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ABSTRACT

In this study, the effect of design parameters such as pipe diameter, pipe wall thickness, pipe
material and the effect of fluid velocity on the natural frequency of fluid-structure interaction in
straight pipe conveying fully developed turbulent flow were investigate numerically,
analytically and experimentally. Also the effect of support conditions, simply-simply and
clamped-clamped was investigated. Experimentally, pipe vibrations were characterized by
accelerometer mounted on the pipe wall. The natural frequencies of vibration were analyzed by
using Fast Fourier Transformer (FFT). Five test sections of two different pipe diameters of 76.2
mm and 50.8 mm with two pipe thicknesses of 3.7 mm and 2.4 mm and two pipe materials,
stainless steel and polyvinyl chloride PVC in the range of Reynolds numbers from 4*10* to
5+10° were studied. Mathematically, the governing continuity and momentum equations were
solved numerically by using the finite volume method to compute the characteristics of two
dimensional turbulent flow. The dynamics of a pipe conveying fluid was described by the
Transfer Matrix Method (TMM) which is provides a numerical technique for solving the
equations of pipe vibrations for simply-simply and clamped supports. The results showed that,
the natural frequencies increase with pipe diameter increase and the natural frequencies slightly
increases with pipe wall thickness increase. Also, the natural frequencies in clamped-clamped
supported pipe are higher than those in simply-simply supported pipe.

KEYWORDS: Pipe conveying fluid; Flow-induced vibration; Fluid—structure interaction.
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1-INTRODUCTION

Piping systems play a very important
role in various industrial applications. They are
used in many engineering applications for
conveying gases and fluids over a wide range of
temperatures and pressures. These applications
include hydraulics, fluid transfer, cooling water
and fuel supply.

Flow-induced vibration of a pipe
conveying fluid is a consequence of fluid flow
through the pipes, and is widely recognized as a
major concern in the design of many industrial
applications. Flow induced vibration is caused
in structures by forcing due to time variant
pressure acting on the surface of the structure.

Many researchers have been carried out
studies on the vibration of a pipe conveying
fluid. The natural frequencies and critical
velocities of laminated circular cylindrical shells
with fixed-fixed ends conveying fluid was
studied by [Chang and Chiou 1995], dynamic
characteristics equations were obtained under
the assumption of harmonic motion, and the
natural frequencies corresponding to each flow
velocity were found. [See Seo et al. 2005]
studied the forced vibration response of a pipe
conveying harmonically pulsating fluid by using
the finite element method. The damping and
stiffness matrices varied with time, and the
method predicted the steady state response of
the pipe without using the time data of the
response. [Yousif et al. 2011] also investigated
pipes conveying pulsating flowing fluid.
Bolotin’s method was employed to split the
boundaries from the stable regions. The
resulting coupled-ordinary differential equations
were decoupled by neglecting the effect of the
mass ratio term and solved analytically. [Zhang
and Chen 2012] investigated nonlinear vibration
of pipes conveying fluid in the supercritical
regime. They focused on the nonlinear vibration
around each bifurcated equilibrium. [Wang et al.

907

2012] examined the dynamics of simply
supported fluid-conveying pipes with geometric
imperfections by considering the integral—
partial-differential equation of motion. [Yi-Min
et al. 2010] solved analytically the linear
dynamics of fluid-structure interaction in a
pipeline conveying fluid by using the element-
Galerkin  method to evaluate the natural
frequency of pipe conveying fluid at different
boundary conditions. The effect of the induced
vibration of a simply supported pipe conveying
fluid with a restriction was theoretically and
experimentally investigated by [Mahdi 2001]. A
transfer matrix method was implemented to
describe the dynamic response of a pipe
conveying fluid and a numerical technique was
used for solving two-dimensional
incompressible steady viscous flow for the
range of Reynolds number(5<Re<1000).
[Mousa 2011] investigated the free vibration
behavior of stepped orthotropic cylindrical
shells, by using the combination of Fliigge’s
shell theory, the transfer matrix approach and
the Romberg integration method.

