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ABSTRACT 

In this work, a single Semi-Recurrent Spike Neural Network (SRSNN) supervised learning 

method based on time coding is proposed to classify visual terrain encountered by the 
mobile robot. To this end, the features are extracted using the Local Binary Pattern (LBP) 
method. Then, the SRSNN is trained to classify multi-class of terrains.  This training is used 
to classify six classes of terrain: hydrop, gravel, asphalt, grass, mud, and sand. The proposed 
training algorithm is based on adaptive synaptic weights that reach the threshold value. The 
feature extracted method and SRSNN form the proposed Intelligent structure. This structure 
effectively evaluates the accuracy, precision, recall, and F1 score. The simulation results 
achieve good performance in minimizing the mean square error in the training phase and 
maximizing the overall accuracy to 87.22%, especially in dangerous terrain (i.e. hydrop). The 
effectiveness of the proposed model is proved by the efficiency of the training algorithm 
which can learn fast with accurate results. 
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 نموذج شبكة عصبية أحادية سبايك لتصنيف البيئة السطحية للملاحة الروبوتية المتنقلة
 

 زهراء عصام ابراهيم*، نادية عدنان شلتاغ الجمالي

 
 ، كلية الهندسة، جامعة بغداد، بغداد، العراققسم هندسة الحاسبات 

 

 

 الخلاصة

( تعتمد SRSNNفي هذا البحث ، تم اقتراح طريقة تعلم تحت إشراف الشبكة العصبية احاديه الاشواك ذات الارجاع الجزئي )
 ، يتم استاراا الميزات أولاا  على الترميز الزمني  لتصنيف التضاريس المرئية التي يواجهها الروبوت المتحرك. تحقيقا لهذه الغاية ،

على تصنيف التضاريس الى فئات متعددة.  SRSNN(. بعد ذلك ، يتم تدريب LBPباستادام طريقة النمط الثنائي المحلي )
يستادم هذا  لتصنيف ست فئات من التضاريس: الماء ، والحصى ، والأسفلت ، والعشب ، والطين ، والرمل. تعتمد خوارزمية 

الهيكل  SRSNNرحة على الأوزان التكيفية للمشابك التي تصل إلى قيمة العتبة. تشكل طريقة استاراا الميزات مع  التدريب المقت
الذكي المقترح. يوفر هذا الهيكل فعالية جيدة في تقييم الدقة)مدى قرب القيمة من قيمتها الحقيقية( والدقة)مدى تكرار القياس( 

ا من حيث تقليل متوسط الاطأ التربيعي في مرحلة التدريب وتعظيم الدقة . حققت نتائج المF1والاسترجاع ودرجة  حاكاة أداءا جيدا
، لا سيما في التضاريس الاطرة )مثل الماء(. تم إثبات فعالية النموذا المقترح من خلال كفاءة خوارزمية  87.22الكلية  الى %

 التدريب التي يمكن أن تتعلم بسرعة مع نتائج دقيقة.

 شبكة عصبية احاديه الاشواك, تصنيف التضاريس, الروبوتات المتنقلة. :مفتاحيةلالكلمات ا
 
