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1BABSTRACT 

This study focuses on the modeling of manufactured damper when used in steel buildings. The main 
aim of the manufactured dampers is to protect the steel buildings from the damaging effects that may result 
due to earthquakes by introducing an extra damping in addition to the traditional damping.  

Only Pure Manufactured Dampers, has been considered in this study. Viscous modeling of damping is 
generally preferred in structural engineering as it leads to a linear model then it has been used during this 
study to simulate the behavior of the Pure Manufactured Damper.  

After definition of structural parameters of a manufactured damper (its stiffness and its damping) it can 
be used as a structural element that can be added to a mathematical model of the structure. As the damping of 
manufactured dampers is generally greater than the damping of traditional materials, then the resulting 
damping matrix for the whole structure will be classified as a nonclassical damping.  

As most of literature on earthquake engineering have been written in terms of terminology related to 
mode superposition method and as this method is applicable to classical damping only. Then, this study tried 
to check the accuracy of the mode superposition method when applied to a structure with manufactured 
dampers. In this checking, approximated results of mode superposition method have been compared with 
more accurate results of direct integration method. From this comparison, it has been noted that the mode 
superposition method has different levels of accuracy depending on the relation between the fundamental 
frequency of the structure and the dominate frequency of the earthmotion. If the frequency of the structure is 
approaching to a dominate frequency of the earthmotion, then the damping effect will be important and the 
difference between the direct integration method and the model superposition method is increasing and vice 
versa. 

2Bالخلاصة 
 تهتم بنمذجة دعامة الاخماد الصناعي في البنايات الفولاذية المتعددة الطوابق.  هذه الدراسة

. درس التقليديةت دعامة الاخماد الصناعي بدلا من الدعاما باستخدامحماية البناية من التأثير المؤذي للهزة الارضية يتعلق بالمفهوم ببساطة  
 ) Pure Manufactured Damperالصناعية وهي (من الدعامات  نوع في هذا البحث

لنموذج المرن لمحاكاة اداء نمذجة خطية. تبدأ هذه الدراسة باستخدام ا لأنهافي الهندسة الانشائية  للإخماد استخدام النمذجة المرنة عادة يفضل 
)Pure Manufactured Dampers اضافته الى  انشائي، تمعي كعنصر الاخماد الصنا والاخماد لدعامة) بعد ان تم تعريف الجساءة

من اخماد الدعامات التقليدية فأن هذا يجعل مصفوفة اخماد  أكبربصورة عامة  الدعامات الصناعيةالانموذج الرياضي للبناية. بما ان اخماد 
 المنشأ الكلي تصنف على انها ذات اخماد غير تقليدي.

والتي تستخدم في اغلب المصادر الخاصة بهندسة الهزات الارضية لتحليل  )Mode Superpositionتدرس اداء طريقة ( هذه الدراسة
الابنية ذات الخمود التقليدي. حيث تم تقصي دقة هذه الطريقة عند استخدامها لدراسة منشأ ذو دعامات اخماد صناعية (غير تقليدي). من 

مستويات التكامل المباشر تم التوصل الى ان نتائج هذه الطريقة تكون ب خلال مقارنة النتائج التقريبية لهذه الطريقة مع النتائج الدقيقة لطريقة
ترددات الهزة الارضية من تردد  أحدالارضية. فعند اقتراب  وترددات الهزةلتردد الرئيسي للمنشأ على العلاقة بين ا مختلفة من الدقة اعتمادا

 في )Mode Superpositionوطريقة (بين نتائج طريقة التكامل المباشر  ويكون الفرقالمنشأ فأن تأثير دعامة الاخماد الصناعي يكون اشد 
 .والعكس صحيحتزايد 
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INTRODUCTION: 

In the design of most buildings, the 
primary loads that must be considered are those 
due to the gravity. These loads are always 
present and consequently must be resisted 
throughout the life of the building. Typically, the 
variation with time is slow as compared with the 
characteristic times of the structure. As a result, 
a static idealization is quite appropriate. 
Furthermore, the magnitudes can be readily 
determined based on self-weight and occupancy 
requirements. This combination of factors 
greatly simplifies building design, and, in fact, 
allowed the ancestors to design and construct 
impressive structures prior to the development 
of rational scientific principles. The simplicity of 
the problem permits the use of a trial-and-error 
approach to design, particularly if one is not 
unduly constrained by material and labor costs 
(Soong and Dargush 1997) 

In the recent time, resources are often 
severely limited. Efficient designs must be 
sought. Additionally, protection from 
environmental forces, including winds, waves, 
and earthquakes, which are neither static nor 
unidirectional are demanded. For these types of 
loads inertial effects become important, resulting 
in dynamic amplification and cyclic response. 
As compared to gravity loads, the magnitudes 
are also much more difficult to predict, since the 
temporal and spatial scales of these phenomena 
are much smaller. 