The study of flow induced vibration
draws on three disciplines: (1) fluid dynamics,
(2) mechanical vibration, and (3) structural
mechanics. An important feature is the
requirement to deal with interactions between
fluid motion and moving structures. This
objective can be obtained by breaking the
problem into two sections: fluid and structure.
The pressure drop along the pipe and velocity
will obtained from the fluid model and will be
imported to a structural model. The second part
deals with structure vibration due to flowing
fluid by using a transfer matrix method (TMM).

2-FLUID DYNAMIC MODEL

For the two dimensional simulation the
governing equations for axisymmetric and
incompressible fluid were obtained by writing
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both the continuity and the momentum
equations in cylindrical coordinates, then 0
discarding the derivates with respect to the X —
cylindrical coordinate. The transport equations
with k-& model have the following form: [Wang c
and Zhang 2005] +E(C1Pk—Cng) (5)

o OX| ror o: or

e = (Ve) = {(m“)“}”[rw )ﬂ

Continuity equation:

The dissipation rate, € of the energy is

i(pu )+ li(rpv) =0 (1) written as:
OX ror
Where U is axial velocity, and V is
normal velocity. e K" (6)
L

Where k is the kinetic energy of the
flow and L is the involved length scale. This is
then related to the turbulent viscosity p, based
on the Prandtl mixing length model, [Tennekes,

Momentum equation in axial direction:

o o). 10 o[ oul 10 oU and Lumley 1972],
+——I(rpuV —— —
8x(pu) ra(p ) ax{ Her ax} rar{ﬂeff ar} s
+6{ w}la{r av} i (2) ‘
OX Mo ox | ror Ko x| ox

Where C,, is an empirical constant and p
is the density of the fluid.
And P IS the effective viscosity

Momentum equation in radial direction: defined as:
He = Hy + M (8)
i —— -~ -~
a( UV) L 5( 2) 0 v 1 8 oV effective ~ molecular  turbulent
~ +—Ir = — — | 4+— r e
OX - ror pV oX _'ueﬁ OX r ar ’ueff or

The production of kinetic energy of
turbulence Py is given by :

ﬁ{ 5U} 16% V] v ® (3

OX IuEﬁ or ror ﬂgﬁ 6I’_ /Jeﬁ I'Z or aU oV 2 vV 2 aU av
Pu= 92 + j +( + j 9)
6x or r ar ax
Equation for Kkinetic energy of
turbulence:

Based on an extensive examination of a

wide range of turbulent flows, the constant

6k}rla{r( +M)6k} parameters used in the equations will take the
ror o’ or following values:

0 )
k rovk)=—| (u+—
£ (U 1) {(u O
C, = 0.09; C;=1.44; C,=1.92; ok =1.0 and o,

+Pi— pe 4) =1.3
The finite volume method is probably

the most popular method used for numerical

Equation for dissipation rate of kinetic discretization in CFD. The governing equations
energy of turbulence:
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in their differential forms are integrated over
each control volume. The resulting integral
conservation laws are exactly satisfied for each
control volume and for the entire domain, which
is a distinct advantage of the finite volume
method. Each integral term is then converted
into a discrete form, thus yielding discretized
equations at the centroids, or nodal points, of the
control volumes.

In the case of calculation of velocity
components, different control volumes from the
ones used for the calculation of other variables
(e.g. pressure, turbulence kinetic energy and its
dissipation rate) will be used. For example, the
velocity component in the x-direction, U, is
calculated at the faces that are normal to the x
direction, and the control volume for U is
displaced one half control volume from the main
control volume in x-direction figure (1) and the
control volume for displaced one half control
volume from the main one in radial direction
figure (2).

The diffusion and advection volume
integrals can be converted into surface integrals
over the surface S of the control volume using
the Gauss Divergence Theorem, thus

jPUinidS —J‘D%nids :IS¢dV (10)
OXi

S S Vv

Where n; is the component of the
outward normal surface vector. This equation
contains three terms which need to be
discretised: a diffusion term, a convection term,
and a source term. The momentum equation also
contains a pressure term which does not satisfy
a transport equation. In the following, a
description of the discretisation of these four
terms in 2-D is given.

