image of the locations of the three stations showed in Fig.3. 

The model was applied to the data of the case study described above. The length of record for the 

two variables and the three stations is (27) years, (1984-2010). The data for the first (22), (1984-

2005) years were used for model building, while the left last 5 years data were used for 

verification,(2006-2010). It is worth to mention that the data are on monthly basis. Moreover 

since the analysis includes the rainfall as a variable which has zero values for June, July, August 

and September, in the selected area of the case study, these months are excluded from the 

analysis. Hence the model was built for the continuous period from October to May.  

In order to give a general view for the data used the descriptive statistics (Mean, Standard 

deviation Sd, Coefficient of Skewness Cs, Coefficient of kurtosis Ck, Maximum Max, Minimum 

Min) were calculated for rainfall and evaporation of Sulaimania, Dokan dam, and Darbandikhan 

dam meteorological stations and are shown in Table 2. 

Before proceeding with the modeling process the data series should be checked for their 

homogeneity . The split sample test suggested by Yevjevich, 1972, was applied for this purpose 

for each data series to test the homogeneity both in mean and standard deviation values. 

Different sizes of the subsamples were used for dividing the data sample into two subsamples 

with (n1,and n2) as number of years for subsample one and subsample 2 respectively. That is 
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(n1:n2) as (1,26),(2,25),(3,24), and so on. The split sample test result on estimated t-values that 

was compared with the critical t-value. If the t-value estimated is greater than the critical t-value 

then the data series is considered as non-homogeneous, Yeijevich, 1972 , and thus this non-

homogeneity should be removed. The results of this test had showed that there are some different 

subsamples splitting (n1:n2) values that exhibit non- homogeneity exist, however these cases that 

gives the maximum t-test values were considered for each of the 6- data series.Table.3 shows 

these results, which indicates that non-homogeneity is exist in Sulaimania evaporation, Dokan 

rainfall, and Derbendikhan evaporation data series, while the series of the other variables are 

homogeneous. To remove this non-homogeneity the method suggested by Yeijevich,1972  was 

used that using the following equation: 

 

           
              

       
     

                                                   (12) 

Where,  

Hi,j : is the  homogenized series at year i,month j of the first sub-sample (old). 

Xi,j : is the original series at year i, month j, of the first sub-sample . 

A1, B1:  are the linear regression coefficients of the annual means. 

A2,B2 : are the linear regression coefficients of the annual standard Deviations. 

Mean2,Sd2 : are the overall mean and standard deviation of the second sub-sample. 

This implies that the data is normalized according to the second sub-sample, i.e., the most recent 

one which is the correct way for forecasting. Table.4 shows the values of the of 

Mean2,Sd2,A1,B1,A2,and B2, for the three non-homogeneous series. 

The homogenized data were then retested to make sure that the transformation applied in 

Eq.(12), had removed the non-homogeneity. Table.5 shows these results which ensure that the 

data series are all now homogeneous. 

The next step in the modeling process is to check and remove the trend component in the data if 

exist. This was done by finding the linear correlation coefficient(r) of the annual means of the 

homogenized series, and the t-value related to it. If the t-value estimated is located in the r=0 

hypothesis rejecting area t> + or - critical t-value of 2.83 then trend exist otherwise it is not. The 

following equation is used to estimate the T-values. 

 

T=
 √   

√    
                                                                                                                            (13) 

 

Where  

 Table 6 shows these results, which indicate the absence of the trend component in all of the data 

series of the six variables. 

Before proceeding into the modeling process the data should be normalized to reduce the 

skewness coefficient to zero. The well-known Box-Cox transformation Box and Jenkin , 1976 

was used for this purpose as presented  in the following equation: 

   
        

 
                                                                                                                  (14) 

Where: 

µ : is the power 

α : is the shifting parameter. 

XN : is the normalized series. 

