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ABSTRACT 

      This paper presents a study of the geometrically non-linear vibrations of  

clamped circular plates  with variable thickness by taking the effect of large 

amplitude motion. The maximum thickness is considered to be at the plate 

center and it is taken to be twice the value of thickness at the edge. The 

problem is solved by the numerical iteration procedure to obtain the results of 

vibration amplitudes up to twice the maximum plate thickness. The results are 

presented for the first two modes of vibration.  The obtained results indicate 

that increasing the ratio of thickness has the effect of increasing the nonlinear 

frequency and modify the corresponding mode shape. 
 

 الخلاصة
فً هز انبحث حًج دساست  الإ هخضاصاث انلا خطٍت نصفٍحت دائشٌت يحكًت الإسُاد عهى انًحٍظ ، راث سًك 

يخغٍش ورنك بأخز حأثٍش انسعت انعانٍت عهى الأهخضاص . نقذ حى إعخباس أقصى سًك عُذ يشكض انصفٍحت ويساوٌا 

عذدي  نهحصول عهى انُخائج ورنك بأعخباس  أٌ الأصاحت نضعف انسًك عُذ انحافت . نقذ حى إسخخذاو طشٌقت انخكشاس ان

يسوٌت نضعف انسًك الأقصى ، وأخزث انُخائج نهُسقٍٍ الأونٍٍٍ فقظ .نقذ بٍُج انُخائج أٌ صٌادة َسبت انسًك ) 

 أقصى سًك انى انسًك عُذ انحافت ( ٌضٌذ يٍ قًٍت انزبزبت انلاخطٍت وٌؤثش عهى شكم انًوجت انخابعت نهُسق .

 

KEYWORDS: Non-Linear Vibration, Circular Plate, Variable Thickness, Large 

Amplitudes 

 

INTRODUCTION 

     Thin plates are used in various modern engineering problems and they  are often 

subjected to severe dynamic loading. In some cases this may result in large amplitudes 

vibration which leads to a behavior different from that predicted by the classical linear 

theory. Thus it is necessary to include the geometrical  non-linearity. In the literature, 

the Von Ka‟rma‟n relations is the most widely used. The governing equations are 

coupled non-linear partial differential equations of motion. Also no general and 

symmetric approach  to nonlinear problems is available which allows all or most of the 

various non-linear effects to be described in a unified manner  (Benamar 1990). 

In the study of geometrically non-linear axi-symmetric vibrations of clamped 

circular plates, the common approach has been to use an assumed space or time mode. 

The different methods of solution used in the literature related to the subject of  interest 
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have been presented in (Benamar 1991). In the very recent works, the finite element 

method has been applied to study the nonlinear vibrations of hinged orthotropic circular 

plates with a concentric rigid mass using Von Ka‟rma‟n equations (Huang 1998)  and 

geometrically nonlinear free vibrations of polar orthotropic circular plates with various 

boundary conditions, using the three-dimensional elasticity theory with all of the non-

linear terms retained in the strain expressions (liu 1996). If the single mode approach is 

used, this approach is not completely useful for studying the geometrically non-linear 

vibration of thin structures, therefore multimode analyses are used. 

In the present paper the nonlinear vibration of a clamped circular plate with linearly 

varied thickness is studied taking both the in-plane  and  the transverse motions into 

account. The method of solution depends  on the explicit approach. This approach is 

based on the linearization of the set of algebraic equations in the neighbourhood of each 

resonance. 

 

MATHEMATICAL ANALYSIS  

      The plate is considered to have a radius R and variable thickness h clamped along 

its edge. The variation of the plate thickness is assumed as linear. The origin of the 

coordinate system is taken at the center of the plate, as shown in Fig. 1. 

 

       The plate is assumed to be elastic with homogeneous isotropic mechanical 

properties. For circular plate having large amplitude vibrations, the strains are given by  

the following equation  (Hung, 1971) : 
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Fig. 1: Plate and Coordinate Notation 

 

In large amplitude vibration, the strain energy is the sum of strain energy due to bending 

and the strain energy due to membrane, that is: 
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the bending strain energy of the clamped circular plate with axi-symmetric vibrations is  

(Haterbouch 2003) : 
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where, D=Eh
3
/ 12(1-ν

2
). The membrane strain energy of the circular plate is given by 

(Timoshinko 1959) : 
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Now the total strain energy is: 
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The kinetic energy of the circular plate with neglecting the rotary inertia is: 
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The most common approach in seeking an approximate solution of geometrically non-

linear vibration is by separation of space and time functions. The transverse 

displacement function is: 

