# Exact Stiffness Matrix for Nonprismatic Beams with Parabolic Varying Depth 

Dr.Musab Aied Qissab Al-Janabi<br>Lecturer/ Department of Civil Engineering AL-Nahrain University


#### Abstract

In this paper, an exact stiffness matrix and fixed-end load vector for nonprismatic beams having parabolic varying depth are derived. The principle of strain energy is used in the derivation of the stiffness matrix. The effect of both shear deformation and the coupling between axial force and the bending moment are considered in the derivation of stiffness matrix. The fixed-end load vector for elements under uniformly distributed or concentrated loads is also derived. The correctness of the derived matrices is verified by numerical examples. It is found that the coupling effect between axial force and bending moment is significant for elements having axial end restraint. It was found that the decrease in bending moment was in the range of $31.72 \%-42.29 \%$ in case of including the effect of axial force for the studied case. For midspan deflection, the decrease was $46.07 \%$ due to the effect of axial force generated at supports as a result of axial restraint.


KEYWORDS: Stiffness; Parabolic; Shear deformation; Axial force; Beams

في هذا البحث، تم اشتقاق مصفوفة الجساءة و متجه حمل النهايات الثثبتّ للأعتاب الغير موشورية ذات العمق المتغير لاخطيا (قطع مكافىء). تم استعمال مبدأ طاقة الإنفعال في اشتقاق مصفوفة الجساءة مع الأخذ بنظر الإعتبار تأثير تشوهوات القص والثأثئر المتبادل بين القوة المحورية وعزم الإنحناء. كذللك، تم أشتقاق متجه حمل النهايات المثبتة لعناصر ذات احمال موزعة بابتظظام او أحمال مركزة. تم اختيار عدة امثلة تطبيقية لغرض اثبات صحة المصفوفات التي تم اشتقاقها. من خلال النتائج التّي تم الحصول عليها وجد بأن الثنأثير المتبادل للقوة المحورية مع عزم الإنحناء ذات فاعلية بالنسبة للأعضاء ذات النهايات المقيدة محوريا. فقـ لوحظ تناقصا في مقارار عزم الإنحناء وبنسب تتراوح من 31.72\% الى 42.29\% في حال تم ادخال تأثئير القوة المحورية بالنسبة للحالة التي تم دراستها. أما بالنسبة للارطول، فقد كان النتاقص بنسبة 46.07\% في منتصف الفضاء نتيجة لنأثير القوة المحورية المتولاة من تقييد الحركة اللحورية للمساند مقارنة مع الحالة التي تم فيها اهمال نأثير ها.


## Musab Aied Qissab Al-Janabi

## Exact Stiffness Matrix for Nonprismatic

 Beams with Parabolic Varying Depth
## INTRODUCTION

Members with variable depth are used in many engineering structures such as highway bridges, buildings, as well as in many mechanical components and aerospace engineering structures. In civil engineering construction, nonprismatic members are frequently used to optimize material distribution and stresses, increase the overall stability and stiffness, reduce the dead load positive moment and deflection, and sometimes to satisfy architectural requirements. Accordingly, the analysis of structures having nonprismatic elements is of interest in structural, mechanical, and aerospace engineering. The analysis of nonprismatic members is covered in several publications (e.g., Timoshenko and Young 1965; AL-Gahtani 1996; Al-Gahtani and Khan 1998; Luo et al 2007). Most of the available publications deal with the analysis of tapered members only. Some particular cases (e.g., Timoshenko and Young 1965; AL-Gahtani 1996) deal with the analysis of nonprismatic beams having parabolic varying depth. However, these cases are limited to the analysis only (no stiffness matrix derivation) of such type of members involving lengthy and tedious calculations which are not applicable for use in the analysis packages in which the analysis is based on matrix operations. In addition, the available analytical solutions do not consider the effect of shear deformation and the axial forcebending moment interaction. The other alternative publications deal with the numerical methods of analysis such as the finite element method (e.g., Bathe 1996) in which the member is discretized to a number of elements and the stiffness matrices of the elements are assembled to obtain the stiffness matrix for the whole member. The main disadvantage resulting from member discretization is the large number of input data required even for simple structures.

The purpose of this paper is to present an exact stiffness matrix for nonprismatic beam elements with parabolic varying depth including the effect of shear deformation and the axial force-bending moment interaction. The correctness of the derived stiffness matrix and the fixed-end load vector is examined through numerical examples.

## PROBLEM STATEMENT

Consider a nonprismatic Euler- Bernoulli beam element of length $L$ as shown in Fig. 1(a). The element is rectangular in cross-section and has a parabolic varying depth and constant width. Three degrees of freedom are assumed at each node. Only the deformation in the plane of the element and the bending moment about the centroidal main axis are considered. The positive direction of displacements and forces are as shown in Fig. 1(b).

The stiffness components corresponding to the degrees of freedom shown in Fig. 1(b) can be obtained by using Castiglianos second theorem (Boresi, A.P. and Schmidt, R.J. 2003), which states that the deflection caused by an external force is equal to the partial derivative of the strain energy $(U)$ with respect to that force. The total strain energy ( $U$ ) for the element shown in Fig. 1(a) including the strain energy caused by bending moment, shear and axial forces can be given by

$$
\begin{align*}
U= & \frac{1}{2 E} \int_{0}^{L} \frac{M_{X}^{2}}{I_{X}} d x+\frac{1.2}{2 G b} \int_{0}^{L} \frac{Q_{X}^{2}}{h_{X}^{2}} d x  \tag{1}\\
& +\frac{1}{2 E b} \int_{0}^{L} \frac{P_{X}^{2}}{h_{X}} d x
\end{align*}
$$

where $M_{x}, Q_{x}, P_{x}, I_{x}, h_{x}$, are the bending moment, shear force, axial force, moment of inertia and the depth of the element at the distance $x$ respectively; $b, E, G$, are the width of the element, Young's and shear modulus of elasticity, respectively. The bending moment $M_{x}$, shear force $Q_{x}$, and the axial force $P_{x}$ can be found from equilibrium as follows

$$
\begin{align*}
& M_{x}=\frac{1}{2} P_{i} h_{0}\left(c x^{2}\right)+Q_{i} x-M_{i}  \tag{2a}\\
& Q_{x}=Q_{i}  \tag{2b}\\
& P_{x}=P_{i} \tag{2c}
\end{align*}
$$

The moment of inertia and the depth of the element cross section at a distance $x$ can be given by

$$
I_{x}=\frac{b h_{0}^{3}}{12}\left(1+c x^{2}\right)^{3}=I_{0}\left(1+c x^{2}\right)^{3} ; h_{x}=h_{0}\left(1+c x^{2}\right)
$$

where $h_{0}=$ the minimum depth of the element (at the origin), $c=\left(h_{1}-h_{0}\right) /\left(h_{0} L^{2}\right)$, and $h_{1}=$ the maximum depth of the element.

