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ABSTRACT 

In this study, the effect of design parameters such as pipe diameter, pipe wall thickness, pipe 
material and the effect of fluid velocity on the natural frequency of fluid-structure interaction in 
straight pipe conveying fully developed turbulent flow were investigate numerically, 
analytically and experimentally. Also the effect of support conditions, simply-simply and 
clamped-clamped was investigated. Experimentally, pipe vibrations were characterized by 
accelerometer mounted on the pipe wall. The natural frequencies of vibration were analyzed by 
using Fast Fourier Transformer (FFT). Five test sections of two different pipe diameters of 76.2 
mm and 50.8 mm with two pipe thicknesses of 3.7 mm and 2.4 mm and two pipe materials, 
stainless steel and polyvinyl chloride PVC in the range of Reynolds numbers from 4*104 to 
5*105 were studied. Mathematically, the governing continuity and momentum equations were 
solved numerically by using the finite volume method to compute the characteristics of two 
dimensional turbulent flow. The dynamics of a pipe conveying fluid was described by the 
Transfer Matrix Method (TMM) which is provides a numerical technique for solving the 
equations of pipe vibrations for simply-simply and clamped supports. The results showed that, 
the natural frequencies increase with pipe diameter increase and the natural frequencies slightly 
increases with pipe wall thickness increase. Also, the natural frequencies in clamped-clamped 
supported pipe are higher than those in simply-simply supported pipe. 

KEYWORDS: Pipe conveying fluid; Flow-induced vibration; Fluid–structure interaction. 

جريانب يثارلأنبوب التردد الطبيعي على  دراسة تأثيرالمتغيرات التصميمية وشروط الأسناد  
اضطرابي داخلي  

 وجدان كاظم صاحب د.عدنان ناجي جميلأ. أ.د.نجدت نشأت عبد الله
 /جامعة بغدادكلية الهندسة عة بغداد/جامكلية الهندسة /جامعة بغدادكلية الهندسة

 الخلاصة
 ،الجـدار مكسـ ،الإنبـوب قطـر مثـل هالتصـميم المتغيـراتلتـأثير  وعدديـة وتحليليـة تجريبيـة دراسـة أجريـت العمـل هـذا فـي

 تـأثيرسـة تـم درا أيضاً . تام التطورجريان اضطرابي  يتقل مستقيم نبوبلإ طبيعيال ترددال على مائعال سرعة وتأثير الانبوب مادّة
 جـدارعلـى  ثبـت الـذي بواسـطة جهـاز قيـاس التعجيـلنبـوبِ الإإهتـزاز أنجزالجانب العملي بقياس  ).البسيط والمثبت( المساند نوع

ة ، مختلفــــإختبــــار مقــــاطعخمســــة  . إســــتعملتمحــــول فــــورير الســــريع بإســــتعمال التــــرددات الطبيعيــــة للإهتــــزازوجــــدت  .الإنبــــوب
حديـــد مقـــاوم  مختلفتـــين همـــا ين مـــادت) و مـــن mm2.4و mm3.7( نبـــوبالإ ارجـــد مكســـ ) mm50.8و mm76.2الاقطـــار(

 ةتـم حـل معادلـ رياضـيا،.)105*5-104*4(تمت هذه الدراسة لقيم مختلفـه لعـدد رينولـدز تتـراوح بـين ، كلوريد البوليفينلو   للصدأ
 الجريــان الأضــطرابيســاب خصــائصِ لحِ  ةم المحــددو ببنــاء نمــوذج عــددي بأســتخدام طريقــة الحجــ ،الــزخم معــادلات والاســتمرارية 
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 لحــل معــادلات إهتــزاز الإنبــوب قــد تــم بنــاء نمــوذج رياضــي اعتمــد علــى اســتخدام طريقــة المصــفوفات الانتقاليــة. ثنــائي الابعــاد
 بزيـادة قطـر الإنبـوب والتـرددات الطبيعيـة زيدت لترددات الطبيعيةل.اظهرت النتائج بأن لتوضيح تأثير الاهتزاز لأنبوب يحمل مائع