 

                         )cos()(),( trwtrW                                                                              

(7) 

 

and the in-plane radial displacement is given by  (Haterbouch 2004) :  

 

                         )(cos)(),( 2 trutrU                                                                             (8) 

 

The spatial functions u(r) and w(r) are expanded in the form of finite series of  pi and po 

in-plane ui( r ) and transverse motion wi( r ) basic functions, respectively as: 
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Now the discretized forms for the total strain and kinetic energies are: 
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where, m
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1
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ij  are the mass and stiffness tensors associated with   W and U 

respectively, and bijkl & cijk are fourth order and third order non-linearity tensors 
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       Hamilton‟s principle is powerful to govern the dynamics of structures, which is 

written in its general symbolic form as: 
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Substituting Eq. (5) and (6) into Eq. (13) and after integrating the time functions and 

differentiating with respect to ai‟s & bi‟s results the following set of non-linear algebraic 

equations: 
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where, 
R

ho  

Now Eq. (14) may be written to take the form: 
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where ω
*
 is the non-dimensional non-linear frequency, which is defined by: 
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The dimensional terms in (12) may be written in non-dimensional forms as: 
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These non-dimensional terms are given by: 
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The transverse functions w
*
i (r

*
) for the clamped axisymmetric circular plate are written 

as (Hatrbouch 2003) : 
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where, βi „s are the real positive roots of: 
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In this equation Jn , In are the Bessel and the modified Bessel functions of the first kind 

of order n. The parameter βI related to (ω
*
l)I by; 
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The values of β can be found from Eq. (21). 

The in-plane basic functions uI
*
(r

*
) for the immovable axisymmetric circular plate are 

(Lee 1971) : 

           )()( 1

  rJru iii                                                                               (23) 

 

where, αI is the ith real root of ; 

 

   J1(α)=0                                                                                              (24) 

 

The functions wI
*
( r ) and uI

*
( r ) should be normalized as: 

 













1

0

2

1

0

1

ijjiij

ijjiij

drruum

drrwwm





                                                                                           (25) 

The values of  k
1*

ij , k
2*

ij
 
 , c

*
ijk and  b

1*
ijkl  given by Eq. (19) were computed by 

Simpson‟s rule. The set of nonlinear algebraic equations (16), which called the 

amplitude equation, can be written in matrix form as: 
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] are respectively the non-dimensional linear stiffness, 

mass and non-linear geometrical stiffness matrices. The terms of the matrix [K
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nl] are;  

(K
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nl)ij =(3/2)akalb

*
ijkl . Neglecting the term [K
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nl] from Eq. (26) gives the classical 

eigenvalue problem; 
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In this equation each eigenvalue have a corresponding eigenvector while the nonlinear 

Eq. (26) lead to a set of amplitude-dependent eigenvectors with their amplitude-

dependent associated eigenvalues. 

     The single mode assumption, which neglects all of the coordinates except the 

single resonant coordinate, has been used widely in the geometrical non-linearities due 

to the great simplifications it introduces  (Azrar,1999). Also this approach does not 

give any information about the amplitude dependence between the deflection shape and 

distribution of stresses  (El Kadiri 2002). Therefore the explicit method of solution is 

used because  it remedies this insufficiency of the single mode approach. 

     If the effect of λ in Eq. (16)is neglected due to its very small values, it can be 

rewritten according to this approach as: 
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The (po-1) remaining equations are: 
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where, εr is the contribution coefficient of the non-resonant modes which is given by: 
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substituting Eq. (29) into (31) gives: 
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Eq.(32) is an explicit formula, allowing direct calculation of higher order contribution 

corresponding to the first mode shape. Thus the first non-linear amplitude dependent 

clamped circular plate mode shape, w
*
nl1(r

*
,a) can be defined in a series form as: 
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In this equation the predominant term in which proportional to the first linear mode 

shape is  a1w
*
1(r

*
) and the others which corresponding to the higher linear mode shapes 

w
*
2(r

*
), ……… w

*
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*
) are corrections due to the non-linearity. 

        In order to determine the distribution of membrane stresses, the in-plane 

displacement coefficients bI should be determined. As mentioned above, because of the 

very small values of λ, Eq. (16) gives: 
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transverse and in-plane motions, the tensor k
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ij . 

