

## Image Compression Using 3-D Two-Level Techniques

Zainab Ibraheem Abood Email: zainab2012254@yahoo.com Academic Status: Asist. Teacher

#### ABSTRUCT

In this paper three techniques for image compression are implemented. The proposed techniques consist of three dimension (3-D) two level discrete wavelet transform (DWT), 3-D two level discrete multi-wavelet transform (DMWT) and 3-D two level hybrid (wavelet-multi-wavelet transform) technique. Daubechies and Haar are used in discrete wavelet transform and Critically Sampled preprocessing is used in discrete multi-wavelet transform. The aim is to maintain to increase the compression ratio (CR) with respect to increase the level of the transformation in case of 3-D transformation, so, the compression ratio is measured for each level. To get a good compression, the image data properties, were measured, such as, image entropy (He), percent root-mean-square difference (PRD %), energy retained (Er) and Peak Signal to Noise Ratio (PSNR).

Based on testing results, a comparison between the three techniques is presented. CR in the three techniques is the same and has the largest value in the  $2^{nd}$  level of 3-D. The hybrid technique has the highest PSNR values in the  $1^{st}$  and  $2^{nd}$  level of 3-D and has the lowest values of (PRD %). so, the 3-D 2-level hybrid is the best technique for image compression.

## **KEYWORD:** Image compression, 3-D two level wavelet transform, 3-D two level multi-wavelet transform, 3-D two level hybrid technique, Image data properties.

الخلاصة

تم في هذا البحث بناء ثلاث تقنيات لضغط الصورة. التقنيات المقترحة تتضمن اسلوب التحويل الثنائي المستوى –الثلاثي الابعاد المويجة وقد تم هذا باستعمال (Daubechies) و (Haar) و (Haar) واسلوب التحويل الثنائي المستوى –الثلاثي الابعاد للمويجة وقد تم هذا باستعمال (Daubechies) و (Haar) واسلوب التحويل الثنائي المستوى –الثلاثي الابعاد للمويجة المتعددة وتم هذا باستعمال نوع (Daubechies) و (Critically Sampled preprocessing) والتقنية الاخرى استخدام الاسلوب المويجة – المويجة – المويجة المتعددة وتم هذا باستعمال نوع (Daubechies) والتقنية الاخرى استخدام الاسلوب المويجة – المويجة المتعددة) الثنائي المستوى – الثلاثي الابعاد. الهدف هنا هو الحفاظ على زيادة نسبة الضغط بالصورة مع زيادة مستوى التحويل الثنائي المستوى – الثلاثي الابعاد اللهدف هنا هو الحفاظ على زيادة نسبة الضغط بالصورة مع زيادة مستوى التحويل في حالة التحويل الثلاثي الابعاد لذلك تم هنا قياس نسبة الضغط بالصورة لكل مستوى من بالصورة مع زيادة مستوى التحويل في حالة التحويل الثلاثي المعاد إلابعاد والهدف هنا هو الحفاظ على زيادة نسبة الضغط مستوى المعورة مع زيادة مستوى التحويل في حالة التحويل الثلاثي المعاد إلابعاد واله تم هنا قياس نسبة الضغط بالصورة مع زيادة مستوى التحويل في حالة التحويل الثلاثي الابعاد لذلك تم هنا قياس نسبة الضغط بالصورة ومن هذه الخواص مستويات التحويل. ايضا تم قياس خواص بيانات الصورة وذلك للحصول على ضغط جيد للصورة الاصلية والصورة مقياس الطاقة المتاحة (percent root-mean-square difference) ، النسبة المئوية للجذر التربيعي لمتوسط مربع الفرق بين الصورة الإصلية والمورة المرجعة (قيمة الخط) نسبة الى متوسط مربع الصورة الاصلية (Peak Signal to Noise Ratio) ، ذروة الاشارة نسبة الى التشويه و التشويش فيها فيها مربع الصورة الاصلية (Peak Signal to Noise Ratio) ، والمورة الاشارة نسبة المرجة الاشارة نسبة الى الاشارة نسبة الى التشويه و التشويش فيها (Peak Signal to Noise Ratio)).

اعتمادا على نتائج الاختبار تم مقارنة التقنيات الثلاث وتبين أن تقنية الاسلوب الهجين للمستويين الاول والثاني الثلاثي الابعاد اعطى اعلى قيم لذروة الاشارة نسبة الى التشويه و التشويش فيها واقل قيم للنسبة المئوية للجدر التربيعي لمتوسط مربع الفرق بين الصورة الاصلية والصورة المرجعة نسبة الى متوسط مربع الصورة الاصلية. أما بالنسبة لنسبة الضغط فانها متساوية للتقنيات الثلاث واعلى قيمة لها في المستوى الثاني لثلاثي الابعاد. لذلك فان الاسلوب الهجين الثنائي المستوى – الثلاثي الابعاد هو افضل تقنية لضغط الصورة.

كلمات رئيسية: ضغط الصورة، اسلوب التحويل الثنائي المستوى \_الثلاثي الابعاد للمويجة، اسلوب التحويل الثنائي المستوى \_الثلاثي الابعاد للمويجة المتعددة، اسلوب الهجين الثنائي المستوى \_ الثلاثي الابعاد، خواص بيانات الصورة.