المسند المثبت أعلى مـن تلـك للمسـند  بينت النتائج ايضاً الترددات الطبيعية في .لإنبوباجدار بزيادة سمك  بنسبه بسيطة  تزداد
 البسيط.
 و المائع. هيكلال المستحث بواسطة الجريان، تداخل هتزازأنبوب ينقل مائع، الإ :البحث كلمات

 
1-INTRODUCTION 

Piping systems play a very important 
role in various industrial applications. They are 
used in many engineering applications for 
conveying gases and fluids over a wide range of 
temperatures and pressures. These applications 
include hydraulics, fluid transfer, cooling water 
and fuel supply. 

Flow-induced vibration of a pipe 
conveying fluid is a consequence of fluid flow 
through the pipes, and is widely recognized as a 
major concern in the design of many industrial 
applications. Flow induced vibration is caused 
in structures by forcing due to time variant 
pressure acting on the surface of the structure.   

Many researchers have been carried out 
studies on the vibration of a pipe conveying 
fluid. The natural frequencies and critical 
velocities of laminated circular cylindrical shells 
with fixed-fixed ends conveying fluid was 
studied by [Chang and Chiou 1995], dynamic 
characteristics equations were obtained under 
the assumption of harmonic motion, and the 
natural frequencies corresponding to each flow 
velocity were found. [See Seo et al. 2005] 
studied the forced vibration response of a pipe 
conveying harmonically pulsating fluid by using 
the finite element method. The damping and 
stiffness matrices varied with time, and the 
method predicted the steady state response of 
the pipe without using the time data of the 
response. [Yousif et al. 2011] also investigated 
pipes conveying pulsating flowing fluid. 
Bolotin’s method was employed to split the 
boundaries from the stable regions. The 
resulting coupled-ordinary differential equations 
were decoupled by neglecting the effect of the 
mass ratio term and solved analytically. [Zhang 
and Chen 2012] investigated nonlinear vibration 
of pipes conveying fluid in the supercritical 
regime. They focused on the nonlinear vibration 
around each bifurcated equilibrium. [Wang et al. 

2012] examined the dynamics of simply 
supported fluid-conveying pipes with geometric 
imperfections by considering the integral–
partial–differential equation of motion. [Yi-Min 
et al. 2010] solved analytically the linear 
dynamics of fluid-structure interaction in a 
pipeline conveying fluid by using the element-
Galerkin method to evaluate the natural 
frequency of pipe conveying fluid at different 
boundary conditions. The effect of the induced 
vibration of a simply supported pipe conveying 
fluid with a restriction was theoretically and 
experimentally investigated by [Mahdi 2001]. A 
transfer matrix method was implemented to 
describe the dynamic response of a pipe 
conveying fluid and a numerical technique was 
used for solving two-dimensional 
incompressible steady viscous flow for the 
range of Reynolds number(5<Re<1000). 
[Mousa 2011] investigated the free vibration 
behavior of stepped orthotropic cylindrical 
shells, by using the combination of Flügge’s 
shell theory, the transfer matrix approach and 
the Romberg integration method.  

The study of flow induced vibration 
draws on three disciplines:  (1) fluid dynamics, 
(2) mechanical vibration, and (3) structural 
mechanics. An important feature is the 
requirement to deal with interactions between 
fluid motion and moving structures. This 
objective can be obtained by breaking the 
problem into two sections: fluid and structure. 
The pressure drop along the pipe and velocity 
will obtained from the fluid model and will be 
imported to a structural model. The second part 
deals with structure vibration due to flowing 
fluid by using a transfer matrix method (TMM).  

