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ABSTRACT

This paper presents a study of the geometrically non-linear vibrations of
clamped circular plates with variable thickness by taking the effect of large
amplitude motion. The maximum thickness is considered to be at the plate
center and it is taken to be twice the value of thickness at the edge. The
problem is solved by the numerical iteration procedure to obtain the results of
vibration amplitudes up to twice the maximum plate thickness. The results are
presented for the first two modes of vibration. The obtained results indicate
that increasing the ratio of thickness has the effect of increasing the nonlinear
frequency and modify the corresponding mode shape.
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INTRODUCTION

Thin plates are used in various modern engineering problems and they are often
subjected to severe dynamic loading. In some cases this may result in large amplitudes
vibration which leads to a behavior different from that predicted by the classical linear
theory. Thus it is necessary to include the geometrical non-linearity. In the literature,
the Von Ka’rma’n relations is the most widely used. The governing equations are
coupled non-linear partial differential equations of motion. Also no general and
symmetric approach to nonlinear problems is available which allows all or most of the
various non-linear effects to be described in a unified manner (Benamar 1990).

In the study of geometrically non-linear axi-symmetric vibrations of clamped
circular plates, the common approach has been to use an assumed space or time mode.
The different methods of solution used in the literature related to the subject of interest
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have been presented in (Benamar 1991). In the very recent works, the finite element
method has been applied to study the nonlinear vibrations of hinged orthotropic circular
plates with a concentric rigid mass using Von Ka’rma’n equations (Huang 1998) and
geometrically nonlinear free vibrations of polar orthotropic circular plates with various
boundary conditions, using the three-dimensional elasticity theory with all of the non-
linear terms retained in the strain expressions (liu 1996). If the single mode approach is
used, this approach is not completely useful for studying the geometrically non-linear
vibration of thin structures, therefore multimode analyses are used.

In the present paper the nonlinear vibration of a clamped circular plate with linearly
varied thickness is studied taking both the in-plane and the transverse motions into
account. The method of solution depends on the explicit approach. This approach is
based on the linearization of the set of algebraic equations in the neighbourhood of each
resonance.

MATHEMATICAL ANALYSIS

The plate is considered to have a radius R and variable thickness h clamped along
its edge. The variation of the plate thickness is assumed as linear. The origin of the
coordinate system is taken at the center of the plate, as shown in Fig. 1.

The plate is assumed to be elastic with homogeneous isotropic mechanical
properties. For circular plate having large amplitude vibrations, the strains are given by
the following equation (Hung, 1971) :
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Fig. 1: Plate and Coordinate Notation

In large amplitude vibration, the strain energy is the sum of strain energy due to bending
and the strain energy due to membrane, that is:

V=V, +V, )
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the bending strain energy of the clamped circular plate with axi-symmetric vibrations is
(Haterbouch 2003) :

V, ﬂoj{azw (%‘?’j }rdr (3)

where, D=Eh® 12(1-v?). The membrane strain energy of the circular plate is given by
(Timoshinko 1959) :

127D 2 |( 8U u2 Uau (WY au w U(ow)
Vi, =— j — |ttt | —+ +v—|—| prdr
h® < |Lor r r or or ) or 4l or r{or

(4)

Now the total strain energy is:

Vv :nDj{azw L @V” }rdr+

127D % |( oU U2 U au awYau 1 8W U aw
—2,[ — — | | —*+— +v rdr ............ (5)
h or r r ar or or 4 6r ar

0

The kinetic energy of the circular plate with neglecting the rotary inertia is:

T = ﬂphj{(%j +(%Jj }rdr (6)

The most common approach in seeking an approximate solution of geometrically non-
linear vibration is by separation of space and time functions. The transverse
displacement function is:

W (r,t) = w(r)cos(awt)
(7)

and the in-plane radial displacement is given by (Haterbouch 2004) :
U (r,t) = u(r)cos®(at) (8)

The spatial functions u(r) and w(r) are expanded in the form of finite series of p; and p,
in-plane u;( r) and transverse motion w;( r ) basic functions, respectively as:

w(r) = aw(r),

9
u(r) =bu;(r) ©)
Now the discretized forms for the total strain and Kinetic energies are:
1 1 2 1 1 2 4
V = Eaiajkij cos (cot)+5[aiajaka,b ik + b K ]cos (o) (10)
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1 . .
T= Ea)z[aiajmijlslnz(a)t) +b,b,m? sin® (2et)]
(11)
where, m%; , m%; , k% , k% are the mass and stiffness tensors associated with W and U

respectively, and biju & cix are fourth order and third order non-linearity tensors
respectively. These tensors are:

mt; = 27ph j VW, PP (12a)
0
m? = ZﬁphJ.Uinl’dr ...................................................................................... (12b)
0
L t(d2w d2w; 1 dw, dw;
ku—272'ph£( e 10| TR (12c)
&( du. du. : du,
3y = 220 | @y L Yy B e (12d)
h® oldr dr r rdr rodr
2( dw, dw, - dw,
i = 247§Dj dw; QW; du, +KdW' LU rAr e, (12e)
h® sl dr dr dr r dr dr
2( dw, dw.
bl = 67[?[ dw, AW, dw, dw, AT e @az2f)
h® <l dr dr dr dr