## **INTRODUCTION**

Image compression algorithms aim is to remove redundancy in data in a way which makes image reconstruction possible. This basically means that image compression algorithms try to exploit redundancies in the data; they recognize which data needs to be kept in order to reconstruct the original image and therefore which data can be 'thrown away'. By removing the redundant data, the image can be represented in a smaller number of bits, and hence can be compressed [Karen Lees, 2002],

### **Related Works**

Talib M. Jawad Abbas presented two techniques for comparison. The first technique was the hybrid technique, which used Multiwalidlet. This technique is a combination of 2dimentional Discrete Multi-wavelet Transform (DMWT) and Walidlet Transform, which converts the speech signal from (1-D) into two dimensional (2-D) forms. Next, the 2-D Multiwalidlet transform is applied to each 2-D signal. The second technique used 3D-(DMWT) on multi-walidelet coefficients matrices using GHM four multi-filters and using an oversampled schema of preprocessing [Talib M. Jawad Abbas, 2008].

A method for image compression is described, in the wavelet transform technique the coefficients below a certain threshold are removed so a global threshold is used to improve the wavelet compression technique. The aim is to maintain the retained energy and to increase the compression ratio with respect to other global thresholds commonly used [Macarena Boix, 2010].

In order to develop an efficient compression scheme and to obtain better quality and higher

compression ratio using multi-wavelet transform and embedded coding of multiwavelet coefficients through set partitioning in hierarchical trees algorithm (SPIHT) is used [ Muna F. Al-Sammaraie, 2011]. Different wavelets are used to carry out the transform of test image and the results analyzed according to the values of peak signal to noise ratio obtained the computation time taken and for decomposition and reconstruction [P.M.K. Prasad, 2012].

## COMPRESSION USING WAVELET TRANSFORM:

Wavelet analysis can be used to divide the information of an image into approximation and detail sub signals. The approximation sub signal shows the general trend of pixel values, and three detail sub signals show the vertical, horizontal and diagonal details or fast changes in the image [P.M.K. Prasad, 2012].

Discrete wavelet transform employs two sets of functions, called scaling functions and wavelet functions, which are associated with low pass and high filters, respectively. The first level decomposition mathematical expressions are [Tara Othman, 2006]:

$$y_{\text{high}}[k] = \sum_{n} x[n] \cdot g[2k - n]$$
(1)

$$\mathbf{y}_{\text{low}}[\mathbf{k}] = \sum_{n} \mathbf{x}[n] \cdot \mathbf{h}[2\mathbf{k} - n]$$
(2)

In the decomposition level one, the image will be divided into 4 sub-bands, called LL, LH, HL, and HH. The LL sub-band is a lowresolution residue that has low frequency components, which are often referred to as the average image, LH provides vertical detailed images, HL provides detailed images in the



horizontal direction, finally, the HH sub-band image gives details on the diagonal, while the LL sub-band is divided again at the time of decomposition at a higher level i.e. LL sub-band can be further decomposed into four sub-bands labeled as LL2, LH2, HL2, and HH2 as shown in Fig. (1).

The process is repeated in accordance with the desired level. In this research, a 2- level decomposition is considered.

In the discrete wavelet transform (DWT), there are properties for precise reconstruction. This nature gives a sense that in fact no information is lost after the transformed image is set to its original form. But there are missing information on image data compression with wavelet transform that occurs during quantization. Information loss due to compression should be minimized to keep the quality of the compression.

A good quality compression is generally achieved in the process of memory consolidation, which generates a small reduction, and vice versa. The quality of an image is subjective and relative, depending on the observation of the user [P.M.K. Prasad, 2012].

## COMPRESSION USING MULTI-WAVELET TRANSFORMS:

Multi-wavelet possess more than one scaling function offer the possibility of superior performance and high degree of freedom for image processing applications, compared with scalar wavelets. Multi-wavelets can achieve better level of performance than scalar wavelets with similar computational complexity. In the case of nonlinear approximation with multiwavelet basis, the multi-wavelet coefficients are "reordered" effectively according to how significant they in reducing are the approximation error [S. Esakkirajan, 2008].

The multi scaling function and the multiwavelet function will satisfy matrix dilation as in the following equations [Muna F. Al-Sammaraie, 2011]:

$$\emptyset(t) = \sqrt{2} \sum_{k=-\infty}^{\infty} H_k \emptyset(2t-k)$$
(3)

$$\varphi(t) = \sqrt{2} \sum_{k=-\infty}^{\infty} G_k \varphi(2t - k)$$
(4)

The multi-wavelet used here have two channels, so there will be two sets of scaling coefficients and two sets of wavelet coefficients. Since, multiple iteration over the low - pass data is desired, the scaling coefficients for the two channels are stored together. Likewise, the wavelet coefficients for the two channels are also stored together. The multi-wavelet decomposition sub-bands are shown in Fig. (2). for multi-wavelets the L and H have subscripts denoting the channel which the data corresponds. For example, the sub-band labeled L1H2 corresponds to data from the second channel high pass filter in the horizontal direction and the first channel low pass filter in the vertical direction. This shows how a single level of decomposition is done. In practice, more than one decomposition performed on the image. Successive iterations are performed on the low pass coefficients from the previous stage to further reduce the number of low pass coefficients. Since the low pass coefficients contain most of the original signal energy, this iteration process yields better image compression [P.V.N.Reddy, 2011].