2-FLUID DYNAMIC MODEL  

For the two dimensional simulation the 
governing equations for axisymmetric and 
incompressible fluid were obtained by writing 
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both the continuity and the momentum 
equations in cylindrical coordinates, then 
discarding the derivates with respect to the 
cylindrical coordinate. The transport equations 
with k-ε model have the following form:  [Wang 
and Zhang 2005] 

Continuity equation: 
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∂
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Where U is axial velocity, and V is 

normal velocity. 
 

Momentum equation in axial direction: 
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Momentum equation in radial direction: 
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Equation for kinetic energy of 
turbulence: 
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Equation for dissipation rate of kinetic 
energy of turbulence: 
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The dissipation rate, ε of the energy is 
written as: 

 

L
k 2/3

=ε                                      (6)                                                          

Where k is the kinetic energy of the 
flow and L is the involved length scale. This is 
then related to the turbulent viscosity μt based 
on the Prandtl mixing length model, [Tennekes, 
and Lumley 1972], 
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Where Cµ is an empirical constant and ρ 
is the density of the fluid. 

And µeff is the effective viscosity 
defined as: 
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The production of kinetic energy of 
turbulence Pk is given by : 
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Based on an extensive examination of a 
wide range of turbulent flows, the constant 
parameters used in the equations will take the 
following values: 

Cμ = 0.09; C1=1.44; C2=1.92; σk =1.0 and σε 
=1.3 

The finite volume method is probably 
the most popular method used for numerical 
discretization in CFD. The governing equations 
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in their differential forms are integrated over 
each control volume. The resulting integral 
conservation laws are exactly satisfied for each 
control volume and for the entire domain, which 
is a distinct advantage of the finite volume 
method. Each integral term is then converted 
into a discrete form, thus yielding discretized 
equations at the centroids, or nodal points, of the 
control volumes. 

In the case of calculation of velocity 
components, different control volumes from the 
ones used for the calculation of other variables 
(e.g. pressure, turbulence kinetic energy and its 
dissipation rate) will be used. For example, the 
velocity component in the x-direction, U, is 
calculated at the faces that are normal to the x 
direction, and the control volume for U is 
displaced one half control volume from the main 
control volume in x-direction figure (1) and the 
control volume for displaced one half control 
volume from the main one in radial direction 
figure (2). 

The diffusion and advection volume 
integrals can be converted into surface integrals 
over the surface S of the control volume using 
the Gauss Divergence Theorem, thus 
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Where ni is the component of the 

outward normal surface vector. This equation 
contains three terms which need to be 
discretised: a diffusion term, a convection term, 
and a source term. The momentum equation also 
contains a pressure term which does not satisfy 
a transport equation. In the following, a 
description of the discretisation of these four 
terms in 2-D is given. 

Diffusion term 

Diffusion terms are usually discretised 
using central differencing, as follows 
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where δx is the distance between the respective 
node centre and P, and A is the surface area of 
the respective cell face. 

Convection term 

The convection term in equation (10) is 
integrated as the sum of fluxes over the four 
faces surrounding the control volume, thus 

  

siniwieiii uuuu
s

dSnu φρφρφρφρρ −+−=∫
   (12)                                                                       

 

Source term 

The source term is discretised as 
follows,  

 
VS

s
dVS φφ =∫

                                  (13) 

 
Where φS  is the average value of the 

source SФ throughout the control volume. When 
SФ is a function of Ф, φS is decomposed into a 
solution-independent part, bP, and a solution-
dependent part, thus 

 PPP SbS φφ += ,SP≤0                              (14) 
                                       
3- TRANSFER MATRIX METHOD 

This analytical and the numerical 
analysis of the present work includes the 
analysis of structural dynamics of the pipe by 
Transfer Matrix Method (TMM) to find the 
natural frequency, mode shapes and response of 
the system. 
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To describe the situation at each node, 
four quantities must be defined; the deflection 
(Y), the slope (Ф), the moment (M), and the 
shear forces (Q). Also, two fluid physical 
properties will be added, which are velocity (U) 
and pressure (P) correspond to the compressive 
and Coriolis forces due to flow induced 
vibration. These six quantities can be arranged 
in a vector Z={Y, Ф, M, Q, U, P}, which 
describes the state of the system at node i, and is 
called the “state vector”, [Francis 1983]. 