Substituting eqs. (2a), (2b), (2c), and (3) into eq. (1) and after integrations, the following exact expression for the strain energy can be given as

$$
\begin{align*}
U & =\frac{1}{2 E I_{0}}\left[P_{i}^{2} I_{0}\left(a_{0}\right)+\frac{P_{i}^{2} h_{0}{ }^{2}}{4}\left(a_{1}\right)-P_{i} M_{i} h_{0}\left(a_{2}\right)\right. \\
& +M_{i}^{2}\left(a_{3}\right)+P_{i} Q_{i} h_{0}\left(a_{4}\right)-M_{i} Q_{i}\left(a_{5}\right) \\
& \left.+Q_{i}{ }^{2}\left(a_{6}+2 E I_{0} K_{v}\right)\right] \tag{4}
\end{align*}
$$

where
$a_{0}=\frac{\phi_{0}}{\sqrt{c} A_{0}}$
$a_{1}=\frac{1}{\sqrt{c}}\left[\frac{3}{4}\left(\frac{1}{2} \phi_{0}-\frac{1}{4} \sin \left(2 \phi_{0}\right)\right)-\frac{1}{4} \sin ^{3} \phi_{0} \cos \phi_{0}\right]$
$a_{2}=\frac{1}{4 \sqrt{c}}\left[\frac{1}{2} \phi_{0}-\frac{1}{8} \sin \left(4 \phi_{0}\right)\right]$
$a_{3}=\frac{1}{\sqrt{c}}\left[\frac{3}{4}\left(\frac{1}{2} \phi_{0}+\frac{1}{4} \sin \left(2 \phi_{0}\right)\right)+\frac{1}{4} \cos ^{3} \phi_{0} \sin \phi_{0}\right]$
$a_{4}=\frac{1}{2 c}\left[\frac{1}{2\left(1+c L^{2}\right)^{2}}-\frac{1}{\left(1+c L^{2}\right)}+\frac{1}{2}\right]$
$a_{5}=\frac{1}{2 c}\left[1-\frac{1}{\left(1+c L^{2}\right)^{2}}\right]$
$a_{6}=\frac{1}{c}\left(a_{2}\right)$
and

$$
K_{v}=\frac{1.2 \phi_{0}}{2 G A_{0} \sqrt{c}}, \phi_{0}=\tan ^{-1}(\sqrt{c} L) \text {, and } A_{0}=b h_{0}
$$

The partial derivative of the strain energy ( $U$ ) with respect to $P_{i}, Q_{i}$, and $M_{i}$ can be given respectively as follows

$$
\begin{align*}
& \frac{\partial U}{\partial P_{i}}=u_{i}=\frac{1}{2 E I_{0}}\left[\begin{array}{l}
P_{i}\left(2 I_{0} a_{0}+\frac{h_{0}{ }^{2}}{2}\left(a_{1}\right)\right)+ \\
Q_{i}\left(h_{0}\left(a_{4}\right)\right)-M_{i}\left(h_{0}\left(a_{2}\right)\right)
\end{array}\right]  \tag{7}\\
& \frac{\partial U}{\partial Q_{i}}=v_{i}=\frac{1}{2 E I_{0}}\left[\begin{array}{l}
P_{i}\left(h_{0}\left(a_{4}\right)\right)+Q_{i}\left(2\left(a_{6}\right)+4 E I_{0} K_{v}\right) \\
-M_{i}\left(a_{5}\right)
\end{array}\right] \tag{8}
\end{align*}
$$

$\frac{\partial U}{\partial M_{i}}=\theta_{i}=\frac{1}{2 E I_{0}}\left[-P_{i}\left(h_{0}\left(a_{2}\right)\right)-Q_{i}\left(a_{5}\right)+M_{i}\left(2 a_{3}\right)\right]$
where $u_{i}, v_{i}$, and $\theta_{i}$ are the displacement components in horizontal ,vertical directions, and rotation angle at node (i) respectively.

The stiffness coefficient $\left(k_{i j}\right)$ of an element can be defined as the force or moment at node (i) required to induce a unit displacement or rotation at node ( j ) with all other displacements equal to zero. Therefore, eqs. (7), (8), and (9) will be used to derive the stiffness matrix of the element.
Writing eqs. (7), (8), and (9) in a matrix form yield the following
$\left[\begin{array}{ccc}\left(2 I_{0} a_{0}+\frac{h_{0}{ }^{2}}{2}\left(a_{1}\right)\right) & \left(h_{0}\left(a_{4}\right)\right) & -\left(h_{0}\left(a_{2}\right)\right) \\ \left(h_{0}\left(a_{4}\right)\right) & \left(2\left(a_{6}\right)+4 E I_{0} K_{v}\right) & -\left(a_{5}\right) \\ -\left(h_{0}\left(a_{2}\right)\right) & -\left(a_{5}\right) & \left(2 a_{3}\right)\end{array}\right]\left\{\begin{array}{c}P_{i} \\ Q_{i} \\ M_{i}\end{array}\right\}$
$=2 E I_{0}\left\{\begin{array}{c}u_{i} \\ v_{i} \\ \theta_{i}\end{array}\right\}$
or
$[D]\{F\}=2 E I_{0}\{\delta\} ;\{F\}=2 E I_{0}[D]^{-1}\{\delta\}$