However, by considering the actual 
dynamic nature of environmental disturbances, 
more dramatic improvements can be realized. As 
a result of this dynamical point of view, new and 
innovative concepts of structural protection have 
been advanced and are at various stages of 
development. Modern structural protective 
systems can be divided into three groups as 
shown in Table 1. These groups can be 
distinguished by examining the approaches 
employed to manage the energy associated with 
transient environmental events. 

 

Table 1 Structural Protective Systems (Soong 
and Dargush 1997) 

Seismic 
Isolation 

Passive Energy 
Dissipation 

Semi-active and 
Active Control 

Elastomeric 
Bearings Metallic Dampers Active Bracing 

Systems 

Lead Rubber 
Bearings Friction Dampers Active Mass 

Dampers 

Sliding Friction 
Pendulum 

Viscoelastic 
Dampers 

Variable Stiffness or 
Damping Systems 

 Viscous Fluid 
Dampers Smart Materials 

 Tuned Mass 
Dampers  

 Tuned Liquid 
Dampers  

MODELING OF VISCOUS FLUID DAMPERS 
AS A STRUCTURAL ELEMENT: 

There are two approaches to derive 
structural characteristic of manufactured 
dampers (i.e., stiffness and damping). The first 
approach is based on macroscopic point of view. 
Where in this point of view, the stiffness is 
defined based on the slope of the diagonal line 
of the hysteretic loop and the damping is derived 
from the hysteretic loop of tested damper. 
Whereas the second approach is based on a 
microscopic point of view. Interaction between 
the different parts of the manufactured damper is 
used to define the stiffness and damping. First 
approach had been used in this study to define 
the structural properties for the manufactured 
dampers. 

MODAL SUPERPOSITION METHOD: 
BASIC CONCEPTS: 

The generalized eigenvalue problem 
associated with the undamped free vibration of 
MDOF structure is considered. That is 

 

where  represents an undamped natural 
frequency of the structure including passive 
elements and  is the associated mode shape 



Journal of Engineering Volume   19  September  2013 Number 9  

 

1096 
 

vector. The present undamped system will have 
N such natural frequencies and mode shapes 
labeled , and , respectively, for i = 1, 2, . . . 
, N. Usually, the natural frequencies are ordered 
by increasing numerical value, with the lowest 
( ) referred to as the fundamental frequency. 
Additionally, the mode shapes satisfy the 
following orthogonality conditions 

 

 

and form a complete set spanning the N-
dimensional vector space. Consequently, this set 
provides the basis for a suitable transformation 
that can be applied to the original system 
defined by Equation (4) 

 

In Equations (2) and (3), superscript T 
indicates vector or matrix transpose. 

There are numerous methods that available 
to solve the generalized eigenvalue problem 
defined in Equation (1). The choice depends 
largely on the size and structure of the matrices 

 and . The SAP computer program contains 
efficient and robust eigenvalue extraction 
routines that require little user intervention. 
Routines are also available in the public domain 
through the MATLAB implementation. 
(Hanselman and Littlefield 1995) 

For notational convenience, the natural 
frequencies are placed in a diagonal matrix . 
The corresponding mode shape vectors form the 
columns of a square matrix , which functions 
as the transformation matrix. Thus, any relative 
displacement vector x can be represented by 

 

where y is the vector of modal (or normal) 
coordinates. Utilizing Equation (5), along with 
Equations (2) and (3), in Equation. (4) leads to 
the following equations of motion expressed in 
terms of the modal coordinates, 

 

where 

 

In general, Equation (6) still represents a 
coupled set of ordinary differential equations. 
The equations uncouple only when the term 

 is also a diagonal matrix. This occurs for 
the case of proportional (or Rayleigh) damping, 
in which 

 

contains scalar constants  and . From 
Equations (2) (3) and (8), one obtains 

 

which is diagonal. The form of  can actually be 
generalized to the Caughey series 

 

while still permitting diagonalization. Equation 
(10) is seldom used to compute  for given set 
of . Instead, modal viscous damping ratios  
are specified, such that 

 

with  representing a diagonal matrix containing 
. values With this assumption, Equation. (6) 

becomes 

 

Since the equations are now uncoupled, a 
scalar equation, for each mode i can be written, 
as 

 

Equation (13) has the same form as the 
SDOF system, consequently, all of the 
methodology and behavioral patterns of SDOF 
are directly applicable to Equation (13). The 
solution of the original problem expressed in  
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Equation (4) is greatly simplified. Once 
Equation (12) is solved, the relative 
displacement vector  can be determined at any 
time via the transformation Equation (5).  