Diffusion term

Diffusion terms are usually discretised
using central differencing, as follows

j w%nidS:DAe
s X (X):

_TA
(%)«

(¢=¢)———(¢-4)
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SR g2 )

(). (%)
=Dig:—¢)-Du(d—¢) (11
+Digh—) D¢~ )

.- A D= A
in which () @) etc. and

where 6x is the distance between the respective
node centre and P, and A is the surface area of
the respective cell face.

Convection term

The convection term in equation (10) is
integrated as the sum of fluxes over the four
faces surrounding the control volume, thus

12
UGS = ptigh— ptigh + - pligp
S

Source term

The source term is discretised as

follows,

[SdV =SV 13

S

Where S: is the average value of the
source S¢ throughout the control volume. When
So is a function of @, S¢is decomposed into a
solution-independent part, bp, and a solution-
dependent part, thus

S_¢ = bp + SP¢: aSPSO (14)

3- TRANSFER MATRIX METHOD

This analytical and the numerical
analysis of the present work includes the
analysis of structural dynamics of the pipe by
Transfer Matrix Method (TMM) to find the
natural frequency, mode shapes and response of
the system.
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To describe the situation at each node,
four quantities must be defined; the deflection
(Y), the slope (®), the moment (M), and the
shear forces (Q). Also, two fluid physical
properties will be added, which are velocity (U)
and pressure (P) correspond to the compressive
and Coriolis forces due to flow induced
vibration. These six quantities can be arranged
in a vector Z={Y, ®, M, Q, U, P}, which
describes the state of the system at node i, and is
called the “state vector”, [Francis 1983].

The fluid flow and pipe structure are a
dynamic interactive system, and coupled by the
forces exerted on the structure by the fluid.
These dynamic forces are of two types.

1-Compressive forces, which result due to the
effect of fluid pressure and the change in
momentum of the fluid. These forces normally
lead to buckling instability.

2- Corioles force, which results due to the fluid
rotation, the rotation has the effect of coupling
the time and space. The compressive and
centrifugal force plus the Corioles force can be
written as: [Mahdi 2001]

82
W(x,t):(mf u 2+PApJ.(—Z)

OX

(15)

oy

+(2m. U (—=L
[ f ](axat)

3-1 Field matrix

In order to determine the transfer matrix
of any pipe elements arbitrary orientated in
space, a portion of pipe must be considered in
(Xx- y) plane. Consider the pipe portion only
between (i) and (i-1) in the (x- y) plane as
shown in figure (3).

The equilibrium of massless pipe of
length (L;) as follows:

-The sums of vertical forces on the pipe
are equal to zero, i.e.

Q- QR +W, =0 (16)

- The sums of moments about point (i-1)
are equal to zero too, or:
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17)

M{-QrL;— -Mf; =0

Wil
2
W;  represents the compressive and
centrifugal force plus the corioles force,

For simple beam theory, the deflection
and slope of pipe element (L;) and of cantilever
of flexural stiffness (EI) subjected to bending
moment and shear force applied at its free end
given by [Beards1996] as follows:

M L2 QL® oL swL® g
Y =- + +x + (18)
2El ~ 3EI "(GA,) 48EI
QL? wL?
p_ML_== ™ (19)

Where y is the numerical factor by
which the average shear stress must be
multiplied in order to allow for its distribution
over the transverse section.

G, is the modulus of rigidity with
respect to the following equation. [Beards1996].

_E
~2(L+v)

(20)

Where(U) Poisson ratio.