## Musab Aied Qissab Al-Janabi

where

$$
\begin{align*}
{[D] } & =\left[\begin{array}{lll}
d_{11} & d_{12} & d_{13} \\
d_{12} & d_{22} & d_{23} \\
d_{13} & d_{23} & d_{33}
\end{array}\right] \\
& =\left[\begin{array}{ccc}
\left(2 I_{0} a_{0}+\frac{h_{0}^{2}}{2}\left(a_{1}\right)\right) & \left(h_{0}\left(a_{4}\right)\right) & -\left(h_{0}\left(a_{2}\right)\right) \\
\left(h_{0}\left(a_{4}\right)\right) & \left(2\left(a_{6}\right)+4 E I_{0} K_{v}\right) & -\left(a_{5}\right) \\
-\left(h_{0}\left(a_{2}\right)\right) & -\left(a_{5}\right) & \left(2 a_{3}\right)
\end{array}\right] \tag{12}
\end{align*}
$$

$$
\{F\}=\left\{\begin{array}{c}
P_{i}  \tag{13}\\
Q_{i} \\
M_{i}
\end{array}\right\} ;\{\delta\}=2 E I_{0}\left\{\begin{array}{c}
u_{i} \\
v_{i} \\
\theta_{i}
\end{array}\right\}
$$

## AXIAL STIFFNESS

Applying a unit axial displacement at node (i) with all other displacements equal to zero (i.e. put $u_{i}=1, v_{i}=0$, and $\theta_{i}=0$ in the displacements vector $\boldsymbol{\delta}$ ), the stiffness coefficients corresponding to that displacement can be found by solving eq. (11) for the column matrix $\boldsymbol{F}$, hence

$$
\begin{equation*}
k_{11}=P_{i}=\frac{2 E I_{0}}{\lambda}\left(d_{33} d_{22}-d_{23}^{2}\right) \tag{14a}
\end{equation*}
$$

$k_{21}=Q_{i}=\frac{-2 E I_{0}}{\lambda}\left(d_{33} d_{12}-d_{13} d_{23}\right)$
$k_{31}=M_{i}=\frac{2 E I_{0}}{\lambda}\left(d_{23} d_{12}-d_{13} d_{22}\right)$
From equilibrium, the force vector (or stiffness coefficients) at node ( j ) corresponding to the unit axial displacement at node (i) can be given as

$$
\begin{equation*}
k_{41}=P_{j}=-k_{11} \tag{14d}
\end{equation*}
$$

$k_{51}=Q_{j}=-k_{21}$

## Exact Stiffness Matrix for Nonprismatic

Beams with Parabolic Varying Depth

$$
\begin{equation*}
k_{61}=M_{j}=k_{11}\left(\frac{h_{1}-h_{0}}{2}\right)+k_{21} L-k_{31} \tag{14f}
\end{equation*}
$$

where

$$
\begin{align*}
\lambda= & d_{11}\left(d_{33} d_{22}-d_{23}^{2}\right)-d_{12}\left(d_{33} d_{12}-d_{13} d_{23}\right)+ \\
& d_{13}\left(d_{23} d_{12}-d_{13} d_{22}\right) \tag{15}
\end{align*}
$$

## FLEXURAL STIFFNESS

Following the same procedure given for the derivation of axial stiffness, the flexural (translational and rotational) stiffness coefficients can be obtained by applying a unit lateral displacement or a unit rotation (with all other displacements equal to zero) to obtain the translational or rotational stiffness coefficients, respectively.

Hence, by substituting $u_{i}=0, v_{i}=1$, and $\theta_{i}=0$ in the displacements vector $\boldsymbol{\delta}$, the translational stiffness coefficients can be given as

$$
\begin{align*}
& k_{12}=P_{i}=\frac{-2 E I_{0}}{\lambda}\left(d_{33} d_{12}-d_{13} d_{23}\right)  \tag{16a}\\
& k_{22}=Q_{i}=\frac{2 E I_{0}}{\lambda}\left(d_{33} d_{11}-d_{13}^{2}\right)  \tag{16b}\\
& k_{32}=M_{i}=\frac{-2 E I_{0}}{\lambda}\left(d_{23} d_{11}-d_{13} d_{12}\right) \tag{16c}
\end{align*}
$$

From equilibrium, the stiffness coefficients or the force vector at node ( $j$ ) corresponding to the unit lateral displacement at node (i) (i.e. $u_{i}=0, v_{i}=$ 1 , and $\theta_{i}=0$ ) can be given as
$k_{42}=-k_{12}=P_{j}$
$k_{52}=Q_{j}=-k_{22}$
$k_{62}=M_{j}=k_{12}\left(\frac{h_{1}-h_{0}}{2}\right)+k_{22} L-k_{32}$
Similarly, the rotational stiffness coefficients can be obtained by substituting $u_{i}=0, v_{i}=0$, and
$\theta_{i}=1$ in the displacement vector $[\delta]$ and solving eq. (11) as follows
$k_{13}=P_{i}=\frac{2 E I_{0}}{\lambda}\left(d_{23} d_{12}-d_{13} d_{22}\right)$
$k_{23}=Q_{i}=\frac{-2 E I_{0}}{\lambda}\left(d_{23} d_{11}-d_{13} d_{12}\right)$
$k_{33}=M_{i}=\frac{2 E I_{0}}{\lambda}\left(d_{22} d_{11}-d_{12}{ }^{2}\right)$
and from equilibrium
$k_{43}=P_{j}=-k_{13}$
$k_{53}=Q_{j}=-k_{23}$
$k_{63}=M_{j}=k_{13}\left(\frac{h_{1}-h_{0}}{2}\right)+k_{23} L-k_{33}$
Taking advantage of the symmetry characteristic in the stiffness matrix, and from equilibrium requirements, the other coefficients of the $6 * 6$ stiffness matrix can be given as follows
$k_{14}=\frac{-2 E I_{0}}{\lambda}\left(d_{33} d_{22}-d_{23}{ }^{2}\right)$
$k_{24}=\frac{2 E I_{0}}{\lambda}\left(d_{33} d_{12}-d_{13} d_{23}\right)$
$k_{34}=\frac{-2 E I_{0}}{\lambda}\left(d_{23} d_{12}-d_{13} d_{22}\right)$
$k_{44}=\frac{2 E I_{0}}{\lambda}\left(d_{33} d_{22}-d_{23}{ }^{2}\right)$
$k_{54}=\frac{-2 E I_{0}}{\lambda}\left(d_{33} d_{12}-d_{13} d_{23}\right)$
$k_{64}=k_{14}\left(\frac{h_{1}-h_{0}}{2}\right)+k_{24} L-k_{34}$
$k_{15}=\frac{2 E I_{0}}{\lambda}\left(d_{33} d_{12}-d_{13} d_{23}\right)$
$k_{25}=\frac{-2 E I_{0}}{\lambda}\left(d_{33} d_{11}-d_{13}{ }^{2}\right)$