1. INTRODUCTION 
 
These days robot plays important roles in human life. It is used in different fields such as 
military, medical services, and especially in dangerous places, including working with 
equipment, mining, disarming bombs, and investigating shipwrecks (Al-Araji et al., 2019; 
Al-Araji and Ibraheem, 2019; Atiyah and Hassan, 2023;  Jawad and Hadi, 2019). 
Therefore, the mobile robot must know its surrounding outdoor environment to perform its 
tasks safely. Autonomous ground robots confront many defiances in outdoor environments 
(DuPont et al., 2008; Yu et al., 2021), especially in different types of terrain that impact 
the robot's power and motion (Zou et al., 2020). For example, grassland and sand will cause 
energy exhaustion in mobile robots (Wang et al., 2022; Hanson et al., 2022). Most motility 
control algorithms presume that the robot is moveable on solid ground. Therefore, only the 
shape of the terrain is considered. However, some of the terrain has the same shape but 
different materials. Thus, the type of material directly impacts the robot's motion 
(Kozlowski and Walas, 2018; Zhang et al., 2016). Therefore, determining the kind of 
terrain confronted by mobile robots will facilitate navigation and decide the optimal next 
move. Hence, terrain classification is important for Autonomous ground robots to perform 
their tasks safely.  
In recent years, many studies have been conducted on terrain classification, which can be 
classified into Proprioceptive and Exteroceptive methods. The former classifies terrain 
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during the robot traversable based on information resulting from the interaction between 
the wheel and the ground (Zürn et al., 2020). However,  this approach requires a vehicle 
platform that is more forgiving or more reactive to failures such as rollovers or crashes (Wu 
et al., 2019). The latter method identifies forthcoming terrain (i.e. before the robot is 
traversable). It can split into geometry-based and appearance-based. Counting just on 
geometric features can lead to some ambiguity. For example, long grass and short fences 
have similar geometric features. However, usually, appearance-based visually appreciate a 
discrete set of terrain classes (Papadakis, 2013). A spiking neural network provides time-
based encoding, improving energy efficiency (Shiltagh and Abas, 2015; Miao et al., 2018; 
Wu et al., 2019; Lee et al., 2018). A spiking neural network is used to classify various 
terrain types based on vision data. Many types of research have been done to tackle the 
terrain classification problem. These studies differ in terms of the sensors used and methods 
of classification. Most of them used vision-based sensors, as illustrated below: 
(Wang et al., 2022) proposed a hybrid method (Convolutional Neural  Network (CNN)  and 
Support Vector Machine(SVM)) for terrain classification encountered by mobile robots. The 
result of the classification accuracy of the proposed method compared with the InpectionV3 
and the CNN. The proposed method achieved high classification accuracy, especially for 
dangerous terrain types (i.e. hydrop), while maintaining high efficiency. (Chen et al., 2021) 
developed hybrid models for terrain classification tasks with vision-based and 
proprioception-based. One dimension Convolution Neural Network (CNN) model for 
proprioception net and a pre-trained (CNN) model for vision net were proposed. Fusion net 
combines vision net and proprioception net with two schemes:  Decision-Level and Feature 
map-Level. The result was that the Decision-Level fusion model achieved the highest average 
accuracy of 96.40% of testing on four sets(test set, dark set, subset, and fog set). (Vulpi et 
al., 2021) proposed deep learning(LSTM, C-LSTM, and CNN) algorithm for tackling terrain 
classification problems based on proprioceptive sensing. Compared with SVM, the result was 
that the proposed algorithm achieved better accuracy for CNN, which was 91.5%. (Zou et 
al., 2020) developed a terrain classification algorithm(r-SNN) to classify three terrain types 
(i.e. grass, dirt, and road), including recurrent and supervised layers. The error rate was 
computed using three models for terrain classification (i.e. images only, sensors only, and 
both images and sensors ) for this approach. It was compared with SVM and 3L- logistic 
regression. The developed approach achieved a better classification accuracy of over 90% 
with an error rate of 3.5% for images with sensors model. (Kozlowski and Walas, 2018) 
proposed Deep Neural Network(DNN) architecture for terrain classification problems. RGB-
D sensor provides vision data, including RGB images, depth data, and infrared images. The 
proposed method achieved a 98.41%  average classification accuracy on a test set using RGB 
data only and a 98.99% average classification accuracy on a test set using RGB, depth, and 
infrared data. (Schilling et al., 2017)presented a multi-sensor terrain classification system 
based on geometric and visual features. Random forest was used to classify the terrain into 
three classes (i.e. risky, safe, and obstacle). The classification performance is better when 
these classes train the classifier on combined features. 
The previously published work could implement terrain classification tasks based on neural 
networks that require large amounts of energy. This work proposes the terrain classification 
method based on vision data to classify six types of terrain encountered by mobile robots. A 
modified training algorithm based on time encoding called a single Semi-Recurrent Spike 
Neural Network (SRSNN) is proposed to provide low power consumption, computation 
speed, and energy efficiency.  
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2. THE PROPOSED MODEL OF TERRAIN CLASSIFICATION 
 

Considering the merit of tackling terrain classification problems with vision-based methods 
and the vigorous performance of spiking neural networks, it is required to design a method 
to apply spiking neural networks to vision-based terrain classification for mobile robots. 
This is important to achieve high classification accuracy and efficiency. As shown in Fig. 1, 
the proposed model contains feature extraction and classification. The former is performed 
using the Local Binary Pattern (LBP) method for extracting texture features (Karis et al., 
2016; Singh et al., 2018; Humeau-Heurtier, 2019).  
 

 
 

Figure 1. The proposed system model for multi-classes terrain classification. 
 