Substituting equation (16) and equation
(17) into equation (18) and equation (19) gives:

Con e ML L | (4
Yi —Yi.1 (Di—lLi 2(E|)| +Qi'1[{x GAPiJ [6(E|)|
W
+
48(El),
(21)
oF ~of ~MFy i _gr bWl (22)
i =% I-l(EI)i I'12(E|)i 8(ED);

3-2 Point matrix

The point matrix for a particular node
with concentrated mass can be obtained from
the force equation of mass (m;):

)
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ZFV =(ms +mp)Y

QR =QF —(m¢ +mp)e?Y; (23)

Where:

2
(Mg +mp)acY; . is the inertia force

introduced due to vibrating mass for harmonic
motion at the frequency (o).

Similarly as in field matrix, the above
equation can be written in dimensionless forms

V=V @)
DL~ DR (25)
MF =MFR (26)
Qf =Q" —(m; +m)Q?Y, (27)
Where,
O — oL (mp +m, J (28)
"B
Also,
UL - TR (29)
pL _pR (30)

From the above equations, the point
matrix can be written as follows:

1

\
I
-
1

YT o 0o o 0 0 07"
@ 1 o 0 0 o o0 |®
M 0o 1 0 0 0 0 |M
Q | =|-@* 0 o0 1 0 0 0 |Q
u o 0o o0 0 1 0 0|U
P o 0 o0 0 0 1 0|p
1 o o o o0 0 0 1]
31)
Or,

<l

R
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z]" =PlzT

3-3 Boundary conditions

(32)

The boundary conditions in the transfer
matrix method, give the description of the state
vector parameters at the supported ends of the
pipe. It means the state vectors at station (0)

or[Z]O, and station (n) or[Z]n are represent
the boundary condition of the pipe.

1-For penned- penned supports, the deflection
and the moment are equal to zero in penned
supported pipe ends, and the other parameters
didn’t equal to zero, as shown below:

- (33)
[Z]o =

ol ClOol e g @
Tl Cl Ol @ g @

2-For clamped- clamped supports case, the
deflection and the slope are equal to zero, and
the other parameters have a value other than
zero, as shown below:

(34)

2}, = 2}, =

o clol zg © ©°
o clol g © ©

4- ANALYTICAL SOLUTIONTECHNIQUE

Equation of motion is partial differential
equation with respect to X and t for pipe
vibration,

o'y 2 = 0% o’y
El—-+(m.U° +pA, |—+2m. U
ox* (f P ")ax2 " oxat

2
+(mf +mp) %:

(35)

It can be solved by using the following
assumption,
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Y(X,7)=g(X Jexp(iQr) (36)
Where Q is the dimensionless frequency
defined in equation (28).

Let,

qﬁ(x)zﬁcj exp(i2,X) (37)

Where C; are constants which can be
found by using boundary condition. Combining
equations (36) and (37)

Y(X,0)=explior)d C expliax)  (38)

J=1

Where A; are the roots of polynomial
equation

The resulting characteristic for equation
of motion is,

A+(U%+y) Z+2pU02,+07=0  (39)

To solve the problem of free vibration
for a given structure first its boundary
conditions must be known. The two boundary
conditions are clamped- clamped, and pinned-
pinned, to describe the classical boundary
conditions impedance values were taken to be
zero or infinity values.

- Clamped- clamped condition:

The clamped- clamped boundary
conditions may be written as:-
G_Y =0 at Y=0 (40)
oX
In order to -evaluate the natural

frequency for the system under consideration,
equation (39) can be substituted into the
boundary conditions equation (40). This yields
the following matrix equation,
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1 1 1 1 o
A , 23 Ao
exp(iz) —exp(iz,)  exp(it,)  expliz,) |C,
Aexpliz) A expliz,) Aexpliz) Z.explid)] C,
(41)

-Pinned- pinned condition:

The Pinned- pinned boundary condition
may be written as:-

0°Y
OX 2

_o at Y=0 (42)

In Similar process, the matrix equations
for pinned-pinned condition can be obtained as:

1 1 1 1 e,

A ST S A
explin) expli,) explit) explid) |C,
Zexplin) Lexpliz,) Zexpliz) Zexpliz,)] C,
(43)

For a given flow velocity, several
dimensionless frequencies are chosen and
inserted into the characteristic equation. A
MATHLAB program will be used to determine
the eigenvalues and consequently to compute
the determinant. The program will choose the
frequency that corresponds to the determinant
closest to zero. New set of frequencies are
chosen near this point and the process is
repeated until convergence will occur.