The fluid flow and pipe structure are a 
dynamic interactive system, and coupled by the 
forces exerted on the structure by the fluid. 
These dynamic forces are of two types.  

1-Compressive forces, which result due to the 
effect of fluid pressure and the change in 
momentum of the fluid. These forces normally 
lead to buckling instability. 

2- Corioles force, which results due to the fluid 
rotation, the rotation has the effect of coupling 
the time and space.  The compressive and 
centrifugal force plus the Corioles force can be 
written as: [Mahdi 2001] 
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3-1 Field matrix 

In order to determine the transfer matrix 
of any pipe elements arbitrary orientated in 
space, a portion of pipe must be considered in 
(x- y) plane. Consider the pipe portion only 
between (i) and (i-1) in the (x- y) plane as 
shown in figure (3). 

The equilibrium of massless pipe of 
length (Li) as follows: 

-The sums of vertical forces on the pipe 
are equal to zero, i.e. 

0WQQ i
RL

i 1i
=+−

−
                         (16)                       

- The sums of moments about point (i-1) 
are equal to zero too, or: 
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Wi   represents the compressive and 
centrifugal force plus the corioles force,  

For simple beam theory, the deflection 
and slope of pipe element (Li) and of cantilever 
of flexural stiffness (EI) subjected to bending 
moment and shear force applied at its free end 
given by [Beards1996] as follows:  
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Where χ is the numerical factor by 
which the average shear stress must be 
multiplied in order to allow for its distribution 
over the transverse section. 

G, is the modulus of rigidity with 
respect to the following equation. [Beards1996].         
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      Where( )υ  Poisson ratio.  

Substituting equation (16) and equation 
(17) into equation (18) and equation (19) gives: 
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3-2 Point matrix 

The point matrix for a particular node 
with concentrated mass can be obtained from 
the force equation of mass (mi): 
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Where: 

i
2

pf Y)ωm(m +  : is the inertia force 
introduced due to vibrating mass for harmonic 
motion at the frequency (ω). 

Similarly as in field matrix, the above 
equation can be written in dimensionless forms 
as: 
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Also, 
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From the above equations, the point 
matrix can be written as follows: 
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Or, 

          [ ] [ ][ ]Rii
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3-3 Boundary conditions 

The boundary conditions in the transfer 
matrix method, give the description of the state 
vector parameters at the supported ends of the 
pipe. It means the state vectors at station (0) 

or [ ]0Z , and station (n) or [ ]nZ  are represent 
the boundary condition of the pipe. 

1-For penned- penned supports, the deflection 
and the moment are equal to zero in penned 
supported pipe ends, and the other parameters 
didn’t equal to zero, as shown below: 
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                             (33) 

 
2-For clamped- clamped supports case, the 
deflection and the slope are equal to zero, and 
the other parameters have a value other than 
zero, as shown below: 
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                             (34)                                                                          

 

4- ANALYTICAL SOLUTIONTECHNIQUE  

Equation of motion is partial differential 
equation with respect to X and τ for pipe 
vibration,  

( ) ( ) 0
t
ymm

tx
yU2m

x
yApUm

x
yEI 2

2

pf

2

f2

2

p
2

f4

4

=
∂
∂

++
∂∂

∂
+

∂
∂

++
∂
∂

                                                               (35) 

It can be solved by using the following 
assumption,   
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  ( ) ( ) ( )τφτ Ω= iXXY exp,                            (36)                                                   
 

Where Ω is the dimensionless frequency 
defined in equation (28).  