However, the outdoor terrain's visual appearance is mutable during the days and seasons. 
Hence, the texture feature is used for discriminating between terrain classes. The result from 
the LBP method is a feature vector fed to the classification part. In this experiment, the 
SRSNN classifies the terrain into six types: hydrop, gravel, asphalt, grass, mud, and sand. 
Then, the dynamic robot will move according to this classification result.  
 

3. SPIKING NEURAL NETWORK 
 

Many studies have explored Spiking Neural Networks (SNN) to create low-power 
neuromorphic devices (Kim et al., 2018; Hu et al., 2021). Neuromorphic architectures have 
the potency to dominate outdoor robotics under severe power curbs. Contrary to orthodox 
von Neumann architecture, neuromorphic architecture exhausts less power because of the 
massive concurrency and event-driven processing (Indiveri et al., 2011; Lin et al., 2021).  
 
 



Journal of Engineering, 2024, 30(4) 
 

  
Z.I. Ibrahim and  N. A. Al-Jamali  

 
 

122 

3.1   Semi-Recurrent Spike Neural Network Structure 

The Semi-Recurrent Spike Neural Network (SRSNN) structure, as shown in Fig. 2, consists 
of three layers: (input, hidden, and output) layer. Each connection between two neurons 
incorporates synapses. Every synaptic has various delays and weights. Any spiking neuron 
includes three computation phases: The first phase involves adding up all of the neuron's 
inputs. The second phase comprises determining whether the membrane potential exceeds 
the threshold. Finally, the third stage represents emitting a spike and restoring the 
membrane potential to zero. In this paper, the SRSNN structure contains six neurons in the 
input layer to define the features vector with size  18 elements, 42 neurons in the hidden 
layer, and six neurons in the output layer to represent six classes. 
Additionally, this structure contains feedback from each neuron in the output layer to all 
neurons in the hidden layer. With feedback,  the input includes the previous output and the 
present input. Hence, the memory of the model will be enhanced. Thus enhancing the 
performance of the model and making it more accurate. 

 

 
Figure 2. Structure of SNN: (A) Feed-forward of SNN. (B) The connection between 

two neurons. (C) Computational phases of the spiking neuron. 
 

3.2  The Modified Training Algorithm 
 
Spiking neural networks cope with pulse information instead of real data. Therefore, the first 
step for training is encoding data into spike times using the following formula (Al-Yassari 
and Al-Jamali, 2023). 

𝑡𝑛
𝑓

= 𝑇𝑚𝑎𝑥 − 𝑟𝑜𝑢𝑛𝑑 (𝑇𝑚𝑖𝑛 +
(𝑃𝑖𝑛−𝑃𝑚𝑖𝑛)(𝑇𝑚𝑎𝑥−𝑇𝑚𝑖𝑛)

𝑃𝑚𝑎𝑥−𝑃𝑚𝑖𝑛
)                                                                           (1) 
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where 𝑇𝑚𝑎𝑥 𝑎𝑛𝑑 𝑇𝑚𝑖𝑛 are the highest and smallest interval times, while the 𝑃𝑚𝑖𝑛 𝑎𝑛𝑑 𝑃𝑚𝑎𝑥  
are the smallest and largest extracted input, successively. 𝑃𝑖𝑛 is the current real value of data.  
𝑟𝑜𝑢𝑛𝑑 is a function that returns a number rounded to a certain number of digits. 
The following action is the feed-forward phase, which starts from the hidden layer. All 
hidden neurons are examined to check if they have spiked or not. Each neuron is firing spike 
time only once throughout the time interval when its membrane potential transcends the 
threshold value 𝜗, where membrane potential (𝑚𝑝ℎ(𝑡)) in the hidden layer can be calculated 
with the added feedback of the output layer. 
The feedback from the output layer to the hidden layer is added. Each neuron in the output 
layer is feedback to all neurons in the hidden layer. Fig. 3 shows the sub-connection between 
two neurons with output feedback. It can be expressed by Eq. (2). 

FB = 𝛼 ∑ ∑ 𝑤ℎ𝑦
𝑘 ∗ 𝑜𝑦

𝑠(𝑡 − 1)𝐾
𝑘=1

𝑌
𝑦=1                                                                                                        (2) 

where 𝛼  refers to the learning rate, 𝑌 is the number of neurons in the output layer, 𝑤ℎ𝑦
𝑘  is 

the weight between hidden neuron (h) and output neuron (y), and 𝑜𝑦
𝑠(𝑡 − 1) is the previous 

output spike of the output layer.  
The membrane potential (𝑚𝑝ℎ(𝑡)) is calculated by the following Eq. (3). 