$$
\begin{align*}
& k_{35}=\frac{2 E I_{0}}{\lambda}\left(d_{23} d_{11}-d_{13} d_{12}\right)  \tag{19c}\\
& k_{45}=\frac{-2 E I_{0}}{\lambda}\left(d_{33} d_{12}-d_{13} d_{23}\right)  \tag{19d}\\
& k_{55}=\frac{2 E I_{0}}{\lambda}\left(d_{33} d_{11}-d_{13}^{2}\right)  \tag{19e}\\
& k_{65}=k_{15}\left(\frac{h_{1}-h_{0}}{2}\right)+k_{25} L-k_{35}  \tag{19f}\\
& k_{16}=k_{11}\left(\frac{h_{1}-h_{0}}{2}\right)+k_{21} L-k_{31}  \tag{20a}\\
& k_{26}=k_{12}\left(\frac{h_{1}-h_{0}}{2}\right)+k_{22} L-k_{32}  \tag{20b}\\
& k_{36}=k_{13}\left(\frac{h_{1}-h_{0}}{2}\right)+k_{23} L-k_{33}  \tag{20c}\\
& k_{46}=-k_{11}\left(\frac{h_{1}-h_{0}}{2}\right)-k_{21} L+k_{31}  \tag{20d}\\
& k_{56}=-k_{12}\left(\frac{h_{1}-h_{0}}{2}\right)-k_{22} L+k_{32}  \tag{20e}\\
& k_{66}=k_{16}\left(\frac{h_{1}-h_{0}}{2}\right)+k_{62} L-k_{36} \tag{20f}
\end{align*}
$$

where $\lambda$ is given by eq. (15)
Similar results can be obtained for the stiffness coefficients given by eqs. (18a)-(20f) by using the same procedure presented before. Therefore, substituting for $M_{x}, Q_{x}$, and $P_{x}$ in the strain energy expression (eq. (1)) interms of the nodal force vector at node ( $j$ ) and following the same previous procedure will yield the same expressions given in eqs. (18a)-(20f).
The obtained stiffness coefficients can be written in a matrix form as

$$
[K]=\left[\begin{array}{cccccc}
k_{11} & k_{12} & k_{13} & k_{14} & k_{15} & k_{16}  \tag{21}\\
& k_{22} & k_{23} & k_{24} & k_{25} & k_{26} \\
& & k_{33} & k_{34} & k_{35} & k_{36} \\
& \text { sym. } & & k_{44} & k_{45} & k_{46} \\
& & & & k_{55} & k_{56} \\
& & & & & k_{66}
\end{array}\right]
$$

For a beam element having an orientation as shown in Fig. 2, the stiffness coefficients can be

## Musab Aied Qissab Al-Janabi

obtained by the same previous procedure. The stiffness matrix for this case can be written interms of the obtained coefficients (eqs. (14a)(20f)) of the above stiffness matrix as follows

$$
[\bar{K}]=\left[\begin{array}{cccccc}
\bar{k}_{11} & \bar{k}_{12} & \bar{k}_{13} & \bar{k}_{14} & \bar{k}_{15} & \bar{k}_{16}  \tag{22}\\
& \bar{k}_{22} & \bar{k}_{23} & \bar{k}_{24} & \bar{k}_{25} & \bar{k}_{26} \\
& & \bar{k}_{33} & \overline{k_{34}} & \bar{k}_{35} & \overline{k_{36}} \\
& \text { sym. } & & \overline{k_{44}} & \bar{k}_{45} & \overline{k_{46}} \\
& & & & \bar{k}_{55} & \bar{k}_{56} \\
& & & & & \bar{k}_{66}
\end{array}\right]
$$

in which
$\bar{k}_{11}=\frac{2 E I_{0}}{\lambda}\left(d_{33} d_{22}-d_{23}{ }^{2}\right)$
$\bar{k}_{12}=\frac{2 E I_{0}}{\lambda}\left(d_{33} d_{12}-d_{13} d_{23}\right)$
$\bar{k}_{13}=k_{14}\left(\frac{h_{1}-h_{0}}{2}\right)+k_{24} L-k_{34}$
$\bar{k}_{14}=\frac{-2 E I_{0}}{\lambda}\left(d_{33} d_{22}-d_{23}{ }^{2}\right)$
$\bar{k}_{15}=\frac{-2 E I_{0}}{\lambda}\left(d_{33} d_{12}-d_{13} d_{23}\right)$
$\bar{k}_{16}=\frac{-2 E I_{0}}{\lambda}\left(d_{23} d_{12}-d_{13} d_{22}\right)$
$\bar{k}_{22}=\frac{2 E I_{0}}{\lambda}\left(d_{33} d_{11}-d_{13}{ }^{2}\right)$
$\bar{k}_{23}=k_{12}\left(\frac{h_{1}-h_{0}}{2}\right)+k_{22} L-k_{32}$
$\bar{k}_{24}=\frac{-2 E I_{0}}{\lambda}\left(d_{33} d_{12}-d_{13} d_{23}\right)$
$\bar{k}_{25}=\frac{-2 E I_{0}}{\lambda}\left(d_{33} d_{11}-d_{13}{ }^{2}\right)$
$\bar{k}_{26}=\frac{-2 E I_{0}}{\lambda}\left(d_{23} d_{11}-d_{13} d_{12}\right)$
$\bar{k}_{33}=k_{16}\left(\frac{h_{1}-h_{0}}{2}\right)+k_{62} L-k_{36}$
$\bar{k}_{34}=-k_{14}\left(\frac{h_{1}-h_{0}}{2}\right)-k_{24} L+k_{34}$

