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ABSTRACT

This study focuses on the modeling of manufactured damper when used in steel buildings. The main
aim of the manufactured dampers is to protect the steel buildings from the damaging effects that may result
due to earthquakes by introducing an extra damping in addition to the traditional damping.

Only Pure Manufactured Dampers, has been considered in this study. Viscous modeling of damping is
generally preferred in structural engineering as it leads to a linear model then it has been used during this
study to simulate the behavior of the Pure Manufactured Damper.

After definition of structural parameters of a manufactured damper (its stiffness and its damping) it can
be used as a structural element that can be added to a mathematical model of the structure. As the damping of
manufactured dampers is generally greater than the damping of traditional materials, then the resulting
damping matrix for the whole structure will be classified as a nonclassical damping.

As most of literature on earthquake engineering have been written in terms of terminology related to
mode superposition method and as this method is applicable to classical damping only. Then, this study tried
to check the accuracy of the mode superposition method when applied to a structure with manufactured
dampers. In this checking, approximated results of mode superposition method have been compared with
more accurate results of direct integration method. From this comparison, it has been noted that the mode
superposition method has different levels of accuracy depending on the relation between the fundamental
frequency of the structure and the dominate frequency of the earthmotion. If the frequency of the structure is
approaching to a dominate frequency of the earthmotion, then the damping effect will be important and the
difference between the direct integration method and the model superposition method is increasing and vice
versa.
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INTRODUCTION:

In the design of most buildings, the
primary loads that must be considered are those
due to the gravity. These loads are always
present and consequently must be resisted
throughout the life of the building. Typically, the
variation with time is slow as compared with the
characteristic times of the structure. As a result,
a static idealization is quite appropriate.
Furthermore, the magnitudes can be readily
determined based on self-weight and occupancy
requirements. This combination of factors
greatly simplifies building design, and, in fact,
allowed the ancestors to design and construct
impressive structures prior to the development
of rational scientific principles. The simplicity of
the problem permits the use of a trial-and-error
approach to design, particularly if one is not
unduly constrained by material and labor costs
(Soong and Dargush 1997)

In the recent time, resources are often
severely limited. Efficient designs must be
sought. Additionally, protection  from
environmental forces, including winds, waves,
and earthquakes, which are neither static nor
unidirectional are demanded. For these types of
loads inertial effects become important, resulting
in dynamic amplification and cyclic response.
As compared to gravity loads, the magnitudes
are also much more difficult to predict, since the
temporal and spatial scales of these phenomena
are much smaller.

However, by considering the actual
dynamic nature of environmental disturbances,
more dramatic improvements can be realized. As
a result of this dynamical point of view, new and
innovative concepts of structural protection have
been advanced and are at various stages of
development. Modern structural protective
systems can be divided into three groups as
shown in Table 1. These groups can be
distinguished by examining the approaches
employed to manage the energy associated with
transient environmental events.

The Use of Bracing Dampers in Steel
Buildings under Seismic Loading

Table 1 Structural Protective Systems (Soong
and Dargush 1997)

Seismic Passive Energy  Semi-active and
Isolation Dissipation Active Control
Elastomerlc Metallic Dampers Active Bracing
Bearings Systems
Lead R_ubber Friction Dampers Active Mass
Bearings Dampers
Sliding Friction Viscoelastic Variable Stiffness or
Pendulum Dampers Damping Systems
Viscous Fluid Smart Materials
Dampers
Tuned Mass
Dampers
Tuned Liquid
Dampers

MODELING OF VIscous FLUID DAMPERS
AS A STRUCTURAL ELEMENT:

There are two approaches to derive
structural  characteristic of  manufactured
dampers (i.e., stiffness and damping). The first
approach is based on macroscopic point of view.
Where in this point of view, the stiffness is
defined based on the slope of the diagonal line
of the hysteretic loop and the damping is derived
from the hysteretic loop of tested damper.
Whereas the second approach is based on a
microscopic point of view. Interaction between
the different parts of the manufactured damper is
used to define the stiffness and damping. First
approach had been used in this study to define
the structural properties for the manufactured
dampers.

MoDAL SUPERPOSITION METHOD:
BAsic CONCEPTS:

The generalized eigenvalue problem
associated with the undamped free vibration of
MDOF structure is considered. That is

(k—wiM)e =0

where w, represents an undamped natural
frequency of the structure including passive
elements and o is the associated mode shape
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vector. The present undamped system will have
N such natural frequencies and mode shapes
labeled w,; and ¢, respectively, fori=1,2, ...
, N. Usually, the natural frequencies are ordered
by increasing numerical value, with the lowest
(tw,q) referred to as the fundamental frequency.
Additionally, the mode shapes satisfy the
following orthogonality conditions
i=]

i#j

#7Fid, = { @

re. _fwh =]
TR ._{ 3
oIk ={o" 1 2) 3)
and form a complete set spanning the N-
dimensional vector space. Consequently, this set
provides the basis for a suitable transformation
that can be applied to the original system
defined by Equation (4)
Mi+ Ci+ Kx = —M#, (4)
In Equations (2) and (3), superscript T
indicates vector or matrix transpose.