𝑚𝑝ℎ(𝑡) = ∑ ∑ 𝑤𝑛ℎ
𝑘 𝜀(𝑡 − 𝑡𝑛

𝑓𝐾
𝑘=1

𝑁
𝑛=1 − 𝑑𝑘) + 𝐹𝐵                                                                                 (3) 

where 𝑁   is the count of presynaptic neurons,  𝐾  is the index of synapses between two 
neurons,  𝑤𝑛ℎ

𝑘  is the coefficient of the weight of synapse between presynaptic neuron (n)  and 

post-synaptic neuron (h),  𝑡𝑛
𝑓

 is the spike time of presynaptic neurons, 𝑑𝑘 is the synapse's 
latency, and 𝜀(𝑡) is the Spike Response Function(SRF). The SRF is a more biologically 
plausible model (Yellakuor et al., 2020; Oniz et al., 2013). It has various mathematical 
forms. The hyperbolic tangent function is used, as in Eq. (4). 

𝜀(𝑡) = 𝑡𝑎𝑛ℎ (
𝑡

𝜏
)                                                                                                                                            (4) 

and its derivative, as below: 

𝑑𝜀

𝑑𝑡
=

1

𝜏
(1 − 𝑡𝑎𝑛ℎ2 (

𝑡

𝜏
))                                                                                                                               (5) 

where  𝜏  is the time constant that determines the growth and decay of. 

After all neurons in the hidden layer are checked, the same procedure is reiterated on the 
output layer. Finally, the output spike time information is converted to real information 
using Eq. (6). 

𝑅𝐼 (𝑡𝑦
𝑓

 
) =

(𝑡𝑚𝑎𝑥 −𝑡𝑦
𝑓

−𝑡𝑚𝑖𝑛)×(𝑃𝑚𝑎𝑥−𝑃𝑚𝑖𝑛)

(𝑡𝑚𝑎𝑥 −𝑡𝑚𝑖𝑛)
+ 𝑃𝑚𝑖𝑛                                                                                     (6) 

where 𝑅𝐼 (𝑡𝑦
𝑓

 
) is the real information of actual output spike time. 

The Mean Square Error (MSE) calculates the overall error, as shown in Eq. (7). 

𝑀𝑆𝐸 = 1/2 ∑ (𝑡𝑦
𝑓

− 𝑡𝑦
𝑑)2

𝑦𝜖𝑌                                                                                                                      (7) 
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where 𝑡𝑦
𝑑   indicates the training desired spike time for output neuron (y). The ensuing stage 

is back-propagation. This work uses the supervised learning back-propagation algorithm 
(SPIKE-PROP) to update each synapse's weight to minimize the MSE value, as in 
(Thiruvarudchelvan et al., 2013). The weight of synapses between the output neuron and 
the hidden neuron is updated per Eq.s (8 to 10). 

𝛿𝑦 =
𝑡𝑦

𝑑−𝑡𝑦
𝑓

∑ ∑ 𝑤ℎ𝑦
𝑘 𝜕

𝜕𝑡
𝑦ℎ

𝑘𝐾
𝑘=1

𝐻
ℎ=1

                                                                                                                                  (8) 

∆𝑤ℎ𝑦
𝑘 = 𝛼. 𝛿𝑦𝑦ℎ

𝑘                                                                                                                                            (9) 

𝑤ℎ𝑦
𝑘 (𝑡 + 1) = 𝑤ℎ𝑦

𝑘 (𝑡) − ∆𝑤ℎ𝑦
𝑘                                                                                                                 (10) 

where 𝛿𝑦 points out the delta function of output layer neurons. 

The weights of synapses between the hidden neuron and input neuron are updated following 
Eq.s (11, 12 and 13). 

𝛿ℎ =
∑ 𝛿𝑦 ∑ 𝑤ℎ𝑦

𝑘 (𝑡) 
𝜕

𝜕𝑡
𝑦ℎ

𝑘𝐾
𝑘=1

𝐻
ℎ=1

∑ ∑ 𝑤𝑛ℎ
𝑘 (𝑡) 

𝜕

𝜕𝑡
𝑦𝑛

𝑘𝐾
𝑘=1

𝑁
𝑛=1

                                                                                                                       (11) 

∆𝑤𝑛ℎ
𝑘 = 𝛼. 𝛿ℎ𝑦𝑛

𝑘                                                                                                                                          (12)                    

𝑤𝑛ℎ
𝑘 (𝑡 + 1) = 𝑤𝑛ℎ

𝑘 (𝑡) − ∆𝑤𝑛ℎ
𝑘                                                                                                                 (13) 

where 𝛿ℎ, 𝑁  point out the delta function of hidden layer neurons and index of input layer 
neurons, respectively.  