Hamilton’s principle is powerful to govern the dynamics of structures, which is
written in its general symbolic form as:

5T(v ~T)dt =0 (13)

Substituting Eq. (5) and (6) into Eq. (13) and after integrating the time functions and
differentiating with respect to a;’s & b;i’s results the following set of non-linear algebraic
equations:

2ak’i +3a,a;a a bl +§aibkcirk —2w’ami =0,....r =1,....p, (14a)

3
Z(aiajcijs +2bk%s) — 20°bm%s = 0,......... S=L (14b)
In order to generalize the analysis, the following non-dimensional displacements may
be used;

*

r'= %,..W*i(r*) _ Wi (r)

hy

Wi (r)

U5t = o
0

(15)
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where, 1 = h,
R
Now Eq. (14) may be written to take the form:
1* 1% 3 % 2 1%
2a,k™ i +33,2;8,07ijkr +§aibkc ik —20° aMir =0,....r =1....p, (16)
%(aiajc*ijs +2bk*is) — 2@ bm*is = 0,......... S=1.. p,

where o is the non-dimensional non-linear frequency, which is defined by:

4 2
' = —ph{; @ (17)

The dimensional terms in (12) may be written in non-dimensional forms as:

m™ij, m*%j) = ————— (m¥, m%1.4%),
) J) 272'[0th03( ] ] )
(18)
R2
(K5, ki, i, b ) = 22Dh’ (k' ki, Cye, b))
These non-dimensional terms are given by:
1
m"y = J'wi*wj*r*dr*...., .................................................................................... (19a)
0
1
m% = j Uy UL TTOE (19b)
0
1 * * *
d2w’ d2w; 1 dw  dw,
k' = : : ) 19c
J !;( dr® dr*  r? dr’ dr*) (19c)
1 * * * *
du.” du. 1 v du; v ,du
K = 12| (— —+ U+ ———u +—u =) rrdr e 19d
) !(dr*dr* FUU U e ) (Lod)
1 *
dw” dw; du,’ . v dw
Clij =12| (——L—% — U s (19)
-([dr dr* dr* ' rdr d
1 _* dW* * *
b = 3] (AU QW W AWy e e (19f)
o drodr® dr® dr

The transverse functions w'; (") for the clamped axisymmetric circular plate are written
as (Hatrbouch 2003) :
* * * ‘] (ﬂ) *
Wi (r) = A{Jo(ﬂir ) -2 L (BT)
1,(5)

(20)

where, B ‘s are the real positive roots of:
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J(BIN(B)+ I, (B)1,(B) =0 (21)

In this equation J, , I, are the Bessel and the modified Bessel functions of the first kind
of order n. The parameter f3, related to (o 1), by;

Bi=(0 )i (22)

The values of  can be found frgm*Eq. (21).
The in-plane basic functions u, (r) for the immovable axisymmetric circular plate are
(Lee 1971):

ui(r) = By (ar”) (23)
where, g, is the ith real root of ;
J1(a)=0 (24)

The functions w; () and u, (1) should be normalized as:

1
m," = J.W*iw",-r*dr* =5,

i (25)
m,”" = Iu*iu*,-r*dr* =5,

0

The values of k' , k¥ , cix and b"jq given by Eq. (19) were computed by
Simpson’s rule. The set of nonlinear algebraic equations (16), which called the
amplitude equation, can be written in matrix form as:

(K" T+Kn D{AY-0 M7 {A}={0} (26)

where, ([K*], [M*] and [Kq ] are respectively the non-dimensional linear stiffness,
mass and non-linear geometrical stiffness matrices. The terms of the matrix [K ] are;
(K'a)ij =(3/2)akab i . Neglecting the term [K'y] from Eq. (26) gives the classical
eigenvalue problem;

[K'{A}=0 *[M"{A} (27)

In this equation each eigenvalue have a corresponding eigenvector while the nonlinear
Eq. (26) lead to a set of amplitude-dependent eigenvectors with their amplitude-
dependent associated eigenvalues.

The single mode assumption, which neglects all of the coordinates except the
single resonant coordinate, has been used widely in the geometrical non-linearities due
to the great simplifications it introduces (Azrar,1999). Also this approach does not
give any information about the amplitude dependence between the deflection shape and
distribution of stresses (El Kadiri 2002). Therefore the explicit method of solution is
used because it remedies this insufficiency of the single mode approach.