#### **IMAGE DATA PROPERTIES:**

In order to make meaningful comparison of different image compression techniques, it is necessary to know the properties of the image. One property is the image entropy; a less details picture will have low entropy. For example a very low frequency, highly correlated image will be compressed well by many different techniques; one way of calculating entropy is suggested by:

$$\mathbf{H}_{e} = -\sum_{k=0}^{G-1} \mathbf{P}(k) \operatorname{Log}_{2}[\mathbf{P}(k)]$$
(5)

where G is the image grey-levels and the probability of grey-level k is p(k). The entropy also can be calculated using:

$$\mathbf{H}_{\mathbf{e}} = \text{Image Entropy}(\mathbf{I}(\mathbf{x}, \mathbf{y}))$$
(6)

where I(x,y) is the original image [Karen Lees, 2002].

The most common criterion to measure reconstructed image quality is the Percent Root-mean-square Difference (PRD%).

Let X[n] and X'[n] be the original and reconstructed signals, respectively, N is the length of the window over which the metrics are calculated, and e[n] = X[n] - X'[n] the coding noise [Carlos Bazán-Prieto, 2012]. PRD parameter as quality measurement, can mask the real performance of an algorithm since it depends on the mean value of the original signal [Manuel Blanco, 2005], it is given by:

$$PRD = \sqrt{\frac{\sum_{n=0}^{N-1} e^{2}[n]}{\sum_{n=0}^{N-1} x^{2}[n]}} \times 100$$
(7)

The PRD describes the error in terms of percentage of image energy which is useful to assess the impact of the error on the image. [Carlos Bazán-Prieto, 2012]:

There are two things that can be used as benchmarks of compression quality, the Peak Signal to Noise Ratio (PSNR) and compression ratio (CR). PSNR is one of the parameters that can be used to quantify image quality. PSNR parameter is often used as a benchmark level of similarity between reconstructed images with the original image. A larger PSNR produces better image quality. PSNR equation is illustrated below [P.M.K. Prasad, 2012]:

$$PSNR = 20\log_{10}\frac{255}{\sqrt{MSE}}$$
(8)

where

$$MSE = \frac{1}{mn} \sum_{y=1}^{m} \sum_{x=1}^{n} (I(x,y) - I'(x,y))^{2}$$
(9)

where I'(x,y) is the reconstructed image, m and n are the dimensions of the image.

Compression ratio is the ratio of number of bits required to represent the data before compression to the number of bits required to represent data after compression. Increase of compression ratio causes more effective compression technique employed and vice versa [Nagamani .K, 2012].

To reach this goal, compression methods introduce certain, sometimes undesirable, effects such as the increase of computational complexity, processing delays, and coding noise or distortion. In order to quantify the effect of distortion, two objective metrics are used: PRD and Root Mean Square Error (RMSE) [Carlos Bazán-Prieto, 2012].

To analyze the efficiency of the compressor, one can use as a parameter, the energy retained:

$$E_{\rm r} = \frac{\|I_{\rm c}(x,y)\|^2}{\|I(x,y)\|^2} \times 100$$
(10)

where  $I_c(x,y)$  represents the compressed image [Macarena Boix, 2010].

## THE PROPOSED TECHNIQUES BLOCK DIAGRAM:

The proposed technique consists of three techniques applied to the image after image preprocessing step, these techniques are:

- 1. Three dimension (3-D) two-level discrete wavelet transform.
- 2. 3-D two-level discrete multi-wavelet transform.
- 3. 3-D two-level hybrid (wavelet- multi-wavelet transform) technique.

The transformation algorithm is applied in x, y direction then applied in the *z*-direction [Talib M. Jawad Abbas, 2008], i.e., a 2-D transform (1<sup>st</sup> and 2<sup>nd</sup> level) is applied in x, y direction then 1-D transform (1<sup>st</sup> and 2<sup>nd</sup> level) is applied in the *z*-direction.

Fig. (3) shows the block diagram of 3-D twolevel wavelet image compression, Fig. (4) shows the block diagram of 3-D two-level multiwavelet image compression and Fig. (5) shows  $\bigcirc$ 

the block diagram of proposed 3-D two-level hybrid technique

In this research, the parameters, PRD, PSNR and CR are calculated for all proposed techniques, i.e., for each first and second level in 3-D wavelet, multi-wavelet and hybrid techniques.

## **IMAGE PREPROCESSING:**

The first step is to deal with the image using some of image processing techniques in order to prepare it to the next step. So the following steps must be followed:

- 1. Input the color or grey image of any size or format.
- 2.Convert the image to a grey-scale form (if it is color). By using matlab functions, one can reconstruct the color image.
- 3. Resize the image into a nearest square and to power of two in order to apply DWT or DMWT, i.e., the conditions of DWT or DMWT.
- 4.Some of images are resized to be of size (256\*256) which is the nearest square and power of two to their original sizes, some of them are resized to be of size (512\*512) while the other are resized to be of size (1024\*1024).

## COMPUTATION OF THE PROPOSED TECHNIQUE ALGORITHM:

## A: 3-D Two-Level Wavelet Transform:

The following steps illustrate the computation of 3-D two-level wavelet transform:

**1.** For a general NxNxM, 3-D array, where N\*N is the dimension of the image and M=4=no. of matrices, i.e.4 input images, apply a single level discrete 2-D wavelet transform using Daubechies wavelet transform for all matrices.