Let, 

  ( ) ( )∑
=

=
4

1

exp
J

jj XiCX λφ                           (37)                               

 
Where Cj are constants which can be 

found by using boundary condition.  Combining 
equations (36) and (37)  

 

( ) ( ) ( )∑
=

Ω=
4

1

expexp,
J

jj XiCiXY λττ              (38)                                     

Where λj are the roots of polynomial 
equation 

The resulting characteristic for equation 
of motion is, 

( ) 0U2 2224 =Ω++++ jjj U λβλγλ         (39)                                 
 

To solve the problem of free vibration 
for a given structure first its boundary 
conditions must be known. The two boundary 
conditions are clamped- clamped, and pinned-
pinned, to describe the classical boundary 
conditions impedance values were taken to be 
zero or infinity values.  

- Clamped- clamped condition: 

The clamped- clamped boundary 
conditions may be written as:- 

 

       
 at   Y=0                        (40) 
                                                                     

  
 

In order to evaluate the natural 
frequency for the system under consideration, 
equation (39) can be substituted into the 
boundary conditions equation (40). This yields 
the following matrix equation, 
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                                                                      (41)                                                 

-Pinned- pinned condition: 

The Pinned- pinned boundary condition 
may be written as:- 

  
     at    Y=0                (42)                                                         
 

 

In Similar process, the matrix equations 
for pinned-pinned condition can be obtained as: 
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                                                                    (43)  

For a given flow velocity, several 
dimensionless frequencies are chosen and 
inserted into the characteristic equation. A 
MATHLAB program will be used to determine 
the eigenvalues and consequently to compute 
the determinant. The program will choose the 
frequency that corresponds to the determinant 
closest to zero. New set of frequencies are 
chosen near this point and the process is 
repeated until convergence will occur.  

5-EXPERIMENTAL WORK 

Water was used as a working fluid in all 
tests. Experiments were conducted in a water 
flow loop constructed for that purpose and is 
shown schematically in figure (4). 

 In this study, five different test sections 
of PVC pipe and drawn 304/304L stainless steel 
pipe with length of 6 m were used. The test 
section consists of interchangeable pipe 
diameters of 76.2 mm, 50.8 mm, and 38.1 mm 
with 2.4 mm and 3.7 mm thickness. The 
summary of mechanical properties of the pipe 

0Y
=

∂
∂
X

0Y
2

2

=
∂
∂
X
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diameters, of each test section are shown in 
Table (1). 

The accelerometer type 4368 Bruel & 
Kjaer is used to measure the acceleration of the 
tested model. B&K charge amplifier type 2635 
is used for signal amplification purpose and 
power supply for transducers. The digital 
oscilloscope which uses RIGOL DS1000D with 
built-in FFT analyzer is used to display the 
response of waves extract from the 
accelerometer, due to vibration of the structures. 
A turbine flow meter (XIQUAN water meter) 
with upstream straighteners is used to measure 
the water flow rate with range 0.001-0.04 m3/s. 

6-RESULTS AND DISCUSSIONS 

The natural frequencies of the pipe 
conveying fluid are very important for the 
interpretation of pipe conveying fluid response 
data. A self excitation analysis was performed 
for different cases. 

Figures (5) and (6) show the first three 
natural frequencies of two pipes with different 
diameters and specifications as mentioned above 
for simply-simply and clamped-clamped 
supports conditions respectively.  

Tables (2) and (3) show the comparison 
of natural frequencies values of pipe supported 
with simply-simply and clamped-clamped 
supports conditions respectively. It was 
observed that, the first natural frequency was 
slightly affected by the diameter size for both 
types of selected supports, while the second and 
third natural frequencies were significantly 
affected by the pipe diameter size. 

It was noted that the pipe with diameter 
of 76.2 mm had higher natural frequencies 
values than the pipe with diameter of 50.8 mm 
for both of supports.  

In general, the natural frequency 
depends directly on stiffness and total mass of 
pipe conveying fluid. The stiffness itself 
depends on moment of inertia. So the increasing 
in diameter size will cause increasing in moment 
of inertia, therefore increasing in stiffness, 
yields increasing in natural frequency. 