There are numerous methods that available
to solve the generalized eigenvalue problem
defined in Equation (1). The choice depends
largely on the size and structure of the matrices
M and K. The SAP computer program contains
efficient and robust eigenvalue extraction
routines that require little user intervention.
Routines are also available in the public domain
through the MATLAB implementation.
(Hanselman and Littlefield 1995)

For notational convenience, the natural
frequencies are placed in a diagonal matrix .
The corresponding mode shape vectors form the
columns of a square matrix ¢, which functions
as the transformation matrix. Thus, any relative
displacement vector x can be represented by

X =gy (5

where y is the vector of modal (or normal)
coordinates. Utilizing Equation (5), along with
Equations (2) and (3), in Equation. (4) leads to
the following equations of motion expressed in
terms of the modal coordinates,
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7+ @TCey + ofy = —¥, (6)
where
¥, = ®TMi, (7N

In general, Equation (6) still represents a
coupled set of ordinary differential equations.
The equations uncouple only when the term
&TC is also a diagonal matrix. This occurs for
the case of proportional (or Rayleigh) damping,
in which

C - ﬂ'ﬁh‘? + ﬂlf (8}
contains scalar constants a, and a,;. From
Equations (2) (3) and (8), one obtains

& TCd = apl + oy oF (9)
which is diagonal. The form of C can actually be
generalized to the Caughey series

N-1 .
¢ = ii Z o; [11K] (10)
j=u
while still permitting diagonalization. Equation
(10) is seldom used to compute C for given set
of o;. Instead, modal viscous damping ratios ;
are specified, such that

®TCD = 20w, (11)
with f representing a diagonal matrix containing
{;. values With this assumption, Equation. (6)
becomes

¥+ 2 woy +apy = ¥ (12)

Since the equations are now uncoupled, a
scalar equation, for each mode i can be written,
as

Fi + 2000 + w5, ¥i = Vi (13)

Equation (13) has the same form as the
SDOF system, consequently, all of the
methodology and behavioral patterns of SDOF
are directly applicable to Equation (13). The
solution of the original problem expressed in
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Equation (4) is greatly simplified. Once
Equation (12) is solved, the relative
displacement vector x can be determined at any
time via the transformation Equation (5).

The major computational task in this
whole process is the determination of the natural
frequencies and mode shapes. Even this task is
not as onerous as it first appears, since for most
building systems only a small percentage of the
N modes actually participate significantly in the
system response. As a result, only the structural
modes within a certain frequency range need be
calculated.

The price paid for this simplicity is the
initial restriction to system matrices with
constant coefficients, and the further constraint
on the damping matrix specified in Equation
(10). If the latter condition is relaxed, it still may
be advantageous to use a modal approach as an
approximate technique for the following
reasons:

e Building systems according to most of
building codes (e.g. UBC and IBC) are
defined in terms of Fundamental Time
Period “T”, and system Damping Ratio
and the response of buildings systems in
theses codes are expressed in terms of
Response Spectra. These terminology (T, ,
and Response Spectra) all have meanings
only with modal superposition method.

e The physical interpretation of system
response to dynamic loads can easily be
visualized with mode superposition method
as compared with other solution methods.

e It is often still possible to utilize a mode
shape set much smaller than N, since
typically only a small portion of the
undamped modes will be excited.

DIRECT TIME DOMAIN ANALYSIS
BAsic CONCEPTS:

In the direct integration method, Equation
(4) is integrated by using a numerical step by
step procedure. In essence, the direct numerical

The Use of Bracing Dampers in Steel
Buildings under Seismic Loading

integration is based on two basic ideas
(Bathe 1996):

o First, instead of trying to satisfy Equation
(4) at any time t, it is aimed to be satisfied
only at discrete time intervals At apart.

e The second idea on which the direct
integration method is based on that a
variation of acceleration within the time
interval At is to be assumed.