**2**. Apply a 2<sup>nd</sup> level 2-D DWT using Daubechies wavelet transform for each low – low sub-band of each matrix.

3. Apply a single level 1-D Haar DWT to each low-low sub band (those produced from step 2) in the z-direction. This can be done as follows:
a. Construct a vector (v) containing four

elements (this number as the number of the matrices), v (1, 1) =  $[a_{11} \ b_{11} \ c_{11} \ d_{11}]$ , where  $a_{11}, b_{11}, c_{11}$  and  $d_{11}$  are the first elements in each matrix.

**b.** Construct a second vector containing four elements, v  $(1, 2) = [a_{12} \ b_{12} \ c_{12} \ d_{12}]$ , where  $a_{12}, b_{12}, c_{12}$  and  $d_{12}$  are the elements in the position first raw and second column in each matrix.

**c.** The same procedure continue till reach to the vector numbered (N/4\*N/4), where (N/4\*N/4) is equal to the size of the low-low sub-band that produced from **step 2**.

**d.** Apply a single level 1-D Haar DWT to each vector.

**4.** Apply a  $2^{nd}$  level 1-D Haar DWT to the approximation coefficients vector of each vector that produced from **step 3**.

**5.** Finally, Take only the approximation coefficients vector that produced from **step 4**.

# **<u>B:</u>** 3-D Two - Level Multi-wavelet Transform:

The following steps illustrate the computation of 3-D two-level multi-wavelet transform:

**1.** For a general NxNxM, 3-D array, where N\*N is the dimension of the image and M=4=no. of matrices, i.e.4 input images, apply a single level critically sampled preprocessing 2-D DMWT for all matrices.

**2.** Apply a 2<sup>nd</sup> level critically sampled preprocessing 2-D DMWT for each low–low sub-band of each matrix.

**3.** Apply a single level 1-D DMWT to each low-low sub-band (those produced from **step 2**) in the z-direction. This can be done as follows:

**a.** Construct a vector (u) containing four elements (this number as the number of the matrices),  $u(1,1) = [e_{11} \ f_{11} \ g_{11} \ h_{11}]$ , where  $e_{11}$ ,  $f_{11}$ ,  $g_{11}$  and  $h_{11}$  are the first elements in each matrix.

**b.** Construct a second vector which contain four elements,  $\mathbf{u} (1, 2) = [\mathbf{e}_{12} \ \mathbf{f}_{12} \ \mathbf{g}_{12} \ \mathbf{h}_{12}]$ , where  $\mathbf{e}_{12}$ ,  $\mathbf{f}_{12}$ ,  $\mathbf{g}_{12}$  and  $\mathbf{h}_{12}$  are the elements in the

position first raw and second column in each matrix.

**c.** The same procedure continue till reach to the vector numbered (N/4\*N/4), where (N/4\*N/4) is equal to the size of the low-low sub-band that produced from **step 2**.

**d**. Apply a single level 1-D critically sampled preprocessing DMWT to each vector.

**4.** Apply a second level 1-D critically sampled preprocessing DMWT to the low sub-band that produced from **step 3**.

**5.** Finally, Take only the low sub-band that produced from **step 4.** 

## **<u>C:</u> 3-D** Two - Level Hybrid Technique:

The following steps illustrate the computation of 3-D two-level wavelet-multi-wavelet transform:

**1.** For a general NxNxM, 3-D array, where N\*N is the dimension of the image and M=4=no. of matrices, i.e.4 input images, apply a single level discrete 2-D wavelet transform using Daubechies wavelet transform for all matrices.

**2**. Apply a 2<sup>nd</sup> level 2-D DWT using Daubechies wavelet transform for each low – low sub-band of each matrix.

**3.** Apply a single level 1-D DMWT to each low-low sub-band (those produced from **step 2**) in the z-direction. This can be done as follows:

**a.** Construct a vector (w) containing four elements (this number as the number of the matrices),  $w(1,1)=[\mathbf{q_{11}} \ \mathbf{r_{11}} \ \mathbf{s_{11}} \ \mathbf{t_{11}}]$ , where  $\mathbf{q_{11}}, \mathbf{r_{11}}, \mathbf{s_{11}}$  and  $\mathbf{t_{11}}$  are the first elements in each matrix.

**b.** Construct a second vector which contain four elements, w  $(1, 2) = [\mathbf{q}_{12} \ \mathbf{r}_{12} \ \mathbf{s}_{12} \ \mathbf{t}_{12}]$ , where  $\mathbf{q}_{12}, \mathbf{r}_{12}, \mathbf{s}_{12}$  and  $\mathbf{t}_{12}$  are the elements in the

position first raw and second column in each matrix.

**c.** The same procedure continue till reach to the vector numbered (N/4\*N/4), where (N/4\*N/4) is equal to the size of the low-low sub-band that produced from **step 2**.

**d**. Apply a single level 1-D critically sampled preprocessing DMWT to each vector.

**4.** Apply a second level 1-D critically sampled preprocessing DMWT to the low sub-band that produced from **step 3**.

**5.** Finally, Take only the low sub-band that produced from **step 4.** 

An example test is applied to a standard image, "Lena", of size 1024\*1024 pixels. Figures 6, 7 and 8 illustrate the results of applying the proposed techniques on "Lena" image.