 

   Figure 3. The synapses of one connection  between hidden neuron and output neuron 
 with output feedback.  

 
The Pseudo code of the algorithm is used to represent the proposed model as shown in Table 1. 
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Table 1. Pseudo code of the proposed model. 
 

Terrain classification proposed model in general shape 

1:    Start 
2:    S(*): Classification by the SRSNN 
3:    L(*): Feature extraction by LBP 
4:    E(*): Encoding the real value of Feature extraction into the spike 
5:   H: represent Hydrop class 
6:   Y: represent the other five classes 
7:    Input 
8:    I: Input image of terrain  
9:    Output 
10:    O: Output result of the classification 
11:    F← L(I) 
12:  \* F is the texture feature vector in real number  *\ 
13:   T← E(I) 
14:  \* T is the texture feature vector in spike time  *\ 
15: R← S(T) 
16: \*  R is the result of multi-class of SRSNN classifier, possible values of R is H or Y *\ 
17: O← R 
18: if O=H 
19: \* The robot doesn’t move and goes back to step 1*\ 
20: else 
21: \* The speed values are sent to each on-board motor for moving.*\ 
22: End 

 
4. SIMULATION RESULTS 
 
In this section, the performance of the SRSNN classifier is evaluated. First, the SRSNN is 
implemented by using Spyder 2022v5. The collected dataset contains 42,000 images for six 
classes with (256x256) image size (https://www.pinterest.com/dsfafsh/textures/). Hence,70% 
of the dataset is used for training and 30% for testing. This ratio is adopted in the dataset to 
avoid overfitting and under fitting. A confusion matrix has been used for deriving four values 
to evaluate the trained model performance (Nasser and Behadili, 2022; Abdulrezzak and 
Sabir, 2023; Soud and Al-Jamali, 2023), as given in Table 2. 
      

Table 2. Confusion matrix structure 
 

Real value 

Predictive value 
 Positive Negative 

Positive TP FN 
Negative FP TN 

 
 True Positive(TP): gives the count of the number correctly classified for positive 

class(i.e. real value is positive class and the predictive value is positive class). 
 True Negative(TN): gives the count of the number correctly classified for negative 

class(i.e. real value is negative class and the predictive value is negative class). 
 False Positive(FP):  represents the number of misclassification for a negative class(i.e. 
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real value is a negative class, and the result of predictive value is a positive class). 
 False Negative(FN): represents the number of misclassification for positive class(i.e. 

real value is positive class, and the result of predictive value is a negative class). 
Performance metrics are accuracy, precision, recall, and F1 scores, calculated based on the 
above-stated TP, TN, FP, and FN. 

 Accuracy: is the ratio of the sample correctly classified to all samples. as shown in Eq. 
(14). 
 

Accuracy = 
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
∗ 100%                                                                                            (14) 

               

 Precision: represents the true positive value to the total number of positive values 
predicted. As shown in Eq. (15). 
  

Precision = 
𝑇𝑃

𝑇𝑃+𝐹𝑃
∗ 100%                                                                                                         (15) 

 
 Recall: is the measure of positive class prediction to all actual positive samples. The 

recall is defined in Eq. (16). 
 

Recall = 
𝑇𝑃

𝑇𝑃+𝐹𝑁
∗ 100%                                                                                                               (16) 

 
 F1-score is the harmonic mean between precision and recall. As expressed in Eq. (17), 

the larger value of this metric means the implemented model is more efficient. 
 

F1-score= 
(2∗𝑅𝑒𝑐𝑎𝑙𝑙∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
                                                                                                     (17) 

 
The parameters of each neuron  used in the implementation of SRSNN are  
𝜏𝑠, 𝛼, and  𝜗  whose values are 10ms, 0.001, and 1v, successively. 
The spike neural network is characterized by dealing with time(spike) to represent 
information. Figure 4 displays the spike of the output neuron. As shown in the Figure, when 
the membrane potential exceeds the threshold value, the neuron fires spike at 6 ms. Then, 
the membrane potential resets to zero.  