Table.7 shows the coefficients of the normalization transformation of all of the six series. The 

shifting parameter is selected to ensure avoiding any mathematical problem that may occur due 
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to the fraction value of the power µ. The power value is found by trial and error so as to select its 

value that reduce the skewness to almost zero value. Table 8 shows the statistical properties of 

the series before and after normalization, which indicate that the skewness coefficients are 

reduced to almost zero a property of the normal data. 

The next step in the modeling process is to remove the periodic component to obtain the 

stochastic dependent component of the series, which is done by using Eq.(15), as follows: 

 

    =
         

   
                                                                                                                  (15) 

 

Where:  

ϵi,j : is the obtained dependent stochastic component for year i, month j. 

Xbj : is the monthly mean of month j of the normalized series XN. 

Sdj : is the monthly standard Deviation of month j of the normalized series XN. 

Table 9 shows the monthly means and monthly standard deviations of the normalized data series 

XN. The ϵi,j  obtained series are then used to estimate the Lag-1 serial and cross correlation 

coefficients  ρi,j , and σi,jof matrix Eqs.(6) and (7) respectively, which then used to estimate ρri,j 

and σri,j  using Eqs.(9), and (11), respectively.. 

 

4. RESULTS AND DISCUSSION 
The developed model above is used for data forecasting, recalling that the estimated parameters 

above are observed using the 22 years data series (1984-2005). This model will be used to 

forecast data for the next 5- years (2006-2010) since the data available are up to 2010, that could 

be compared with the observed series available for these years, for the purpose of model 

validation. 

The forecasting process was conducted using the following steps: 

 

1. Generation of an independent stochastic component (𝝃) using normally distributed generator, 

for 5 years,i.e., (5*12) values. 

2. Calculating the dependent stochastic component (ϵi,j) using Eq. (2) and the matrices of ρri,j and 

σri,j as shown in  Eqs. (9) and (11), respectively. 

3. Reversing the standardization process by using the same monthly means and monthly standard 

deviations which were used for each variable to remove periodicity using Eq. (15) after 

rearranging. 

4. Applying the inverse power normalization transformation (Box and Cox) for calculating un-

normalized variables using normalization parameters for each variable and Eq.(14). 

 

In most forecasting situation, accuracy is treated as the overriding criterion for selecting a model. 

In many instance the word “accuracy” refers to “goodness of fit,” which in turn refers to how 

well the forecasting model is able to reproduce the data that are already known. The model 

validation is done by using the following steps:  

1. Checking if the developed monthly model resembles the general overall statistical 

characteristics of the observed series.  

2. Checking if the developed monthly model resembles monthly means, monthly standard 

deviations using t-test for the means and F-test for the standard deviation.  
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Furthermore the performance of the new multi-variables multi-sites model developed herein was 

compared with the well-known single variable single site model, and multi-variables single site 

model (MATALS model). This performance was made to investigate whether the new model can 

produce better forecasted data series. For purpose of comparison of different forecasting models 

performance, the Akaike (AIC), test given by the following equation: 

 

          
   

 
                                                                                                            (16) 

 

Where: 

n: is the number of the total forecasted values . 

K: number of parameters of the model plus 1. 

Rss: is the sum of square error between the forecasted value and the corresponding observed 

value. 

For each site and variable three sets of data are generated. The overall statistical characteristics 

are compared with those observed, for each of the generated series. Table 10 shows these 

comparisons. For all variables and sites the generated sets resemble the statistical characteristics 

not exactly with the same values of the observed series but sometimes larger or smaller but 

within an acceptable range. Table 11 shows the t-test and F-test summary for all of the variables 

and sites. As it is obvious from the results of these tables, that the generated series succeed in (t-

test) for all of the monthly means, except for two months for Sulaimania rainfall, i.e. overall 

succeed percent of (98.6%). This indicates that the model is successfully resembled the monthly 

means values, with excellent accuracy. 