## TESTING AND EVALUATION OF RESULTS:

There are five tables show the results measured for the proposed system when applied on the data base images. The bold values are the best results.

For a comparison between 3-D one and two level wavelet transform, Haar, Db3, Db5, and Coiflet, the energy retained (Er), entropy (He), percent root-mean-square difference (PRD%) and peak signal to noise ratio (PSNR) from eq.'s 10, 6, 7 and 8 are measured and the results are shown as tabulated in table 1. Energy retained in the 2<sup>nd</sup> level of Db5 and Coiflet1 is better than that in the 1<sup>st</sup> level, but the entropy is good in the 2<sup>nd</sup> level for Db3, Db5, Coiflet1 and Haar (which is the best one) than that in the 1<sup>st</sup> level. Db5 is the best one in measuring PRD% (PRD% = 38.2121) and PSNR (PSNR=31.5256) which are the lowest and highest values, respectively. It can be conclude that, Haar and Db5 are compressed better than Db3 and Coifle1.

In table 2, measurements of PRD% and PSNR for 2-D and 3-D one and two level wavelet transform for samples of (14) images, The PRD% in 3-D is half that of 2-D, that's means that, when using 3-D, the error in terms of percentage of image energy is reduced to half of its value of 2-D. In the other side, the PSNR in 3-D is greater than that in 2-D. In 3-D, the second level PRD% and PSNR is better than that in first level, it can be conclude that,

the image is compressed better when using 3-D tow level.

Table 3 and 4, show 2-D and 3-D critical DMWT and hybrid results, in 3-D, the PRD% is quarter that of 2-D and the PSNR is greater than that of 2-D, also whenever the decomposition Levels increases the PSNR values are also increasing.

Table 5 shows a comparison between the proposed 3-D two-level techniques, 3-D and 2-D one and two level techniques according to the values of PRD%, PSNR and CR. As shown from the results, in 2-D the results of wavelet and hybrid are the same for PRD%, PSNR and CR because the hybrid is 2-D wavelet in x and y direction and 1-D multi-wavelet in z-direction. in 3-D. CR values are 32:1 and 64:1 in the 1<sup>st</sup> and 2<sup>nd</sup> level respectively for wavelet, multiwavelet and hybrid, while in the 2-D CR values are 4:1 and 16:1, also, PRD% in 3-D is less half the value in 2-D in  $1^{st}$  and  $2^{nd}$  level in wavelet and quarter that of 2-D in multi-wavelet and hybrid, hybrid technique has a largest values of PSNR (35.2721) in the 1<sup>st</sup> Level and (40.6906) in the 2<sup>nd</sup>Level in 3-D.

### **CONCLUSIONS:**

The techniques presented in this paper produce some of the best-reported results to date for a 3-D two-level discrete wavelet transform (DWT), discrete multi-wavelet transform (DMWT) and hybrid technique-based image compression and comparison between them.

It is obvious from the results that any wavelet giving good results for decomposition will produce good results for advanced techniques being used for image compression.

Based on testing results, it can be concluded that the hybrid technique has the highest PSNR value in the 1<sup>st</sup> and 2<sup>nd</sup> level of 3-D and has the lowest values of (PRD %). CR in the three techniques is the same and has the largest value in the 2<sup>nd</sup> level of 3-D. So, when the image is compressed to a high CR, then it is increasing the speed of computation and decreasing the wasting time, so, one can use it in authentication, recognition, using as a feature, etc...Therefore, the 3-D 2-level hybrid is the best technique for image compression.

#### **REFERENCES:**

"Arabic Speech Recognition Using Two Techniques Hybrid & 3D-Multiwavelet", By Talib M. Jawad Abbas, Journal Al-Rafidain University College For Sciences ISSN: 16816870 Year: 2008 Issue: 22 Pages: 116-131 Publisher: Rafidain University College.

"Authentication using Wavelet and Multiwavelet with Neural Network", By Tara Othman ALsaraf, thesis, university of Sulayimani, 2006.

Evaluation of SPIHT Compression Scheme for Satellite Imageries Based on Statistical Parameters", By Nagamani .K and A G Ananth, International Journal of Soft Computing and Engineering (IJSCE) ISSN: 2231-2307, Volume-2, Issue-2, May 2012, <u>www.ivsl.org</u>.

"Image Compression Using Multiwavelet and Multi-stage Vector Quantization", By S. Esakkirajan, T. Veerakumar, V. Senthil Murugan and P. Navaneethan, International Journal of Information and Communication Engineering 4:4 2008.

"Image Compression using Orthogonal Wavelets Viewed from Peak Signal to Noise Ratio and Computation Time", By P.M.K. Prasad ,Prabhakar Telagarapu and G. Uma Madhuri, International Journal of Computer Applications (0975 – 888)Volume 47– No.4, June 2012, <u>www.ivsl.org</u>

"Image Compression using Wavelets",By Karen Lees, thesis, May 2002, <u>www.ivsl.org</u>.

"Medical Images Compression using Modified SPIHT Algorithm and Multiwavelets Transformation", By Muna F. Al-Sammaraie, Computer and Information Science Vol. 4, No. 6, Nov. 2011, <u>www.ccsenet.org/cis</u>, www.ivsl.org.