It is the form of the assumption on the
variation of displacements, velocities, and
accelerations within each time interval that
determines the accuracy, stability and cost of the
solution procedure. Based on this assumption,
different integration schemes have been
developed. Table 2 below represents a brief
comparison  between common integration
schemes:

Table: 2. Comparison between Different
Types of Direct Integration Schemes (Bathe
1996):

Explicit Special
Integration Scheme or Stability Starting
Implicit Procedure
1. | Central Difference | Explicit Conditionally Required
Method
2. Houbolt Method Implicit | Unconditionally | Not Required
3. Wilson 6 Method Implicit | Unconditionally | Not Required
4. | Newmark Method Implicit | Unconditionally | Not Required

Based on the above Table,

Newmark

method seems to be one of the most efficient
integration schemes. Then this scheme will be
used in this study. Pseudo code of this method is
summarized as follows:

INITIAL CALCULATIONS:
1. Assemble stiffness matrix Kk,
mass matrix m, and damping matrix c.

2. Initialize u(0),a(0), andii(0),
where u(0),1(0), andii(0) are vectors of
initial displacement, initial velocity and
initial acceleration respectively.
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3. Select time step At and
parameters « and ¢ and calculate
integration constants:

8§ =05 a = 025005+ 8)% (14a)
1 g (14b)
%0 = At . a At
_ _ 2 1 (14c)
2= oA BT g ! ¢
d 1 ‘M(a 2) (14d)
=—=—1, Qg=—7]\|—— y
@4 & T 2 \a
ag=At(1—38), a, =08At (14e)
4, Form the effective stiffness
matrix K :
K=K +a,m+a,c (15)
5. Triangularize K:
K™= InversofK (16)
FOR EACH TIME STEP:
1. Calculate the effective load at
time ¢t + At

Rt+at — REHA 4 (g ut + aqif + agitt)
+elaut+ agif + aciit)

2. Solve for the displacements at
time t + At
pt¥ar — -1 griae
3. Calculate the accelerations and

velocities at time t + At

jiEtae — a,}{ur""i"r _ ur} — aqitf —agitt  (19)
ﬂr+ﬂr — ﬂHﬂr + ﬂsi'f + a?ﬂﬁﬂr (2{]}

CAsSE STUDIES FOR A BUILDING WITH
MANUFACTURED DAMPERS:

These case studies aim to assess the
accuracy of model superposition method when
applied to steel buildings with non-classical
damping due to the use of manufactured
dampers.

Sections for beams and columns of the
buildings have been selected based on a
preliminary structural design. This selection will
make stiffnesses of beams and columns more
reasonable and this in turn makes any
conclusions on these case studies has more

Volume 19 September 2013

Journal of Engineering

practical value. Based on same reasoning, mass
of structure has been computed based on load
values similar to that recommended in the
building codes.

In these case studies, each building will be
defined in terms of number of stories and
number of bays (with story height of 3m, and
bay width of 5m). For example the building
shown below will be referred as a building with
three stories and three bays:

i.. 3 Bays -

3 Stories H

FI1G. 1: ASSEMBLE OF BUILDING FRAME
RESULT
Based on the above information, results of

these case studies have been summarized in the
Tables below:
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TABLE: 3.

ASSESSMENT OF MODEL SUPERPOSITION METHOD BASED ON MAXIMUM TIP DISPLACEMENT FOR
BUILDINGS WITH A PURE JARRET BRACING:

Maximum Maximum Absolute
Fundamental "u" "u" Error
Case Stud . Time Period Based on Based on In Model
No g NOETEERS || o OFSHIEIES T Model Direct Superposition
(sec) Superposition Integration Method
mm mm %
1. 3 2 0.736 6.88 9.27 25.78
2. 3 3 0.868 9.87 14.9 33.76
3. 3 4 1.04 13.27 20.3 34.63
4, 3 5 1.16 15.38 23.68 35.05
5. 3 6 1.34 18.35 25.87 29.07
6. 3 7 1.50 21.2 27.0 215
7. 3 8 1.67 24.9 28.3 12.0
8. 3 9 1.79 28.3 30.4 6.85
TABLE: 4.
ASSESSMENT OF MODEL SUPERPOSITION METHOD BASED ON MAXIMUM BASE SHEAR FOR TYPE
PURE JARRET:
Maximum Maximum
Study No of Bays Sl\tlo .Of T'm?, Pfr'Od Based on Bas_ed on Superposition
No ories T Mode_l _ Dlrec_t Method
(sec) Superposition Integration %
kN kN
1. 3 2 0.736 68.2 91.2 25.22
2. 3 3 0.868 98.2 146.5 32.97
3. 3 4 1.04 120.1 175.9 31.72
4, 3 5 1.16 141 195 27.69
5. 3 6 1.34 144.7 189 23.44
6. 3 7 1.50 145.8 177.1 17.67
7. 3 8 1.67 141.9 158.4 10.42
8. 3 9 1.79 137.5 151.5 9.24
h § z: //-\\ CONCLUDING REMARKS :
% i \\ The main concern of the above results is that
z fz ” N there are different error ratios for different case
2 il ‘ studies. This can be explained as follows:
z| "o os 1 15 1. As discussed in the previous sections, the

Fundamental Time Period
(see)

FIG. 2: BASE SHEAR OF PURE DAMPER.

main difference between the direct integration
method and the model superposition method is
related to the damping modeling. where for a
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structure with non-classical damping, model
superposition represents only an approximate
method.