If the effect of A in Eq. (16)is neglected due to its very small values, it can be
rewritten according to this approach as:
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aikl*ir + ga3ib3111r - a)*zaiml*ir =0,..r =1,............ Po (28)

For r=1, we have,

1= *
2 = Ky, §b 1112

29
mlll* 2 mlll* ( )
The (po-1) remaining equations are:
1* *2 1x _3 3
(krr —o“m, Je = 7a {10 JE T r=2,..... P, (30)

where, &, is the contribution coefficient of the non-resonant modes which is given by:

3afb*111r
& =— yernnees Fr=2, e \ 31
' 2( l*rr + a)*zml*rr) pO ( )

substituting Eq. (29) into (31) gives:

3%
£ = 33 bur S S S P, (32)

2(k1*11 + gafb*nn— kl*rrj

Eq.(32) is an explicit formula, allowing direct calculation of higher order contribution
corresponding to the first mode shape. Thus the first non-linear amplitude dependent
clamped circular plate mode shape, w n1(r',a) can be defined in a series form as:

3a13b*111r

Whan(r',a,) = 31Wl(r)+z wr (") (33)

r=2 2(k1* +— ai b 1111— rr)

In this equatlon the predominant term in which proportional to the first linear mode
shape is a;w (1 ) and the others which corresponding to the higher linear mode shapes
W), .o w pc,(r ) are corrections due to the non-linearity.

In order to determine the distribution of membrane stresses, the in-plane
displacement coefficients b, should be determined. As mentioned above, because of the
very small values of A, Eq. (16) gives:

b =a;ad ... =1 P, (34)

* 1 * * H - - -
where, d’ix = > k**wci , is a third order terms expressing the coupling between the

transverse and in-plane motions, the tensor k*'; .
If the first and second order terms in the expression ajad i are neglected, the
in-plane contribution coefficients are simply given by:
bi:alzd*m N i=1, .......... P (35)

Thus the in-plane shape function is given by:
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u(r’) = a, d Ui (r) (36)

If the first order term  ae&d™ui is added, the in-plane basic function contribution
coefficients, EQ. (35), are given by:

po
b =a’dwu+Y agdu , i=l....p (37)

1=2
now the in-plane function is:

Po 2 % *
u*(r*) — aiz[d*ljj +Z 331 b 111rd Iri

1 21 % 1r ]W*'(r*) (38)
r=2 (2k 11+ 3d,"b 1111 — 2K" rr)

This equation improves significantly the membrane stress estimates for amplitudes
higher than those permitted by expression (35).

RESULTS AND DISCUSSIONS

The dependence of the non-linear frequency on the amplitude of vibration is shown
in Fig. (2) for thickness ratios of 1, 1.5 and 2. This figure is plotted for the first two
axisymmetric mode shapes. The ratio of thickness (hi/h,) has the effect of magnifying
the frequency ratio (o /o 1). Also it is seen that a spring hardening effect is present and
this effect increased with increasing the amplitude ratio. The plot also shows that the
first mode shape exhibits less change in frequency with the vibration amplitude than
does the second non-linear mode shape. This is because that the deflection shape
associated with the first mode shape produces less induced tensile forces than does that
associated with the second mode shape for the same maximum displacement
amplitudes. This figure shows that the nonlinear frequency increased with increasing
the ratio of thickness. This is because of the bending effect arise due to the geometry of
the plate. This effect increased with increasing the ratio of thickness.

Figs. (3a) and (3b) show the effect of thickness ratio on the non-linear mode shape.
The non-linear mode shapes are plotted for the first two axisymmetric modes. The
effect of amplitude ratio is presented in (Haterbouch 2003 & Haterbouch 2004),
therefore it is not presented here. The values of thickness ratio has the effect of keeping
away the mode shape in the direction of the plate edge. Also it can be seen that the
mode shapes become more flatening near to the centre of the circular plate with the
increase of vibration amplitude. But here it is shown that the effect of thickness ratio is
more pronounced than the amplitude ratio.

The effect of amplitude of vibration and thickness ratio on the normalized in-plane
displacement shape functions is shown in Figs. (4a) and (4b) respectively for the first
two modes. Increasing the ratio of thickness has the effect of pulling the in-plane mode
shape in the direction of plate centre. This effect because that the inertia force near the
centre of plate is higher than that near the edge.

Fig. (5) shows that the normalized amplitude is affected by the ratio of thickness in
which increasing this ratio cause a shift to higher values at dimensionless radius values
between 0.2 and 0.8. This trend is due to the high inertial values which cause higher
values of deflection.
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Conclusions

From the presented results the following two conclusions can be drawn;
1- It is shown that both of the amplitude of vibration and thickness nonuniformity
have a clear effect on the nonlinear frequency and the corresponding mode shape.
2- Increasing these two parameters cause an increase in the nonlinear frequency and
change the mode shape.
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Fig. 2: Effect of Thickness Ratio and Maximum Vibration
Amplitude on the nonlinear Frequency.
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Fig. 3: Effect of Thickness Ratio on the normalized mode shape of the first two
nonlinear Axisymmetric modes of the clamped circular plate, W'max = 2.
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Fig.4: Effect of Thickness Ratio the Normalized in-Plane Shape Functions of
the nonlinear Axisymmetric Modes of a Clamped Circular Plate, W' = 2
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Fig. 5: Effect of Thickness Ratio on the First Mode Shape
from Model with wandu,W'mx = 2.
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