The major computational task in this 
whole process is the determination of the natural 
frequencies and mode shapes. Even this task is 
not as onerous as it first appears, since for most 
building systems only a small percentage of the 
N modes actually participate significantly in the 
system response. As a result, only the structural 
modes within a certain frequency range need be 
calculated. 

The price paid for this simplicity is the 
initial restriction to system matrices with 
constant coefficients, and the further constraint 
on the damping matrix specified in Equation 
(10). If the latter condition is relaxed, it still may 
be advantageous to use a modal approach as an 
approximate technique for the following 
reasons: 

• Building systems according to most of 
building codes (e.g. UBC and IBC) are 
defined in terms of Fundamental Time 
Period “T”, and system Damping Ratio  
and the response of buildings systems in 
theses codes are expressed in terms of 
Response Spectra. These terminology (T, , 
and Response Spectra) all have meanings 
only with modal superposition method.   

• The physical interpretation of system 
response to dynamic loads can easily be 
visualized with mode superposition method 
as compared with other solution methods.  

• It is often still possible to utilize a mode 
shape set much smaller than N, since 
typically only a small portion of the 
undamped modes will be excited. 

DIRECT TIME DOMAIN ANALYSIS 
BASIC CONCEPTS: 

In the direct integration method, Equation 
(4) is integrated by using a numerical step by 
step procedure. In essence, the direct numerical  

 

integration is based on two basic ideas 
(Bathe 1996):  

• First, instead of trying to satisfy Equation 
(4) at any time t, it is aimed to be satisfied 
only at discrete time intervals t∆  apart.  

• The second idea on which the direct 
integration method is based on that a 
variation of acceleration within the time 
interval t∆  is to be assumed. 

It is the form of the assumption on the 
variation of displacements, velocities, and 
accelerations within each time interval that 
determines the accuracy, stability and cost of the 
solution procedure. Based on this assumption, 
different integration schemes have been 
developed. Table 2 below represents a brief 
comparison between common integration 
schemes:  

Table: 2. Comparison between Different 
Types of Direct Integration Schemes (Bathe 
1996): 

Integration Scheme 
Explicit 

or 
Implicit 

Stability 
Special 
Starting 

Procedure 
1. Central Difference 

Method 
Explicit Conditionally Required 

2. Houbolt Method Implicit Unconditionally Not Required 

3. Wilson θ Method Implicit Unconditionally Not Required 

4. Newmark Method Implicit Unconditionally Not Required 

Based on the above Table, Newmark 
method seems to be one of the most efficient 
integration schemes. Then this scheme will be 
used in this study. Pseudo code of this method is 
summarized as follows: 

INITIAL CALCULATIONS: 
1. Assemble stiffness matrix k, 

mass matrix m, and damping matrix c. 

2. Initialize , 
where  are vectors of 
initial displacement, initial velocity and 
initial acceleration respectively.  
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3. Select time step t∆  and 
parameters α  and δ  and calculate 
integration constants: 

 

 

 

 
 

4. Form the effective stiffness 

matrix k̂ : 

   

5. Triangularize : 

 

FOR EACH TIME STEP: 
1. Calculate the effective load at 

time : 

 
 

2. Solve for the displacements at 

time  

 
3. Calculate the accelerations and 

velocities at time : 

 
 

9BCASE STUDIES FOR A BUILDING WITH 
MANUFACTURED DAMPERS: 

These case studies aim to assess the 
accuracy of model superposition method when 
applied to steel buildings with non-classical 
damping due to the use of manufactured 
dampers. 

Sections for beams and columns of the 
buildings have been selected based on a 
preliminary structural design. This selection will 
make stiffnesses of beams and columns more 
reasonable and this in turn makes any 
conclusions on these case studies has more 

practical value. Based on same reasoning, mass 
of structure has been computed based on load 
values similar to that recommended in the 
building codes. 