5S-EXPERIMENTAL WORK

Water was used as a working fluid in all
tests. Experiments were conducted in a water
flow loop constructed for that purpose and is
shown schematically in figure (4).

In this study, five different test sections
of PVC pipe and drawn 304/304L stainless steel
pipe with length of 6 m were used. The test
section consists of interchangeable pipe
diameters of 76.2 mm, 50.8 mm, and 38.1 mm
with 24 mm and 3.7 mm thickness. The
summary of mechanical properties of the pipe

o O O o
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diameters, of each test section are shown in
Table ().

The accelerometer type 4368 Bruel &
Kjaer is used to measure the acceleration of the
tested model. B&K charge amplifier type 2635
is used for signal amplification purpose and
power supply for transducers. The digital
oscilloscope which uses RIGOL DS1000D with
built-in FFT analyzer is used to display the
response of waves extract from the
accelerometer, due to vibration of the structures.
A turbine flow meter (XIQUAN water meter)
with upstream straighteners is used to measure
the water flow rate with range 0.001-0.04 m%s.

6-RESULTS AND DISCUSSIONS

The natural frequencies of the pipe
conveying fluid are very important for the
interpretation of pipe conveying fluid response
data. A self excitation analysis was performed
for different cases.

Figures (5) and (6) show the first three
natural frequencies of two pipes with different
diameters and specifications as mentioned above
for  simply-simply and clamped-clamped
supports conditions respectively.

Tables (2) and (3) show the comparison
of natural frequencies values of pipe supported
with  simply-simply and clamped-clamped
supports  conditions respectively. It was
observed that, the first natural frequency was
slightly affected by the diameter size for both
types of selected supports, while the second and
third natural frequencies were significantly
affected by the pipe diameter size.

It was noted that the pipe with diameter
of 76.2 mm had higher natural frequencies
values than the pipe with diameter of 50.8 mm
for both of supports.

In general, the natural frequency
depends directly on stiffness and total mass of
pipe conveying fluid. The stiffness itself
depends on moment of inertia. So the increasing
in diameter size will cause increasing in moment
of inertia, therefore increasing in stiffness,
yields increasing in natural frequency.
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Figures (7) and (8) present the influence
of pipe diameter on the first three natural
frequency for simply-simply and clamped-
clamped respectively. Effect of the design
parameters on natural frequencies increase with
increasing order of natural frequency, means
that the effect is small in the first frequency and
this effect will increase in the second natural
frequency and more increase in the third
frequency.

Two thicknesses, 3.7 mm and 2.4 mm
for PVC pipe with diameter of 50.8 mm were
selected to investigate the effect of pipe
thickness on the natural frequency of the pipe.

Figures (9) and (10) show the first three
natural frequency of two pipes with different
wall thicknesses for simply-simply and
clamped-clamped conditions respectively. The
natural frequency were calculated numerically
by interaction between fluid and structure.

The results showed that, the thickness of
pipe had little effect on the natural frequencies
values for both supports, as listed in tables (4)
and (5). Because the change in pipe thickness
will cause very little effect on the moment of
inertia and this will give very little effect on the
stiffness and therefore the natural frequency.

Figure (11) and (12) illustrates the first
three natural frequencies for 50.8 mm diameter
of PVC pipe for simply-simply and clamped-
clamped conditions respectively.

Two pipe materials were selected, PVC
and stainless steel pipe with 38.1 mm diameter
with thickness of 1.5 mm. to study the effect of
pipe material on the natural frequencies,

Figures (13) and (14) show the first
three natural frequencies of two pipes differ in
material for simply-simply and clamped-
clamped conditions respectively. The natural
frequencies were calculated numerically by
interaction between fluid and structure.