"Multiwavelet Based Texture Features for Content based Image Retrieval", By P.V.N.Reddy and K.Satya Prasad, International Journal of Computer Applications (0975 – 8887), Volume 17– No.1, March 2011, www.ivsl.org.

"On the use of PRD and CR parameters for ECG Compression", By Manuel Blanco-Velasco, Fernando Cruz-Rold´an, J. Ignacio Godino-Llorente, Joaqu´ın Blanco-Velasco, Carlos Armiens-Aparicio and Francisco L'opez-Ferreras, 2005, <u>manuel.blanco@uah.es</u>, www.elsevier.com/locate/medengphy.

"Retained Energy-Based Coding for EEG Signals", By Carlos Bazán-Prieto, Manuel Blanco-Velasco, Julián Cárdenas-Barrera and Fernando Cruz-Roldán, Medical Engineering and Physics 34 (2012),892–899, www.elsevier.com/locate/medengphy , www.ivsl.org .

"Speech Recognition by Wavelet Analysis", By Nitin Trivedi, Vikesh Kumar, Saurabh Singh, Sachin Ahuja and Raman Chadha, International Journal of Computer Applications, Vol. 15– No.8, February 2011

"Wavelet Transform Application to the Compression of Images", By Macarena Boix, Begoña Cantó, "Mathematical and Computer Modeling, <u>www.elsevier.com/locate/mcm</u>..

| LL | LH |
|----|----|
| HL | НН |

| LL2 | LH2 | LH |
|-----|-----|----|
| HL2 | HH2 |    |
| ŀ   | łL  | НН |

## Fig. 1: One and two level wavelet decomposition

## LIST OF ABBREVIATIONS:

| 1-D:   | One dimension                    |
|--------|----------------------------------|
| 2-D:   | Two dimension                    |
| 3-D:   | Three dimension                  |
| DMWT:  | Discrete multi-wavelet transform |
| DWT:   | Discrete wavelet transform       |
| CR:    | Compression ratio                |
| He:    | Entropy                          |
| PRD:   | Percent root-mean-square         |
|        | difference                       |
| MSE:   | mean square error                |
| Er:    | Energy retained                  |
| SPIHT: | Set Partitioning In Hierarchical |
|        | Trees                            |
| GHM    | Geronimo, Hardian, Masopute      |



## Fig. 2: One and two level multi-wavelet decomposition



Fig. 3: Block diagram of 3-D two-level wavelet image compression



Fig. 4: Block diagram of 3-D two-level multi-wavelet image compression



Fig. 5: Block diagram of the proposed 3-D two-level hybrid technique





**Original image** 



Image after 1<sup>st</sup> level 2-D wavelet transform

Image after 2<sup>nd</sup> level 2-D wavelet transform

Image after 3-D 2-level wavelet transform

Fig. 6: 3-D 2- level wavelet transform

1417

### Zainab Ibraheem Abood



Original image





Image after 2<sup>nd</sup> level 2-D multi-wavelet transform

Image after 1<sup>st</sup> level 1-D multi-wavelet transform





Image after 2<sup>nd</sup> level 1-D multi-wavelet transform



Image after 3-D 2- level multi-wavelet transform

Fig.7: 3-D 2- level multi-wavelet transform



**Original image** 



Image after 1<sup>st</sup> level 2-D wavelet transform



Image after 2<sup>nd</sup> level 2-D wavelet transform

Image after 1<sup>st</sup> level 1-D multi-wavelet transform

Image after 2<sup>nd</sup> level 1-D multiwavelet transform

Inage after 3-D 2- level hybrid technique

Fig. 8: 3-D 2- level hybrid technique



## Table 1: 3-D Wavelet transform

| 3-D wavelet<br>transform | Haar                  |                        | Db3                                       |          | D                     | b5                    | Coiflet1              |                       |  |
|--------------------------|-----------------------|------------------------|-------------------------------------------|----------|-----------------------|-----------------------|-----------------------|-----------------------|--|
|                          | 1 <sup>st</sup> Level | 2 <sup>nd</sup> Level  | 1 <sup>st</sup> Level 2 <sup>nd</sup> Lev |          | 1 <sup>st</sup> Level | 2 <sup>nd</sup> Level | 1 <sup>st</sup> Level | 2 <sup>nd</sup> Level |  |
| Er                       | 99.9578               | 99.8707 <b>100.002</b> | 99.9897                                   | 100.0564 | 100.1867              | 99.9753               | 99.9874               |                       |  |
| En                       | 1.0879                | 0.9080                 | 1.1331                                    | 1.0471   | 1.1633                | 1.1443                | 1.0603                | 1.0036                |  |
| PRD%                     | 41.4125               | 41.4030                | 39.8878                                   | 40.4483  | 39.3609               | 38.2121               | 40.0527               | 40.8571               |  |
| PSNR                     | 30.5364               | 30.5714                | 30.8640                                   | 30.8321  | 30.981                | 31.5256               | 30.8291               | 30.7300               |  |