Figures (7) and (8) present the influence 
of pipe diameter on the first three natural 
frequency for simply-simply and clamped-
clamped respectively. Effect of the design 
parameters on natural frequencies increase with 
increasing order of natural frequency, means 
that the effect is small in the first frequency and 
this effect will increase in the second natural 
frequency and more increase in the third 
frequency. 

Two thicknesses, 3.7 mm and 2.4 mm 
for PVC pipe with diameter of 50.8 mm were 
selected to investigate the effect of pipe 
thickness on the natural frequency of the pipe. 

Figures (9) and (10) show the first three 
natural frequency of two pipes with different 
wall thicknesses for simply-simply and 
clamped-clamped conditions respectively. The 
natural frequency were calculated numerically 
by interaction between fluid and structure. 

The results showed that, the thickness of 
pipe had little effect on the natural frequencies 
values for both supports, as listed in tables (4) 
and (5). Because the change in pipe thickness 
will cause very little effect on the moment of 
inertia and this will give very little effect on the 
stiffness and therefore the natural frequency.  

Figure (11) and (12) illustrates the first 
three natural frequencies for 50.8 mm diameter 
of PVC pipe for simply-simply and clamped-
clamped conditions respectively. 

Two pipe materials were selected, PVC 
and stainless steel pipe with 38.1 mm diameter 
with thickness of 1.5 mm. to study the effect of 
pipe material on the natural frequencies, 

Figures (13) and (14) show the first 
three natural frequencies of two pipes differ in 
material for simply-simply and clamped-
clamped conditions respectively. The natural 
frequencies were calculated numerically by 
interaction between fluid and structure. 

Figures (15) and (16) show the effect of 
pipe material on the first three natural frequency 
for simply-simply and clamped-clamped 
conditions respectively. The frequency of the 
system is mainly depends on the structural 
stiffness of the pipe. As the pipe material 
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stiffens was increased, the natural frequency 
was increased due to the direct relationship 
between them. 

Figures (17) and (18) show the 
experimental FFT spectrum of simply- simply 
of stainless steel pipe material and clamped-
clamed of PVC pipe material respectively. 

These figures show that, the natural 
frequencies values of stainless steel pipe is 
higher than those of PVC pipe for both supports 
with difference ratios as listed in tables (6) and 
(7) for simply-simply and clamped- clamped 
supports respectively. This is because of the 
stainless steel pipe is much stiffer than PVC due 
to its physical properties.  

A determination of natural frequency of 
the pipe with the same material and dimensions 
as outlined in the experimental setup 
descriptions were carried out using ANSYS, for 
a simply-simply and clamped-clamped 
boundary conditions, and the corresponding 
mode shapes from those simulations are shown 
in figure (19) for PVC pipe with fluid velocity 

of 2 m/s, 76.2 mm diameter  and thickness of 
3.7 mm. 

7- CONCLUSIONS 

From the results obtained, the following 
conclusions can be observed:- 

1-Generally, the fluid flow velocity reduces the 
natural frequencies of the pipe conveying fluid, 
for the practical range of fluid velocities (0.7-5.3 
m/s), decrease is very little. 

2-The Fourier transform provides a frequency 
domain representation of the signal and the 
results show that the first natural frequencies 
was considered to be as a dominant frequencies. 
3-The natural frequencies increase as pipe 
diameters increase and the natural frequencies 
slightly increases as pipe wall thickness 
increases. 
4-The natural frequencies values of steel pipe 
are higher than PVC pipe. Also, the values of 
natural frequencies in clamped-clamped 
supported pipe are higher than those in simply-
simply supported pipe. 

                         

Table (1) Mechanical properties of the pipes. 