Figures (15) and (16) show the effect of
pipe material on the first three natural frequency
for  simply-simply and clamped-clamped
conditions respectively. The frequency of the
system is mainly depends on the structural
stiffness of the pipe. As the pipe material
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stiffens was increased, the natural frequency
was increased due to the direct relationship
between them.

Figures (17) and (18) show the
experimental FFT spectrum of simply- simply
of stainless steel pipe material and clamped-
clamed of PVC pipe material respectively.

These figures show that, the natural
frequencies values of stainless steel pipe is
higher than those of PVC pipe for both supports
with difference ratios as listed in tables (6) and
(7) for simply-simply and clamped- clamped
supports respectively. This is because of the
stainless steel pipe is much stiffer than PVVC due
to its physical properties.

A determination of natural frequency of
the pipe with the same material and dimensions
as outlined in the experimental setup
descriptions were carried out using ANSY'S, for
a simply-simply and  clamped-clamped
boundary conditions, and the corresponding
mode shapes from those simulations are shown
in figure (19) for PVC pipe with fluid velocity

Volume 19 July 2013

Journal of Engineering

of 2 m/s, 76.2 mm diameter and thickness of
3.7 mm.

7- CONCLUSIONS

From the results obtained, the following
conclusions can be observed:-

1-Generally, the fluid flow velocity reduces the
natural frequencies of the pipe conveying fluid,
for the practical range of fluid velocities (0.7-5.3
m/s), decrease is very little.

2-The Fourier transform provides a frequency
domain representation of the signal and the
results show that the first natural frequencies
was considered to be as a dominant frequencies.
3-The natural frequencies increase as pipe
diameters increase and the natural frequencies
slightly increases as pipe wall thickness
increases.

4-The natural frequencies values of steel pipe
are higher than PVC pipe. Also, the values of
natural  frequencies in  clamped-clamped
supported pipe are higher than those in simply-
simply supported pipe.

Table (1) Mechanical properties of the pipes.

Outer Thickness Inner Modulus of Density Material
diameter diameter elasticity .
No (mm) (Kg/m®)
(mm) (mm) (N/m»*107
1 76.2 3.7 68.8 2.896 1400 PVC
2 50.8 3.7 43.4 2.896 1400 PVC
3 50.8 2.4 46 2.896 1400 PVC
4 38.1 15 35.1 2.896 1400 PVC
5 38.1 1.5 35.1 190 7600 Stainless steel
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Table (2) Comparison of 1% three natural frequencies of simply-simply supported pipe with
different diameters for different methods.

Pipe > TMM Experimental ANSYS Analytical
diameters mm § o method method method method
;.; I
LL
Fnl 12.74 12.29 12.35 12.12
76.2 Fn2 108.59 - 113.07 108.89
Fn3 272.61 - 266.39 302.2
Fnl 10.03 10.61 10.57 9.77
50.8 Fn2 87.26 - 93.25 87.76
Fn3 230.89 - 253.21 243.64

Table (3) Comparison of 1* three natural frequencies of clamped-clamped supported pipe with
different diameters for different methods.

Pipe > TMM Experimental ANSYS Analytical
diameters mm § o method method method method
=T
D
LL
Fni 28.18 26.05 28.8 27.43
76.2 Fn2 138.69 - 148.96 148.04
Fn3 304.14 - 304.71 365.63
Fnl 22.29 21.09 24.03 22.11
50.8 Fn2 115.29 - 114.56 119.35
Fn3 267.51 - 253.21 294.77

Table (4) Comparison of 1* three natural frequencies of simply-simply supported pipe with

different thickness for different methods.

Pipe > TMM Experimental ANSYS Analytical
diameters mm § o method method method method
;.; I
LL
Fnl 10.03 10.61 10.57 9.77
3.7 Fn2 87.26 - 93.25 87.76
Fn3 230.89 - 253.21 243.64
Fni 8.44 7.97 8.03 7.98
2.4 Fn2 74.2 - 70.88 71.55
Fn3 195.86 - 191.7 198.67
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Table (5) Comparison of 1% three natural frequencies of clamped-clamped supported pipe with
different thickness for different methods.