In these case studies, each building will be 
defined in terms of number of stories and 
number of bays (with story height of 3m, and 
bay width of 5m). For example the building 
shown below will be referred as a building with 
three stories and three bays: 

 

FIG. 1: ASSEMBLE OF BUILDING FRAME  

10BRESULT  

Based on the above information, results of 
these case studies have been summarized in the 
Tables below: 
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TABLE: 3. 
ASSESSMENT OF MODEL SUPERPOSITION METHOD BASED ON MAXIMUM TIP DISPLACEMENT FOR 

BUILDINGS WITH A PURE JARRET BRACING: 

Case Study  
No No of Bays No of Stories 

Fundamental 
Time Period 

"T" 
(sec) 

Maximum 
"u" 

Based on 
Model 

Superposition 
mm 

Maximum 
"u" 

Based on 
Direct 

Integration 
mm 

Absolute 
Error 

In Model 
Superposition 

Method 
% 

1. 3 2 0.736 6.88 9.27 25.78 
2. 3 3 0.868 9.87 14.9 33.76 
3. 3 4 1.04 13.27 20.3 34.63 
4. 3 5 1.16 15.38 23.68 35.05 
5. 3 6 1.34 18.35 25.87 29.07 
6. 3 7 1.50 21.2 27.0 21.5 
7. 3 8 1.67 24.9 28.3 12.0 
8. 3 9 1.79 28.3 30.4 6.85 

 

TABLE: 4. 
ASSESSMENT OF MODEL SUPERPOSITION METHOD BASED ON MAXIMUM BASE SHEAR FOR TYPE 

PURE JARRET: 

Case 
Study  

No 
No of Bays No of 

Stories 

Fundamental 
Time Period 

"T" 
(sec) 

Maximum  
"V" 

Based on 
Model 

Superposition 
kN 

Maximum  
"V" 

Based on 
Direct 

Integration 
kN 

Absolute Error 
In Model 

Superposition 
Method 

% 

1. 3 2 0.736 68.2 91.2 25.22 
2. 3 3 0.868 98.2 146.5 32.97 
3. 3 4 1.04 120.1 175.9 31.72 
4. 3 5 1.16 141 195 27.69 
5. 3 6 1.34 144.7 189 23.44 
6. 3 7 1.50 145.8 177.1 17.67 
7. 3 8 1.67 141.9 158.4 10.42 
8. 3 9 1.79 137.5 151.5 9.24 

 

 
          FIG. 2: BASE SHEAR OF PURE DAMPER. 

CONCLUDING REMARKS : 

The main concern of the above results is that 
there are different error ratios for different case 
studies. This can be explained as follows: 

1. As discussed in the previous sections, the 
main difference between the direct integration 
method and the model superposition method is 
related to the damping modeling. where for a 
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structure with non-classical damping, model 
superposition represents only an approximate 
method.  

2. For harmonic excitation, it is well known 
that damping effect is not constant for systems that 
have different time period but it becomes greater 
when the excitation frequency approach to one of 
the system frequencies and as shown in Figure (3) 
below: 

 
FIG. 3:DEFORMATION RESPONSE FACTOR FOR 
DAMPED SYSTEM EXCITED BY HARMONIC 
FORCE (Thomson 1998). 
3. It is also well known from the structural 
dynamics that even nonperiodic functions (like the 
earthmotion) can be represented in terms of 
harmonic functions through Fourier transformation 
technique (Fertis 1973). With this approach El 
Centro earthmotion can be re-represented as 
shown in Figure (4) below (Spectral Density 
Function (Rao 2004))0F

1.  

                                                           
1 Spectral Density Functions through this 

study have been prepared by the Fast Fourier 

Transform Algorithm of the Matlab (See 

Hanselman and Littlefield 2009 and Yang, 2005))  

 

FIG. 4: SPECTRAL DENSITY FUNCTION OF EL 
CENTRO EARTHQUAKE. 

Then, the buildings to be subjected to a large 
number of harmonic loads with different 
frequencies and amplitudes can be considered. 

4. With the above three facts the results of the 
case study the fundamental frequency of the 
structure is either approaching or diverging from 
one of the dominate frequencies of the earthmotion. 
If the frequency of the structure is approaching to a 
dominate frequency of the earthmotion, then the 
damping effect will be important (as discussed in 
item 2) and the difference (error) between the direct 
integration method and the model superposition 
method is also increasing (as discussed in item 1) 
and vice versa , Figure (5) below. 

 
FIG. 5: 
EFFECT OF CONVERGENCE BETWEEN BUILDING 
FUNDAMENTAL FREQUENCY AND ONE OF 
EARTHMOTION ON THE DAMPING VISCOUS. 
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NOTATIONS 

t∆  Time Interval. 

 Zero-Frequency Damping 
Coefficient. 

 Vector initial velocity. 

T Fundamental Time Period. 

u Displacement. 

v Velocity. 

 Damping Constant. 

 Damping Matrices. 

 Stiffness Matrices. 

 Mass Matrices. 

 Vector initial displacement. 

 Vibration Natural 
Frequency. 

 Undamped Natural 
Frequency. 

φ Mode Shape Vector. 

 Velocity Exponent. 

 Damping Ratio  

 Load Frequency. 

SDOF Single Degree of Freedom 
System 
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