 

No 

Outer 
diameter 

(mm) 

Thickness 

(mm) 

Inner 
diameter 

(mm) 

Modulus of 
elasticity  

(N/m2)*10-9 

Density 

(Kg/m3) 

Material 

1 76.2 3.7 68.8 2.896 1400 PVC 

2 50.8 3.7 43.4 2.896 1400 PVC 

3 50.8 2.4 46 2.896 1400 PVC 

4 38.1 1.5 35.1 2.896 1400 PVC 

5 38.1 1.5 35.1 190 7600 Stainless steel 
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Table (2) Comparison of 1st three natural frequencies of simply-simply supported pipe with 
different diameters for different methods. 

 
Pipe 

diameters mm 

Fr
eq

ue
nc

y 
H

z 

TMM 
method 

Experimental 
method 

ANSYS 
method 

Analytical 
method 

 
76.2 

Fn1 12.74 12.29 12.35 12.12 
Fn2 108.59 - 113.07 108.89 
Fn3 272.61 - 266.39 302.2 

 
50.8 

Fn1 10.03 10.61 10.57 9.77 
Fn2 87.26 - 93.25 87.76 
Fn3 230.89 - 253.21 243.64 

 
 
 

Table (3)  Comparison of 1st three natural frequencies of clamped-clamped supported pipe with 
different diameters for different methods. 

 
Pipe 

diameters mm 

Fr
eq

ue
nc

y 
H

z 

TMM 
method 

Experimental 
method 

ANSYS 
method 

Analytical 
method 

 
76.2 

Fn1 28.18 26.05 28.8 27.43 
Fn2 138.69 - 148.96 148.04 
Fn3 304.14 - 304.71 365.63 

 
50.8 

Fn1 22.29 21.09 24.03 22.11 
Fn2 115.29 - 114.56 119.35 
Fn3 267.51 - 253.21 294.77 

 
 

Table (4) Comparison of 1st three natural frequencies of simply-simply supported pipe with 
different thickness for different methods. 

 
Pipe 

diameters mm 

Fr
eq

ue
nc

y 
H

z 

TMM 
method 

Experimental 
method 

ANSYS 
method 

Analytical 
method 

 
3.7 

Fn1 10.03 10.61 10.57 9.77 
Fn2 87.26 - 93.25 87.76 
Fn3 230.89 - 253.21 243.64 

 
2.4 

Fn1 8.44 7.97 8.03 7.98 
Fn2 74.2 - 70.88 71.55 
Fn3 195.86 - 191.7 198.67 
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Table (5)  Comparison of 1st three natural frequencies of clamped-clamped supported pipe with 
different thickness for different methods. 

 
Pipe 

diameters mm 
Fr

eq
ue

nc
y 

H
z 

TMM 
method 

Experimental 
method 

ANSYS 
method 

Analytical 
method 

 
3.7 

Fn1 22.29 21.09 24.03 22.11 
Fn2 115.29 - 114.56 119.35 
Fn3 267.51 - 253.21 294.77 

 
2.4 

Fn1 18.95 18.36 18.01 18.05 
Fn2 97.93 - 95.02 97.4 
Fn3 226.59 - 227.66 240.61 

 

 
Table (6)  Comparison of 1st three natural frequencies of simply-simply supported pipe with 

different materials for different methods. 
 

Pipe 
diameters mm 

Fr
eq

ue
nc

y 
H

z 

TMM 
method 

Experimental 
method 

ANSYS 
method 

Analytical 
method 

 
PVC 

Fn1 5.89 6.03 5.83 5.45 
Fn2 52.39 - 53.08 49.4 
Fn3 141.08 - 145.32 137.26 

 
SS 

Fn1 34.24 32.95 33.34 36.24 
Fn2 303.5 - 295.56 327.54 
Fn3 818.15 - 801.26 909.29 

 
 
 

Table (7)  Comparison of 1st three natural frequencies of clamped-clamped supported pipe with 
different materials for different methods. 