Pipe > TMM Experimental ANSYS Analytical
diameters mm § o method method method method
=T
D
LL
Fnl 22.29 21.09 24.03 22.11
3.7 Fn2 115.29 - 114.56 119.35
Fn3 267.51 - 253.21 294.77
Fnl 18.95 18.36 18.01 18.05
2.4 Fn2 97.93 - 95.02 97.4
Fn3 226.59 - 227.66 240.61

Table (6) Comparison of 1* three natural frequencies of simply-simply supported pipe with
different materials for different methods.

Pipe > TMM Experimental ANSYS Analytical
diameters mm § o method method method method
=T
D
LL
Fni 5.89 6.03 5.83 5.45
PVC Fn2 52.39 - 53.08 49.4
Fn3 141.08 - 145.32 137.26
Fnl 34.24 32.95 33.34 36.24
SS Fn2 303.5 - 295.56 327.54
Fn3 818.15 - 801.26 909.29

Table (7) Comparison of 1* three natural frequencies of clamped-clamped supported pipe with
different materials for different methods.

Pipe - TMM Experimental ANSYS Analytical
diameters mm § o method method method method
=T
o
LL
Fnl 13.22 14.17 13.37 12.4
PVC Fn2 69.9 - 71.69 67.27
Fn3 165.92 - 173.57 166.13
Fnl 77.07 75.83 75.02 82.53
SS Fn2 405.73 - 396.79 445.8
Fn3 963.22 - 949.58 1100.19
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Figure (3) End forces and moments for massless pipe.
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Figure (5) The first three natural frequencies for
simply-simply supported pipe for different diameters.
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Figure (7) The first three natural frequencies for
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Figure (6) The first three natural frequencies for
clamped-clamped supported pipe for different diameters.
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Figure (8) The first three natural frequencies for
clamped support for different pipe diameters.
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Figure (11) The first three natural frequencies for
simply support for different pipe wall thicknesses.

Figure (12) The first three natural frequencies for
clamped support for different pipe wall thicknesses.
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Figure (13) The first three natural frequencies for
simply-simply supported pipe for different pipe
materials.
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Figure (14) The first three natural frequencies for
clamped-clamped supported pipe for different pipe
materials.
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Figure (17) FFT Spectrum of pipe velocity of Figure (18) FFT Spectrum of pipe velocity of
38.1mm diameter with 1.5mm thickness, stainless 38.1mm diameter with 1.5mm thickness, stainless
steel, simply-simply supported pipe. steel, clamped-clamped supported pipe.
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Figure (19) Mode shapes and pipe deformation for clamped-clamped supported PVVC pipe with
d=76.2mm t=3.7mm.
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NOMENCLATURE
Symbols Description Units
CuCi, G, Constants in the standard k-e model -
d Pipe diameter m
E Modulus of elasticity N/m’
Fnl1,Fn2,Fn3 The first three natural frequencies Hz
Fi Field matrix -
G Modulus of rigidity N/m’
I Second moment of area m’
k Turbulent kinetic energy m’/s”
L Length of the pipe m
M Bending moment N.m
m;¢ Mass of fluid per unit length kg/m
mp Mass of pipe per unit length kg/m
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P Mean pressure N/m?’
P; Point matrix -

Py Production of turbulent kinetic energy m?/s’®
Q Shear force N

r Radial coordinate -
(UAY) Mean velocity in axial and radial direction m/s
W Coriolis and compressive forces N
X Longitudinal coordinate -

Y Transverse displacement m
Z; State vector -

Greek Symbols

v Poisson ratio -
y4 Numerical factor -

W Circular natural ferquency rad/sec

o Slope °

u Dynamic viscosity of the fluid kg/m.s

P Density kg/m?

€ Turbulent energy dissipation mzlsz3

p Density kg/m
Q Dimensionless circular natural ferquency -

Aj Root of polynomial equation -

Superscripts
L Left -
R Right -
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