Based on (F-test) which seek the variance differences between the observed and generated series; 

the success percentage ranking of the generated series was: the best being for Sulaimania rainfall 

(96%), followed by Darbandikhan evaporation (88%), Darbandikhan rainfall (83%), Dokan 

evaporation (83%), Dokan rainfall (71%), and finally Sulaimania evaporation (67%). The overall 

success percentage was (81%). These results of the F-test indicate that the model was 

successfully resembled the monthly standard deviations, with a very good accuracy. As 

mentioned above for purpose of the comparison of the model performance with the available 

forecasting models, the Akaike , 1974  test was used. Before that six single variable single site 

models were developed, one for each variable, and three single variable multi-site models, 

Matalas ,1967 one for each site. These models were then used for forecasting monthly data for 

the same period (2006-2010), forecasted by the developed model. 

Table.12 shows the Akaike test results for all of the forecasted variables, in each sites, obtained 

using these model and those obtained by the developed model. It is obvious that the developed 

model had produced for most of the cases the lowest test value, i.e, the better performance. Even 

though for some cases it has higher test value than the other models, but for these cases it is 

observed that a very little differences are exist between these test values and the minimum 

obtained one. 

 

5. CONCLUSIONS 

 

From the analysis done in this research, the following conclusion could be deduced: 

1- The model parameters can be easily estimated and do not require any extensive 

mathematical manipulation. 

2- The model can preserve the overall statistical properties of the observed series with high 

accuracy. 
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3- The model can preserve the monthly means of the observed series with excellent 

accuracy, evaluated using the t-test with overall success (98.6%). 

4- The model can preserve the monthly standard deviations of the observed series with a 

very good accuracy, evaluated using the F-test with overall success (81%). 

5- The comparison of the model performance with the single variable single site and the 

multi-site single variable models, using the Akaike tset had proved that the developed 

model had proved better performance in the most cases. Moreover for those less cases 

where other models had the better performance; the test value of the developed  model is 

slightly  higher than the minimum value. 
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Figure 1.  Schematic representation of the two variables two sites multi variables 

multisite model. 

 

Figure 2. Schematic representation of the two variables three sites multi variables 

multisite model. 

 

Table 1. North and east coordinates of the metrological stations selected for analysis. 
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Table 2. Descriptive statistics of the original data series. 
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Sulaimania 

Rainfall(mm) 

91 69 0.9 0.7 354 0.1 73 63 1 3 310 0.1 

Sulaimania 

Evapor.(mm) 

120 70 1 1 415 36 106 51 1 -1 220 40 

Dokan 

Rainfall(mm) 

93 80 1 0.7 416 0.1 64 56 1 2 262 1 

Dokan 

Evapor.(mm) 

116 68 0.9 -0.1 322 24.9 101 60 1 1 284 35 

Derbendkan 

Rainfall(mm) 

78 67 1.2 1.3 326 0.4 69 59 1 1 247 0 

Derbendkan 

Evapor.(mm) 

134 69 0.7 -0.3 341 34.1 111 62 1 0.1 276 37 

 

Table 3.  Test of homogeneity results, with tc=2.38, at 95% significant level. 
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Test  for Means Test for  S. D. 
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Rainfall(mm) 
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8 
15 12 Yes 1.7 23 5 Yes 

Sulaimania 

Evapor.(mm) 

2.5

6 
21 6 No 2.91 22 5 No 

Dokan 

Rainfall(mm) 

2.7

6 
15 12 No 2.77 24 3 No 

Dokan 

Evapor.(mm) 

2.3

1 
25 2 Yes 1.77 23 4 Yes 

Derbendkan 

Rainfall(mm) 
2.3 5 22 Yes 2.05 6 21 Yes 

Derbendkan 

Evapor.mm) 

3.2

5 
18 9 No 0.93 17 10 Yes 
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Table 4.  Coefficients of non-homogeneity removal. 

B2 A2 B1 A1 S.D.2 Mean2 Variable 

0.7065 62.958 -0.602 127.297 50.62 106.3 
Sulaimania 

Evapor.(mm) 

-0.319 79.314 -0.815 101.91 41.33 55.96 
Dokan 

Rainfall(mm) 

-0.229 69.93 0.4 131.18 70.45 117.5 
Derbendkan 

Evapor.mm) 

 

Table 5. Re- test of homogeneity, with tc=2.38, at 95% significant level. 