## Table 2: PRD% and PSNR for wavelet transform

| Wavelet   | 2-D w<br>trans        |                       |                       | vavelet<br>sform      |                                             | avelet<br>form | 3-D wavelet<br>transform |                       |  |
|-----------|-----------------------|-----------------------|-----------------------|-----------------------|---------------------------------------------|----------------|--------------------------|-----------------------|--|
| transform | 1 <sup>st</sup> Level | 2 <sup>nd</sup> Level | 1 <sup>st</sup> Level | 2 <sup>nd</sup> Level | 1 <sup>st</sup> Level 2 <sup>nd</sup> Level |                | 1 <sup>st</sup> Level    | 2 <sup>nd</sup> Level |  |
|           | PRD%                  | PRD%                  | PRD%                  | PRD%                  | PSNR                                        | PSNR           | PSNR                     | PSNR                  |  |
| Image1    | 99.9906               | 99.9729               | 41.3898               | 41.3086               | 29.3574                                     | 26.3478        | 30.9957                  | 31.0102               |  |
| Image2    | 100.0001              | 99.9982               | 41.4170               | 41.4211               | 27.2455                                     | 24.2354        | 28.8816                  | 28.8814               |  |
| Image3    | 99.9997               | 100.0001              | 41.4246               | 41.4167               | 22.7343                                     | 19.7240        | 24.3685                  | 24.3683               |  |
| Image4    | 100.0010              | 100.0050              | 41.4219               | 41.4319               | 25.9887                                     | 22.9781        | 27.6240                  | 27.6224               |  |
| Image5    | 100.0098              | 100.0191              | 41.4330               | 41.4316               | 26.8338                                     | 23.8223        | 28.4661                  | 28.4663               |  |
| Image6    | 99.9996               | 99.9985               | 41.4215               | 41.4087               | 30.7860                                     | 27.7758        | 32.4207                  | 32.4227               |  |
| Image7    | 100.0464              | 100.0121              | 41.4425               | 41.3157               | 34.8994                                     | 31.8972        | 36.5336                  | 36.5346               |  |
| Image8    | 100.0072              | 100.0151              | 41.3917               | 41.3423               | 27.8306                                     | 24.8201        | 29.4711                  | 29.4767               |  |
| Image9    | 100.0683              | 100.1911              | 41.4273               | 41.5572               | 31.1759                                     | 28.1606        | 32.8273                  | 32.8062               |  |
| Image10   | 99.9242               | 99.7350               | 41.3840               | 41.5758               | 36.8591                                     | 33.8816        | 38.5224                  | 38.4658               |  |
| Image11   | 99.9889               | 99.9975               | 41.3996               | 41.4156               | 31.7132                                     | 28.7029        | 33.3540                  | 33.3486               |  |
| Image12   | 100.0033              | 100.0043              | 41.4159               | 41.4158               | 27.1797                                     | 24.1692        | 28.8158                  | 28.8176               |  |
| Image13   | 99.9905               | 99.9278               | 41.4550               | 41.3583               | 38.0153                                     | 35.0095        | 39.6446                  | 39.6701               |  |
| Image14   | 100.0000              | 100.0006              | 41.4091               | 41.3621               | 35.4521                                     | 32.4418        | 37.0899                  | 37.1009               |  |

| Critical<br>multi-<br>wavelet<br>transform | 2-D mult              | i-wavelet             |                                             | i-wavelet |                                             | i-wavelet | 3-D multi-wavelet                           |         |  |
|--------------------------------------------|-----------------------|-----------------------|---------------------------------------------|-----------|---------------------------------------------|-----------|---------------------------------------------|---------|--|
|                                            | 1 <sup>st</sup> Level | 2 <sup>nd</sup> Level | 1 <sup>st</sup> Level 2 <sup>nd</sup> Level |           | 1 <sup>st</sup> Level 2 <sup>nd</sup> Level |           | 1 <sup>st</sup> Level 2 <sup>nd</sup> Level |         |  |
|                                            | PRD%                  | PRD%                  | PRD%                                        | PRD%      | PSNR                                        | PSNR PSNR |                                             | PSNR    |  |
| Image1                                     | 100.0161              | 100.0712              | 28.7822                                     | 30.7654   | 29.3552                                     | 26.3381   | 34.1453                                     | 39.5178 |  |
| Image2                                     | 99.9873               | 99.9752               | 28.5843                                     | 30.2937   | 27.2466                                     | 24.2381   | 32.1046                                     | 37.5340 |  |
| Image3                                     | 99.9932               | 100.0426              | 28.6053                                     | 30.4233   | 23.7349                                     | 29.7205   | 27.5830                                     | 32.9834 |  |
| Image4                                     | 100.0619              | 100.0865              | 28.6006                                     | 30.2948   | 25.9834                                     | 22.9683   | 30.8344                                     | 36.2728 |  |
| Image5                                     | 100.0029              | 100.0138              | 28.5816                                     | 30.3118   | 26.8344                                     | 23.8230   | 31.6916                                     | 37.1135 |  |
| Image6                                     | 99.9990               | 99.9544               | 28.5092                                     | 30.1489   | 30.7861                                     | 27.7797   | 35.6675                                     | 41.1047 |  |
| Image7                                     | 99.9302               | 99.8310               | 28.0404                                     | 29.9174   | 34.9095                                     | 31.9157   | 39.9389                                     | 45.2079 |  |
| Image8                                     | 99.0109               | 99.9537               | 28.7686                                     | 30.6766   | 27.8303                                     | 24.8251   | 32.6330                                     | 38.0277 |  |
| Image9                                     | 99.1084               | 100.0712              | 28.7854                                     | 30.4758   | 31.1724                                     | 28.1668   | 35.9802                                     | 41.4620 |  |
| Image10                                    | 100.5874              | 99.3157               | 29.6639                                     | 31.2546   | 36.8016                                     | 33.7125   | 41.3269                                     | 46.9136 |  |
| Image11                                    | 99.9985               | 99.2686               | 28.9320                                     | 30.7105   | 31.7124                                     | 28.5929   | 36.4080                                     | 41.8685 |  |
| Image12                                    | 100.8408              | 99.9715               | 28.5796                                     | 30.3084   | 27.1073                                     | 24.1357   | 32.0035                                     | 37.4289 |  |
| Image13                                    | 99.5162               | 99.5109               | 28.5047                                     | 31.0393   | 38.0566                                     | 35.0655   | 42.9431                                     | 48.1322 |  |
| Image14                                    | 100.0046              | 100.0237              | 28.4475                                     | 30.1683   | 35.4517                                     | 32.4396   | 40.3497                                     | 45.7566 |  |