## Exact Stiffness Matrix for Nonprismatic

Beams with Parabolic Varying Depth

$$
\begin{align*}
& \bar{k}_{35}=-k_{12}\left(\frac{h_{1}-h_{0}}{2}\right)-k_{22} L+k_{32}  \tag{25b}\\
& \bar{k}_{36}=k_{13}\left(\frac{h_{1}-h_{0}}{2}\right)+k_{23} L-k_{33}  \tag{25c}\\
& \bar{k}_{44}=\frac{2 E I_{0}}{\lambda}\left(d_{33} d_{22}-d_{23}^{2}\right)  \tag{25d}\\
& \bar{k}_{45}=\frac{2 E I_{0}}{\lambda}\left(d_{33} d_{12}-d_{13} d_{23}\right)  \tag{25e}\\
& \bar{k}_{46}=\frac{2 E I_{0}}{\lambda}\left(d_{23} d_{12}-d_{13} d_{22}\right)  \tag{25f}\\
& \bar{k}_{55}=\frac{2 E I_{0}}{\lambda}\left(d_{33} d_{11}-d_{13}^{2}\right)  \tag{26a}\\
& \bar{k}_{56}=\frac{2 E I_{0}}{\lambda}\left(d_{23} d_{11}-d_{13} d_{12}\right)  \tag{26b}\\
& \bar{k}_{66}=\frac{2 E I_{0}}{\lambda}\left(d_{22} d_{11}-d_{12}^{2}\right) \tag{26c}
\end{align*}
$$

For elements having no axial force-bending moment coupling such as when the centroidal axis of the element is straight (i.e. the element is symmetric about centroidal axis), the obtained coefficients can be modified by substituting the following values for the[ $D$ ]matrix coefficients (eq. (12)) such that

$$
[D]=\left[\begin{array}{lll}
d_{11} & d_{12} & d_{13} \\
d_{12} & d_{22} & d_{23} \\
d_{13} & d_{23} & d_{33}
\end{array}\right]=\left[\begin{array}{ccc}
\left(2 I_{0} a_{0}\right) & 0 & 0 \\
0 & \left(2\left(a_{6}\right)+4 E I_{0} K_{v}\right) & -\left(a_{5}\right) \\
0 & -\left(a_{5}\right) & \left(2 a_{3}\right)
\end{array}\right]
$$

## FIXED-END LOAD VECTOR DUE TO UNIFORM LOAD

Consider a nonprismatic beam element with a parabolic varying depth under a uniform load $q$ as shown in Fig. 3(a). By using the principle of superposition and knowing that the sum of all displacement components in each direction at the fixed end must be zero, the flexibility matrix equation corresponding to node (i) can be written as

$$
\begin{align*}
& {\left[\begin{array}{ccc}
\frac{1}{\sqrt{c}}\left(\beta_{1}\right) & \frac{h_{0}}{8 c}(\gamma) & \frac{-h_{0}}{2 \sqrt{c}}\left(\gamma_{1}-\beta\right) \\
\frac{h_{0}}{8 c}(\gamma) & \frac{1}{c^{3 / 2}}(\alpha) & \frac{-1}{4 c}\left(1-\frac{1}{\left(1+c L^{2}\right)^{2}}\right) \\
\frac{-h_{0}}{2 \sqrt{c}}(\alpha) \frac{-1}{4 c}\left(1-\frac{1}{\left(1+c L^{2}\right)^{2}}\right) & \frac{1}{\sqrt{c}}(\beta)
\end{array}\right]\left\{\begin{array}{c}
P_{F i} \\
Q_{F i} \\
M_{F i}
\end{array}\right\}} \\
& =\frac{q}{c^{3 / 2}}\left\{\begin{array}{l}
\frac{h_{0}}{4}\left(\alpha_{1}\right) \\
\frac{\sin ^{4} \phi_{0}}{8 \sqrt{c}} \\
\frac{-1}{2}(\alpha)
\end{array}\right\} \tag{28}
\end{align*}
$$

where
$\alpha=\frac{1}{8} \phi_{0}-\frac{1}{32} \sin \left(4 \phi_{0}\right)$
$\beta=\frac{1}{4} \cos ^{3} \phi_{0} \sin \phi_{0}+\frac{3}{4}\left(\frac{1}{2} \phi_{0}+\frac{1}{4} \sin \left(2 \phi_{0}\right)\right)$
$\gamma=\left(1+\frac{1}{\left(1+c L^{2}\right)^{2}}-\frac{2}{\left(1+c L^{2}\right)}\right)$
$\alpha_{1}=\left(\frac{3}{8} \phi_{0}-\frac{1}{4} \sin \left(2 \phi_{0}\right)+\frac{1}{32} \sin \left(4 \phi_{0}\right)\right)$
$\beta_{1}=\left(\frac{I_{0}}{A_{0}}+\frac{h_{0}{ }^{2}}{4}\right) \phi_{0}+\frac{h_{0}{ }^{2}}{4}\left(\beta-2 \gamma_{1}\right)$
$\gamma_{1}=\frac{1}{2}\left(\phi_{0}+\frac{1}{4} \sin \left(2 \phi_{0}\right)\right)$
Writing the flexibility matrix $[F]$ in eq. (28) in the form