 
Figure 4. Spike of output neuron. 
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Figure 5. Error rate of SRSNN model. 
 

Table 3. Performance metrics of the SRSNN model. 
 

Performance 
metrics 

The classes 
Hydrop Gravel Grass Asphalt Mud Sand 

Accuracy % 97.532% 95.929% 95.357% 95.477% 95.556% 94.603% 
Recall % 94.048% 89.762% 85.714% 88.095% 80.952% 84.762% 

Precision % 91.351% 86.349% 86.331% 85.253% 91.398% 83.178% 

F1-score 92.679 88.022 86.021 86.651 85.858 83.963 

 
Figure 5 shows the error rate of the SRSNN model. The error rate value reaches to error goal 
at epoch 80. The performance metrics (accuracy, precision, recall, and F1-score ) of the 
SRSNN learning algorithm are shown in Table 3, where Fig. 6 represents the Accuracy of 
each class.  It shows the classification accuracy of hydrop is higher than other terrains. This 
is because the misclassification of other terrains has increased, and the surface texture of 
hydrop terrain can be more discriminative.  
However, relying just on the accuracy metric creates some ambiguity, giving no information 
about FP and FN. The recall metric is an essential metric for comprehending FNs, while the 
precision metric is for understanding FP. Therefore, the precision ratio and recall ratio are 
used.  

 
Figure 6. The Accuracy of the SRSNN model. 
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The importance of both FP and FN depends on the function of the classifier. In this paper, the 
significance of classes is various. The hydrop class is important due to its significant effects 
on mobile robots, leading to damage. In this case, the impact of FN appears because it shows 
the hydrop class's misclassification. When the recall ratio is high, this class can have less 
misclassification, see Fig. 7. However, the other classes have less importance compared with 
the significance of the hydrop class. The precision ratio of each class, where the low precision 
ratio means a high false positive for the class, is reported in Fig. 8. Finally, Fig. 9 shows that 
the F1-score illustrates the equilibrium between recall and precision. 
The overall accuracy of the model is compared with (Wang et al., 2022), where the SRSNN 
achieves better performance in accuracy as compared with (Wang et al., 2022), as shown 
in Table 4. This is because the intelligent structure used by the SRSNN makes the model 
more accurate. The spiking neural network also deals with spike time, unlike the traditional 
neural network, which deals with real data. 
 

 

Figure 7. The Recall ratio of the SRSNN model. 

 
Figure 8. The precision ratio of the SRSNN model. 
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Table 4. The overall accuracy of the SRSNN model, and (Wang et al., 2022). 
 

Model Year  Results  Summary 
CNN+SVM 2022 82.90 % Proposed hybrid method Convolutional Neural  Network (CNN)  and 

Support Vector Machine(SVM) to classify terrains encountered by 
mobile robots visually. CNN is used for multi-class of six-type terrain 
classification(hydrop, sand, mud, gravel, asphalt, grass)  and SVM for 
two-class of one-type terrain classification (hydrop or other five 
types).  

Our 2023 87.22 % The SRSNN is used as a classifier to make the multi-class of terrain 
types (hydrop, sand, mud, gravel, asphalt, grass). The SRSNN provides 
energy efficiency, computation speed, and low power consumption. 

 

Figure 9. The F1-score of the SRSNN model. 
5. CONCLUSIONS 
 
This paper introduces a modified structure based on SNN with a training algorithm to solve 
the terrain classification problem based on vision data. In addition, this structure provides a 
powerful performance that allows presenting the SRSNN supervised learning method, where 
the SRSNN provides a multi-class terrain classification based on texture features. The 
features are extracted by using the LBP method. The modified SRSNN can minimize RMSE in 
a very short time. This is because in SRSNN, the neuron updates its weight only when the 
membrane potential exceeds the threshold value. The simulation results show that the 
SRSNN performs better in accuracy, precision, recall, and F1-score, especially in dangerous 
terrain (i.e. hydrop). This method serves the autonomous navigation of the robotic system, 
especially in path-planning robotic systems. In future work, the current researchers are 
going to fusion visual and geometric features instead of using only visual features. 
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Symbol Description Symbol Description 

𝛼 learning rate 𝑡𝑦
𝑑  training desired spike time 

FB output feedback 𝑡𝑦
𝑓

 actual output spike time  

𝐹𝑃 False Positive 𝑇𝑚𝑎𝑥 highest interval times 
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