Table 3: PRD% and PSNR for critical multi-wavelet transform

Table 4: Hybrid technique

| Hybrid<br>technique | 2-D mult              | i-wavelet             | 3-D mult              | i-wavelet             | 2-D mult              | i-wavelet             | 3-D multi-wavelet     |                       |  |
|---------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|--|
|                     | 1 <sup>st</sup> Level | 2 <sup>nd</sup> Level |  |
|                     | PRD% PRD%             |                       | PRD%                  | PRD%                  | PSNR                  | PSNR                  | PSNR                  | PSNR                  |  |
| Image1              | 99.9906               | 99.9729               | 28.7947               | 30.7630               | 29.3574               | 26.3478               | 34.1473               | 39.5286               |  |
| Image2              | 100.0001              | 99.9982               | 28.5648               | 27.2455               | 30.2824               | 24.2354               | 32.1085               | 37.5328               |  |
| Image3              | 99.9997               | 100.0001              | 28.6128               | 30.4313               | 22.7343               | 19.7240               | 27.5824               | 32.9832               |  |
| Image4              | 100.0010              | 100.0050              | 28.5853               | 30.2768               | 25.9887               | 22.9781               | 30.8457               | 36.2836               |  |
| Image5              | 100.0098              | 100.0191              | 28.5985               | 30.3223               | 26.8338               | 23.8223               | 31.6861               | 37.1110               |  |
| Image6              | 99.9996               | 99.9985               | 28.5035               | 30.1603               | 30.7860               | 27.7758               | 35.6672               | 41.0985               |  |
| Image7              | 100.0464              | 100.0121              | 27.7841               | 29.5763               | 34.8994               | 31.8972               | 40.0066               | 45.2617               |  |
| Image8              | 100.0072              | 100.0151              | 28.7231               | 30.6488               | 27.8306               | 24.8201               | 32.6447               | 38.0319               |  |
| Image9              | 100.0683              | 100.1911              | 28.6583               | 30.3581               | 31.1759               | 28.1606               | 36.0280               | 41.4989               |  |
| Image10             | 99.9242               | 99.7350               | 29.5543               | 31.3428               | 36.8591               | 33.8816               | 41.4466               | 46.9716               |  |
| Image11             | 99.9889               | 99.9975               | 28.9327               | 30.7174               | 31.7132               | 28.7029               | 36.4661               | 41.9254               |  |
| Image12             | 100.0033              | 100.0043              | 28.5789               | 30.2839               | 27.1797               | 24.1692               | 32.0383               | 37.4706               |  |
| Image13             | 99.9905               | 99.9278               | 28.8425               | 30.7758               | 35.0095               | 38.0153               | 42.7955               | 48.2112               |  |
| Image14             | 100.0000              | 100.0006              | 28.4585               | 30.1674               | 35.4521               | 32.4418               | 40.3475               | 45.7599               |  |

| Algor-            |                                             |         | 2   | -D      |         |      | 3-D     |                       |      |         |                       |      |
|-------------------|---------------------------------------------|---------|-----|---------|---------|------|---------|-----------------------|------|---------|-----------------------|------|
| ithm              | 1 <sup>st</sup> Level 2 <sup>nd</sup> Level |         |     |         |         |      |         | 1 <sup>st</sup> Level |      |         | 2 <sup>nd</sup> Level |      |
|                   | PRD%                                        | PSNR    | CR  | PRD%    | PSNR    | CR   | PRD%    | PSNR                  | CR   | PRD%    | PSNR                  | CR   |
| Wavelet           | 100.0021                                    | 30.4360 | 4:1 | 99.9912 | 27.6408 | 16:1 | 41.4166 | 32.0725               | 32:1 | 41.4115 | 32.0708               | 64:1 |
| Multi-<br>wavelet | 99.9326                                     | 30.4987 | 4:1 | 99.8634 | 28.1228 | 16:1 | 28.6703 | 35.2578               | 32:1 | 30.4847 | 40.6659               | 64:1 |
| Hybrid            | 100.0021                                    | 30.4360 | 4:1 | 99.9912 | 27.6408 | 16:1 | 28.6565 | 35.2721               | 32:1 | 30.2192 | 40.6906               | 64:1 |

## Table 5: Comparison between three proposed techniques

Samples of Images from Data-Base:





2

3

4



5