$$
\begin{align*}
{[F] } & =\left[\begin{array}{lll}
f_{11} & f_{12} & f_{13} \\
f_{21} & f_{22} & f_{23} \\
f_{31} & f_{32} & f_{33}
\end{array}\right] \\
= & {\left[\begin{array}{ccc}
\frac{1}{\sqrt{c}}\left(\beta_{1}\right) & \frac{h_{0}}{8 c}(\gamma) & \frac{-h_{0}}{2 \sqrt{c}}\left(\gamma_{1}-\beta\right) \\
\frac{h_{0}}{8 c}(\gamma) & \frac{1}{c^{3 / 2}}(\alpha) & \frac{-1}{4 c}\left(\sqrt[1]{\sqrt{c}} \frac{1}{\left(1+c L^{2}\right)^{2}}\right) \\
\frac{-h_{0}}{2 \sqrt{c}}(\alpha) \frac{-1}{4 c}\left(1-\frac{1}{\left(1+c L^{2}\right)^{2}}\right) & \frac{1}{\sqrt{c}}(\beta)
\end{array}\right] } \\
& \sqrt{ } \tag{35}
\end{align*}
$$

and solving eq. (28) for the unknown fixed end reactions $P_{F i}, Q_{F i}$, and $M_{F i}$ yields

$$
\begin{align*}
P_{F i}= & \frac{q}{\psi}\left(\frac{h_{0} \alpha_{1}}{4 c^{3 / 2}}\left(f_{33} f_{22}-f_{23} f_{32}\right)-\frac{\sin ^{4} \phi_{0}}{8 c^{2}}\left(f_{33} f_{12}-f_{32} f_{13}\right)\right. \\
& \left.-\frac{\alpha}{2 c^{3 / 2}}\left(f_{23} f_{12}-f_{22} f_{13}\right)\right)  \tag{36a}\\
Q_{F i}= & \frac{q}{\psi}\left(\frac{-h_{0} \alpha_{1}}{4 c^{3 / 2}}\left(f_{33} f_{21}-f_{31} f_{23}\right)+\frac{\sin ^{4} \phi_{0}}{8 c^{2}}\left(f_{33} f_{11}-f_{31} f_{13}\right)\right. \\
& \left.+\frac{\alpha}{2 c^{3 / 2}}\left(f_{23} f_{11}-f_{21} f_{13}\right)\right)  \tag{36b}\\
M_{F i}= & \frac{q}{\psi}\left(\frac{h_{0} \alpha_{1}}{4 c^{3 / 2}}\left(f_{32} f_{21}-f_{31} f_{22}\right)-\frac{\sin ^{4} \phi_{0}}{8 c^{2}}\left(f_{32} f_{11}-f_{31} f_{12}\right)\right. \\
& \left.-\frac{\alpha}{2 c^{3 / 2}}\left(f_{22} f_{11}-f_{21} f_{12}\right)\right) \tag{36c}
\end{align*}
$$

where

$$
\begin{align*}
\psi & =f_{11}\left(f_{22} f_{33}-f_{32} f_{23}\right)-f_{12}\left(f_{33} f_{21}-f_{31} f_{23}\right) \\
& +f_{13}\left(f_{32} f_{21}-f_{31} f_{22}\right) \tag{37}
\end{align*}
$$

The right hand side of eq. (28) represents the free-end displacement vector at node (i) due to applied load $q$.

## Musab Aied Qissab Al-Janabi

From equilibrium, the fixed-end reactions at node ( $j$ ) can be given as
$P_{F j}=-P_{F i}, Q_{F j}=q L-Q_{F i}$, and
$M_{F j}=P_{F i}\left(\frac{h_{1}-h_{0}}{2}\right)+Q_{F i}-M_{F i}-\frac{q L^{2}}{2}$

## FIXED-END LOAD VECTOR DUE TO CONCENTRATED LOAD

For a beam element loaded by a concentrated load $(P)$ at an arbitrary location defined by a distance $\left(L_{1}\right)$ from the left support as shown in Fig. 3(b), the fixed-end load vector can be derived by using the same procedure given before. The flexibility matrix equation for this case can be given as

$$
\left.\begin{array}{l}
{\left[\begin{array}{ccc}
\frac{1}{\sqrt{c}}\left(\beta_{1}\right) & \frac{h_{0}}{8 c}(\gamma) & \frac{-h_{0}}{2 \sqrt{c}}\left(\gamma_{1}-\beta\right) \\
\frac{h_{0}}{8 c}(\gamma) & \frac{1}{c^{3 / 2}}(\alpha) & \frac{-1}{4 c}\left(1-\frac{1}{\left(1+c L^{2}\right)^{2}}\right) \\
\frac{-h_{0}}{2 \sqrt{c}}(\alpha) \frac{-1}{4 c}\left(1-\frac{1}{\left(1+c L^{2}\right)^{2}}\right) & \frac{1}{\sqrt{c}}(\beta)
\end{array}\right]\left\{\begin{array}{c}
P_{F i} \\
Q_{F i} \\
M_{F i}
\end{array}\right\}}
\end{array}\right] \begin{aligned}
& =P\left\{\begin{array}{l}
\delta_{1} \\
\delta_{2} \\
\delta_{3}
\end{array}\right\}
\end{aligned}
$$

where

$$
\begin{align*}
\delta_{1} & =\frac{-h_{0}}{8 c}\left(2\left(\frac{1}{\left(1+c L_{1}^{2}\right)}-\frac{1}{\left(1+c L^{2}\right)}\right)+\left(\frac{1}{\left(1+c L^{2}\right)^{2}}\right.\right. \\
& \left.\left.-\frac{1}{\left(1+c L_{1}^{2}\right)^{2}}\right)+4 L_{1} \sqrt{c}\left(\left(\phi_{1}+\beta\right)-\left(\phi_{0}+\bar{\beta}\right)\right)\right) \tag{40a}
\end{align*}
$$

$$
\begin{align*}
\delta_{2} & =\frac{1}{4 c^{3 / 2}}\left(\left(\frac{1}{2}\left(\phi_{0}-\phi_{1}\right)-\frac{1}{8}\left(\sin \left(4 \phi_{0}\right)-\sin \left(4 \phi_{1}\right)\right)\right.\right. \\
& \left.+L_{1} \sqrt{c}\left(\frac{1}{\left(1+c L^{2}\right)^{2}}-\frac{1}{\left(1+c L_{1}^{2}\right)^{2}}\right)\right) \tag{40b}
\end{align*}
$$

$$
\begin{equation*}
\delta_{3}=\frac{-1}{4 c}\left(4 L_{1} \sqrt{c}(\beta-\bar{\beta})+\left(\frac{1}{\left(1+c L_{1}^{2}\right)^{2}}-\frac{1}{\left(1+c L^{2}\right)^{2}}\right)\right) \tag{40c}
\end{equation*}
$$