2. For harmonic excitation, it is well known
that damping effect is not constant for systems that
have different time period but it becomes greater
when the excitation frequency approach to one of
the system frequencies and as shown in Figure (3)
below:

Damping Effect on the
J“ Structure Increases when
| the Frequency of Excitation
| Approaching to One of the

I Frequencies of the System
!

0.2

Uy / (U)o

Deformation response factor Ry
(8]

0

Frequency Ratio

FIG. 3:DEFORMATION RESPONSE FACTOR FOR
DAMPED SYSTEM EXCITED BY HARMONIC
FORCE (Thomson 1998).

3. It is also well known from the structural
dynamics that even nonperiodic functions (like the
earthmotion) can be represented in terms of
harmonic functions through Fourier transformation
technique (Fertis 1973). With this approach El
Centro earthmotion can be re-represented as
shown in Figure (4) below (Spectral Density
Function (Rao 2004))*.

! Spectral Density Functions through this
study have been prepared by the Fast Fourier
Transform  Algorithm of the Matlab (See
Hanselman and Littlefield 2009 and Yang, 2005))
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Amplitude

o J Mt
(o] 10 20 30 40 50
Fraguncy

FIG. 4: SPECTRAL DENSITY FUNCTION OF EL
CENTRO EARTHQUAKE.

Then, the buildings to be subjected to a large
number of harmonic loads with different
frequencies and amplitudes can be considered.

4. With the above three facts the results of the
case study the fundamental frequency of the
structure is either approaching or diverging from
one of the dominate frequencies of the earthmotion.
If the frequency of the structure is approaching to a
dominate frequency of the earthmotion, then the
damping effect will be important (as discussed in
item 2) and the difference (error) between the direct
integration method and the model superposition
method is also increasing (as discussed in item 1)
and vice versa , Figure (5) below.

2 10.8 ‘
1o} |
. ——— 10,6
o | I 10.4
= ' | /] 0.8 1 1.2
= 12t L f > - .
=t 1 | If the frequency of the structure is
= I ' | approaching to a dominate frequency
ey { | I | of the earthmotion, then the damping
< |'| || M | 14 effect will be important and the
8K | | ‘ | ‘. I | difference (error) between the direct
| N l || |1‘W ] ||‘ -I! | integration method and the model
Ll ¥ [ l;"| ( M It 1Y) .'1 superposition method is increasing
J l RN / “ |,I| also.
4 l |I YRR |
! | i
2 | [LAAWT]

1 2 3 4 5 6 7 8 9
Frequency (Hz)
FI1G.5:
EFFECT OF CONVERGENCE BETWEEN BUILDING
FUNDAMENTAL FREQUENCY AND ONE OF
EARTHMOTION ON THE DAMPING VISCOUS.

1100



Prof. Dr. Nazar K. Al-Oukaili
Dr.Salah R. Al —Zaidee
Najjiya M. Al Mallah

REFERENCE

Fertis, D. G., (1973). Dynamics and
Vibration of Structures. John Wiley & Sons.
Hanselman, D. and Littlefield, B., (2009).
Mastering Matlab 7 4™ Edition. Pearson
Education, Inc.

Hanselman, D. Littlefield, B. (1995). The

Student Edition of MATLAB, Prentice-Hall.

Rao, S. S., (2004). Mechanical Vibrations 4"
Edition. Pearson Education, Inc.

Soong, T. T.; Dargush, G F, (1997). Passive

Energy Dissipation Systems in  Structural
Engineering
Thomson, W., T.; Dahleh, M., D., (1998).
Theory of Vibration with  Applications.
Prentice Hall.
NOTATIONS

At Time Interval.

Cy Zero-Frequency Damping
Coefficient.

w(0)

Vector initial velocity.
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Fundamental Time Period.
Displacement.

Velocity.

Damping Constant.
Damping Matrices.
Stiffness Matrices.

Mass Matrices.

Vector initial displacement.

Vibration Natural
Frequency.

Undamped Natural
Frequency.

¢ Mode Shape Vector.

o

¢

]

SDOF

Velocity Exponent.
Damping Ratio
Load Frequency.

Single Degree of Freedom
System
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