 

Variable 

Test  for Means Test for  S. D. 
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Sulaimania 

Rainfall(mm) 
2.08 15 12 Yes 1.7 23 5 Yes 

Sulaimania 

Evapor.(mm) 
1.69 26 1 Yes 1.17 9 18 Yes 

Dokan 

Rainfall(mm) 
1.92 1 26 Yes 1.61 2 25 Yes 

Dokan 

Evapor.(mm) 
2.31 25 2 Yes 1.77 23 4 Yes 

Derbendkan 

Rainfall(mm) 
2.3 5 22 Yes 2.05 6 21 Yes 

Derbendkan 

Evapor.mm) 
1.08 26 1 Yes 1.33 8 19 Yes 

 

Table 6.Test of trend results, with tc=2.38, at 95% significant level. 

T for S.D. T for means Variable 

0.023 0.16 
Sulaimania 

Rainfall(mm) 

1.06 0.21 
Sulaimania 

Evapor.(mm) 

0.4 0.2 
Dokan 

Rainfall(mm) 

0.13 0.04 
Dokan 

Evapor.(mm) 

0.04 1.04 
Derbendkan 

Rainfall(mm) 

0.41 0.28 
Derbendkan 

Evapor.mm) 
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Table 7. Coefficients of the normalization transformation. 

Shifting   α Power  µ Variable 

1 0.47 
Sulaimania 

Rainfall(mm) 

0 -0.52 
Sulaimania 

Evapor.(mm) 

0 0.27 
Dokan 

Rainfall(mm) 

0 -0.054 
Dokan 

Evapor.(mm) 

0 0.359 
Derbendkan 

Rainfall(mm) 

0 0.232 
Derbendkan 

Evapor.mm) 

 

Table 8. Statistical properties before and after the normalization transformation. 
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Sulaimania 

Rainfall(mm) 
91 69 0.9 0.7 14.36 6.84 -0.15 -0.49 

Sulaimania 

Evapor.(mm) 
106 49 1 0.7 1.8 1.32 0.1 -1.1 

Dokan 

Rainfall(mm) 
54.8 42.9 0.9 0.5 6.5 2.5 -0.1 -1.0 

Dokan 

Evapor.(mm) 
116 68 0.9 -0.1 4.1 0.5 0.0 -0.9 

Derbendkan 

Rainfall(mm) 
93 80 1 0.7 9.2 4.5 -0.12 -0.61 

Derbendkan 

Evapor.(mm) 
118.3 71.3 0.75 -0.27 8.3 1.8 -0.04 -0.79 
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Table 9. Monthly means and standard deviations for the dependent stochastic 

component. 

Variable Oct. Nov. Dec. Jan. Feb. Mar. Apr. May 
Sulaimania 

Rainfall 
Means 

 

6.923738 15.95873 18.27623 17.95162 16.6502 17.02956 15.15592 8.927809 

Sulaimania 

Rainfall 
S.D 

 

5.851398 7.895653 6.532181 5.975568 5.221715 5.869138 5.521562 5.782993 

Sulaimania 

Evapor. 

Mean 
1.790015 1.750803 1.715869 1.707902 1.715362 1.756555 1.779253 1.810782 

Sulaimania 

Evapor. 

S.D. 
0.010111 0.016859 0.019150 0.022393 0.013306 0.017357 0.016122 0.010803 

Dokan 

Rainfall 

Mean 
3.908560 1.816542 3.908560 1.816542 3.908560 1.816542 3.908560 1.816542 

Dokan 

Rainfall 

S.D. 
6.718586 2.294015 6.718586 2.294015 6.718586 2.294015 6.718586 2.294015 

Dokan 

Evapor 

Mean 
4.56241 0.091936 4.56241 0.091936 4.56241 0.091936 4.56241 0.091936 

Dokan 

Evapor. 

S.D. 