## Exact Stiffness Matrix for Nonprismatic

$$
\begin{align*}
& \bar{\beta}=\frac{1}{4} \cos ^{3} \phi_{1} \sin \phi_{1}+\frac{3}{4}\left(\frac{1}{2} \phi_{1}+\frac{1}{4} \sin \left(2 \phi_{1}\right)\right), \\
& \phi_{1}=\tan ^{-1}\left(\sqrt{c} L_{1}\right) \tag{41}
\end{align*}
$$

and all other constants are previously defined.
Solving eq. (39) yields the following expressions for the unknowns fixed-end reactions at node (i) interms of the flexibility matrix coefficients

$$
\begin{align*}
P_{F i} & =\frac{P}{\psi}\left(\delta_{1}\left(f_{33} f_{22}-f_{23} f_{32}\right)-\delta_{2}\left(f_{33} f_{12}-f_{32} f_{13}\right)\right. \\
& \left.+\delta_{3}\left(f_{23} f_{12}-f_{22} f_{13}\right)\right) \tag{42a}
\end{align*}
$$

$Q_{F i}=\frac{P}{\psi}\left(-\delta_{1}\left(f_{33} f_{21}-f_{31} f_{23}\right)+\delta_{2}\left(f_{33} f_{11}-f_{31} f_{13}\right)\right.$
$\left.-\delta_{3}\left(f_{23} f_{11}-f_{21} f_{13}\right)\right)$

$$
\begin{align*}
M_{F i} & =\frac{P}{\psi}\left(\delta_{1}\left(f_{32} f_{21}-f_{31} f_{22}\right)-\delta_{2}\left(f_{32} f_{11}-f_{31} f_{12}\right)\right.  \tag{42b}\\
& \left.+\delta_{3}\left(f_{22} f_{11}-f_{21} f_{12}\right)\right) \tag{42c}
\end{align*}
$$

And from equilibrium, the fixed-end reactions at node ( $j$ ) can be given as
$P_{F j}=-P_{F i}, Q_{F j}=P-Q_{F i}$, and
$M_{F j}=P_{F i}\left(\frac{h_{1}-h_{0}}{2}\right)+Q_{F i}-M_{F i}-P\left(L-L_{1}\right)$

## NUMERICAL EXAMPLES

To verify the correctness of the derived matrices, the following examples are considered.

## Example 1

Consider the beam shown in Fig. 4 which has a single span of length, $L=1$ units and fixed at both ends. The beam is carrying a uniformly distributed load, $q=1$. The depth of the beam is $h_{0}=1$ units at the left end and increase parabolically to $h_{1}=2$ units at the right end and has a unit width, $b=1$ units. The beam was analyzed by Khan and AlGahtani (1995) by using the boundary integral method (BIM). Using the same dimensionless data adopted by $\mathrm{Al}-\mathrm{Gahtani}$ and Khan, the beam is reanalyzed by using the derived expressions for
the fixed-end load vector. The results are presented in Table 1.

## Example 2

Consider a three-span continuous bridge girder having a parabolic varying depth as shown in Fig. 5. The depth of the girder varies from $h=2.5$ units at both ends and midspan to $h=7.5$ units at interior supports. This problem has been analyzed by Timoshenko and Young 1965 ; Al-Gahtani and Khan (1998).Using the same dimensionless data, the problem is reanalyzed by using the derived stiffness matrices and the fixed- end load vector. The analysis results (at nodes $1,2,3,4$, and 5 ) are presented in Table 2 together with those obtained by Timoshenko and Young (1965) ; Al-Gahtani and Khan (1998). It can be seen that when the girder is restraint against horizontal (axial) displacement at supports (i.e. all supports are hinges), the results diverge significantly from that obtained by other methods as given in the last column of Table 2. This is due to the coupling effect between the axial force generated from axial restraint and the bending moment which reduces the displacement, rotations, and bending moments.

## Example 3

Finally, consider the beam shown in Fig. 6 which has a span of unit length and a depth varies parabolically from $h=1.0$ units at left end to $h=2.0$ units at the right end. The beam is supported at the left end on a translational spring with a stiffness constant of $K=10$, fixed at the right end and carrying a concentrated load $P=1.0$ at the left end. The beam is analyzed by using the derived stiffness matrix interms of the given dimensionless data. The analysis results are presented in Table 3 in which the third column show the results when the shear deformation is considered. The results show a significant effect for shear deformation. This is due to the large translational stiffness relative to the rotational stiffness for this beam.

## SUMMARY AND CONCLUSIONS

In this paper, an exact stiffness matrix and fixedend load vector for beams with parabolic varying depth are derived. An exact integrations were carried out to obtain the strain energy equation
including bending, shear, and axial strain energies which is used to obtain the exact expressions for the coefficients of the stiffness matrix. The correctness of the derived expressions is examined through numerical examples. It is found that the derived stiffness matrices and the equivalent load vector are efficient for the analysis of structures having members with parabolic varying depth. Furthermore, the derived matrices can be used in the structural analysis softwars as compared to the available analytical solutions. The obtained results show a significant effect for axial force-bending moment coupling in continuous beams with axial restraint.

## REFERENCES

Al-Gahtani, H. J. (1996). "Exact stiffnesses for tapered members" J. Struct. Eng., 122(10), 12341239.

Al-Gahtani, H. J., and Khan, M. S. (1998). "Exact analysis of nonprismatic beams" J. Eng. Mech., 124(11), 1290-1293.

Bathe, K. J., (1996). "Finite element procedures" Prentice-Hall, New Jersey.