 
Pipe 

diameters mm 

Fr
eq

ue
nc

y 
H

z 

TMM 
method 

Experimental 
method 

ANSYS 
method 

Analytical 
method 

 
PVC 

Fn1 13.22 14.17 13.37 12.4 
Fn2 69.9 - 71.69 67.27 
Fn3 165.92 - 173.57 166.13 

 
SS 

Fn1 77.07 75.83 75.02 82.53 
Fn2 405.73 - 396.79 445.8 
Fn3 963.22 - 949.58 1100.19 
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Figure (1) Control volume for U-velocity.             Figure (2) Control volume for V-velocity. 

 

 

 

 

Figure (3) End forces and moments for massless pipe. 
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Figure (4) Schematic diagram of flow loop. 

 

Figure (5) The first three natural frequencies for  
simply-simply supported pipe for different diameters. 
 

Figure (7) The first three natural frequencies for 
simply support or different pipe diameters. 

 

Figure (8) The first three natural frequencies for 
clamped support for different pipe diameters. 

 

Figure (6) The first three natural frequencies for 
clamped-clamped supported pipe for different diameters. 
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Figure (9) The first three natural frequencies for 
simply-simply supported pipe for different wall 

thicknesses. 
 

Figure (10) The first three natural frequencies for 
clamped-clamped supported pipe for different wall 

thicknesses. 
 

Figure (11) The first three natural frequencies for 
simply support for different pipe wall thicknesses. 

 

Figure (12) The first three natural frequencies for 
clamped support for different pipe wall thicknesses. 

 

Figure (13) The first three natural frequencies for 
simply-simply supported pipe for different pipe 

materials. 
 

Figure (14) The first three natural frequencies for 
clamped-clamped supported pipe for different pipe 

materials. 
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1st mode  27.43 Hz 2nd mode  148.04 Hz 3rd mode  365.63 Hz 

 
Figure (19) Mode shapes and pipe deformation for clamped-clamped supported PVC pipe with 

d=76.2mm  t=3.7mm.   

 

Figure (15) The first three natural frequencies for 
simply support for different modulus of elasticity. 

 
 

Figure (16) The first three natural frequencies for 
clamped support for different modulus of elasticity. 

 

Figure (17) FFT Spectrum of pipe velocity of 
38.1mm diameter with 1.5mm thickness, stainless 

steel, simply-simply supported pipe. 
 

 

Figure (18) FFT Spectrum of pipe velocity of 
38.1mm diameter with 1.5mm thickness, stainless 

steel, clamped-clamped supported pipe. 
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          NOMENCLATURE 

Symbols Description Units 
Cµ, C1, C2 Constants in the standard k-e model - 

d  Pipe diameter m 
E Modulus of elasticity  N/m2 

Fn1,Fn2,Fn3 The first three natural frequencies Hz 
Fi Field matrix  - 
G Modulus of rigidity N/m2 

I Second moment of area  m4 
k Turbulent kinetic energy m2/s2 
L Length of the pipe m 
M Bending moment N.m 
mf Mass of fluid per unit length kg/m 
mp Mass of pipe per unit length kg/m 
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P Mean pressure N/m2 
Pi Point matrix - 
Pk Production of turbulent kinetic energy m2/s3 
Q Shear force N 
r Radial coordinate - 

U,V Mean velocity in axial and radial direction m/s 
W Coriolis and compressive forces N 
X Longitudinal coordinate - 
Y Transverse displacement  m 
Zi State vector - 

Greek Symbols 
ν  Poisson ratio - 
χ  Numerical factor - 
ω  Circular natural ferquency rad/sec 
φ Slope  o 

µ Dynamic viscosity of the fluid kg/m.s 
ρ Density  kg/m3 

ε Turbulent energy dissipation m2/s2 
ρ Density kg/m

3
 

Ω Dimensionless circular natural ferquency - 
λj Root of polynomial equation - 

Superscripts 
L Left - 
R Right - 

 

 