 

4.006939 0.176918 4.006939 0.176918 4.006939 0.176918 4.006939 0.176918 

Derbendkan 

Rainfall 

Mean 
4.932498 9.747093 11.70001 11.72048 11.67984 11.31086 7.90416 4.803818 

Derbendkan 

Rainfall 

S.D. 
3.35148 4.540729 4.442926 3.669128 2.898333 3.798071 2.871659 2.83866 

Derbendkan 

Evapor. 

Mean 
10.02914 7.414099 6.914041 6.468882 6.859431 8.805194 9.050721 10.86809 

Derbendkan 

Evapor. 

S.D. 
0.599518 0.585723 2.012912 1.68868 0.775737 1.093621 0.677337 0.609332 
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Table 10. Statistical properties of observed and forecasted rainfall series (2006-2010). 

Mean S.D. Skewness Kurtosis Max Min Variable 

73 63 1 3 310 0.1 Sul. Obs.    R 

75.1 66.1 0.4 -0.6 360.1 2.3 Sul. Gen 1  R 

72.7 64.2 0.7 0.1 282.1 2.5 Sul. Gen 2  R 

75.3 65.5 0.5 -0.2 248.3 6.8 Sul. Gen 3  R 

64 56 1 2 262 1 Dok. Obs.   R 

68 54 0.7 0.5 261 3 Dok. Gen 1 R 

58 52 0.7 -0.1 246 3 Dok. Gen 2 R 

65 49 0.7 0.2 266 6 Dok. Gen 3 R 

69 59 1 1 247 0.1 Der. Obs.   R 

71 55 0.7 -0.4 375 0.9 Der. Gen 1 R 

66 51 0.9 0.1 243 1.4 Der. Gen 1 R 

78 53 0.7 -0.1 241 6.0 Der. Gen 1 R 

105 50 1 -1 220 40 Sul. Obs.    E 

94 52 1.0 0.1 220 43 Sul. Gen 1  E 

101 53 1.0 -0.1 255 49 Sul. Gen 2  E 

109 48 0.9 0.0 227 53 Sul. Gen 3  E 

101 60 1 1 262 35 Dok. Obs.  E 

100 61 0.9 -0.2 276 27 Dok. Gen 1 E 

105 68 0.9 -0.1 318 35 Dok. Gen 2 E 

109 62 0.9 -0.3 279 37 Dok. Gen 3 E 

111 62 1 0 276 37 Der. Obs.    E 

95 62 0.7 -0.4 270 10 Der. Gen 1  E 

123 67 0.6 -0.5 303 19 Der. Gen 1  E 

108 60 0.7 -0.5 262 16 Der. Gen 1  E 

R: Rainfall, E: Evaporation. 
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Table 11. Percentage success of T-test for monthly means and F-test for monthly 

standard deviations for three generated series for each variable, for years (2006-2010). 

% Success in F-test % Success in T-test Variable 

96 97.22 
Sulaimania 

Rainfall(mm) 

67 100 
Sulaimania 

Evapor.(mm) 

71 100 
Dokan 

Rainfall(mm) 

83 100 
Dokan 

Evapor.(mm) 

83 100 
Derbendkan 

Rainfall(mm) 

88 100 
Derbendkan 

Evapor.mm) 

81 98.60 Over all 

 

 

Table 12. Comparison between the minimum Akaike test values obtained by the 

developed model, the multi-variable single site model, and the single variable single 

site model, for three generated series for each variable, by each model, for years 

(2006-2010). 

variable 
Sulaim. 

Rainfall 

Sulaim. 

Evap. 

Dokan 

Rainfall 

Dokan 

Evap. 

Derbend. 

Rainfall 

Derbend. 

Evap. 

The 

Developed 

Model 

1,544 1,189 1,438 1,264 1,535 1,404 

Multi 

Variable 

Multi Sites 

Model 

1,600 1,179 1,421 1,253 1,628 1,423 

Single 

Variable 

Single Site 

Model 

1,606 1,191 1,463 1,214 1,550 1,420 

 