Boresi, A. P., and Schmidt, R. J. (2003). "Advanced mechanics of materials" $6^{\text {th }}$ Ed., Wiley, New York.

Khan, M. S., and Al-Gahtani, H. J. (1995). "Analysis of continuous non-prismatic beams using boundary procedures" The Fourth Saudi Engineering Conference, V11, 137-145.

Luo, Y., Xu, X., and Wu, F. (2007). "Accurate stiffness matrix for nonprismatic members" $J$. Struct. Eng., 133(8), 1168-1175.

Timoshenko, S. P., and Young, D. H. (1965). "Theory of structures" $2^{\text {nd }}$ Ed., McGraw-Hill, New York.
$h_{x}=$ depth of beam at any section $x$;
$I_{0}, I_{x}=$ moment of inertia of beam cross-section;
$K_{v}=$ coefficient defined in eq. (6);
$[K],[\bar{K}]=$ stiffness matrices;
$L=$ length of beam;

## Musab Aied Qissab Al-Janabi

$M, P, Q=$ bending moment, axial force, and shear force;
$U=$ total strain energy;
$u, v=$ displacements in $X$ and $Y$ directions;
$\alpha, \beta, \gamma, \alpha_{1}, \beta_{1}, \gamma_{1}=$ variables defined in eqs. (29)(34);
$\delta_{1}, \delta_{2}, \delta_{3}=$ variables defined in eqs. (40a)-(40c);

## NOTATION

The following symbols are used in this paper:
$A_{0}=$ minimum cross-sectional area of beam element;
$b=$ width of beam cross-section;
$c=$ depth variation variable;
$[D]=$ matrix defined by eq. (12)
$E=$ Young's modulus;
$[F]=$ flexibility matrix defined by eq. (35);
$G=$ shear modulus;
$h_{0}, h_{1}=$ minimum , and maximum depth of beam respectively;

Table 1. Fixed-End Actions

| Variable | BIM $^{\mathrm{a}}$ | Exact $^{\text {b }}$ |
| :---: | :---: | :---: |
| $P_{F 1}$ | 0.0000 | 0.0088 |
| $Q_{F 1}$ | 0.4267 | 0.4232 |
| $M_{F 1}$ | 0.0568 | 0.0564 |
| $P_{F 2}$ | 0.0000 | 0.0088 |
| $Q_{F 2}$ | 0.5733 | 0.5768 |
| $M_{F 2}$ | 0.1301 | 0.1287 |
| a Khan and Al-Gahtani (1995) <br> b <br> b Present Analysis |  |  |

Table 2. Supports Reactions, Midspan Deflection, and Angles of rotation

| Variable | BIM ${ }^{\text {a }}$ | Slop-Deflection ${ }^{\text {b }}$ | Exact ${ }^{\text {c }}$ (Free horizontal disp.) | Exact $^{\mathrm{c}}$ (Horizontal disp. is restraint) |
| :---: | :---: | :---: | :---: | :---: |
| $P_{1}$ | 0.000 | 0.000 | 0.000 | -6.489 |
| $P_{2}$ | 0.000 | 0.000 | 0.000 | 98.978 |
| $P_{4}$ | 0.000 | 0.000 | 0.000 | -128.116 |
| $P_{5}$ | 0.000 | 0.000 | 0.000 | 35.667 |
| $Q_{1}$ | 1.510 | 1.500 | 1.337 | 7.090 |
| $Q_{2}$ | 72.450 | 72.850 | 72.644 | 66.165 |
| $Q_{4}$ | 46.620 | 46.150 | 46.768 | 40.187 |
| $Q_{5}$ | -12.580 | -12.500 | -12.732 | -5.433 |
| $M_{2}$ | -593.750 | -594.000 | -598.393 | -408.562 |
| $M_{3}$ | 124.810 | 138.600 | 125.941 | 72.680 |
| $M_{4}$ | -452.810 | -453.000 | -458.562 | -283.633 |
| $\overline{v_{3}}$ | - | - | -30086.330 | -16224.470 |
| $\overline{\theta_{1}}$ | 290.250 | 376.560 | 387.600 | -59.462 |
| $\bar{\theta}_{2}$ | -423.920 | -551.880 | -560.712 | -212.144 |
| $\bar{\theta}_{4}$ | 615.500 | 800.640 | 809.900 | 433.410 |
| $\bar{\theta}_{5}$ | -775.540 | -1006.200 | -1018.890 | -502.100 |
| ${ }^{\text {a }}$ Al-Gahtani and Khan (1998) <br> ${ }^{\mathrm{b}}$ Timoshenko and Young (1965) <br> ${ }^{\text {c }}$ Present Analysis $\overline{v_{3}}=E I_{0} v_{3}, \bar{\theta}_{1}=E I_{0} \theta_{1}, \bar{\theta}_{2}=E I_{0} \theta_{2}, \overline{\theta_{4}}=E I_{0} \theta_{4}, \overline{\theta_{5}}=E I_{0} \theta_{5}$ |  |  |  |  |

Table 3. Displacements, rotation, and Support reactions

| Variable | Exact <br> (no shear <br> deformation) | Exact <br> (with shear <br> deformation) |
| :---: | :---: | :---: |
| $u_{1}$ | -0.01577 | -0.00776 |
| $v_{1}$ | -0.04950 | -0.07515 |
| $\theta_{1}$ | 0.09460 | 0.04658 |
| $Q_{1}$ | 0.4950 | 0.7515 |
| $Q_{2}$ | 0.5050 | 0.2485 |
| $M_{2}$ | -0.5050 | -0.2485 |



Fig. 1. A beam element with parabolic varying depth:
(a) typical element; (b) degrees of freedom and nodal forces


Fig. 2. A beam element with parabolic varying depth


Fig. 3. Beam with parabolic varying depth fixed at both ends under the action of: (a) uniformly distributed load; (b) concentrated load


Fig. 4. A Beam with parabolic varying depth (example 1)


Fig. 5. A three-span continuous bridge girder (example 2)


Fig. 6. A Beam with parabolic varying depth elastically supported at one end and fixed at the other end (example 3)