              If the first and second order terms in the expression aiajd
*
ijk are neglected, the 

in-plane contribution coefficients are simply given by: 
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Thus the in-plane shape function is given by: 
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If the first order term lida 111

  is added, the in-plane basic function contribution 

coefficients, Eq. (35), are given by: 
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now the in-plane function is: 
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This equation improves significantly the membrane stress estimates for amplitudes 

higher than those permitted by expression (35). 

 

       RESULTS AND DISCUSSIONS 

      The dependence of the non-linear frequency on the amplitude of vibration is shown 

in Fig. (2) for thickness ratios of  1, 1.5 and 2. This figure is plotted for the first two 

axisymmetric mode shapes. The ratio of thickness (hi/ho) has the effect of magnifying 

the frequency ratio (ω
*
nl/ω

*
l). Also it is seen that a spring hardening effect is present and 

this effect increased with increasing the amplitude ratio. The plot also shows  that the 

first mode shape exhibits less change in frequency with the vibration amplitude than 

does the second non-linear mode shape. This is because that the deflection shape 

associated with the first mode shape produces less induced tensile forces than does that 

associated with the second mode shape for the same maximum displacement 

amplitudes. This figure shows that the nonlinear frequency increased with increasing 

the ratio of thickness. This is because of the bending effect arise due to the geometry of 

the plate. This effect increased with increasing the ratio of thickness. 

 

   Figs. (3a) and (3b) show the effect of thickness ratio on the non-linear mode shape. 

The non-linear mode shapes are plotted for the first two axisymmetric modes. The 

effect of amplitude ratio is presented in (Haterbouch  2003 & Haterbouch 2004), 

therefore it is not presented here. The values of thickness ratio has the effect of keeping 

away the mode shape in the direction of the plate edge. Also it can be seen that the 

mode shapes become more flatening near to the centre of the circular plate with the 

increase of vibration amplitude. But here it is shown that the effect of thickness ratio is 

more pronounced than the amplitude ratio. 

     The effect of amplitude of vibration and thickness ratio on the normalized in-plane 

displacement shape functions is shown in Figs. (4a) and (4b) respectively for the first 

two modes. Increasing the ratio of thickness has the effect of pulling the in-plane mode 

shape in the direction of plate centre. This effect because that the inertia force near the 

centre of plate is higher than that near the edge. 

     Fig. (5) shows that the normalized amplitude is affected by the ratio of thickness in 

which increasing this ratio cause a shift to  higher values at dimensionless radius values 

between 0.2 and 0.8.  This trend is due to the high  inertial values which cause higher 

values of deflection. 
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Conclusions 

      From the presented results the following two conclusions can be drawn;  

1- It is shown that both of  the amplitude of vibration and thickness nonuniformity  

have a clear effect on the nonlinear frequency and the corresponding mode shape.  

2- Increasing these two parameters cause an increase in the nonlinear frequency and 

change the mode shape.  

 
 

 

References 

C.F. Liu, G.T. Chen, “Geometrically nonlinear Axisymmetric Vibrations of Polar 

Orthotropic Circular Plates”, International Journal of Mechanical Science, 38, 3, 1996, pp. 

1715-1726. 

 
C.F. Liu, G.T. Chen, “Geometrically nonlinear Axisymmetric Vibrations of Polar 

Orthotropic Circular Plates”, International Journal of Mechanical Science, 38, 3, 1996, pp. 

1715-1726. 

 

C.L.D. Huang, I.M. Al-Khattat, “Finite Amplitude Vibrations of a Circular Plate”, 

International Journal of nonlinear Mechanics, 12, 1977, pp. 297-306. 

 

L. Azrar, R. Benamar, R.G. White, “A Semi-Analytical Approach to the nonlinear 

Dynamic Response Problem of S-S C-C Beams at Large Vibration Amplitudes. Part I: 

General Theory and Application to the Single Mode Approach to free and Forced 

Vibration Analysis”, Journal of Sound &Vibration, 224, 2, 1999, pp. 183-207. 

 

L.C. Wellford, G.M. Dib, W. Mindle, “Free and Steady-State  Vibration of 

nonlinear Structures using a Finite Element nonlinear Eigenvalue Technique”, Earthquake 

Engineering and Structural Dynamics, 8, 1980, pp. 97-115. 

 

M. El Kadiri, R. Benamar, R.G. White, “Improvement of the Semi-Analytical 

Method for Determining the Geometrically non-linear Response of Thin Straight 

Structures. Part I: Application to Clamped-Clamped and Simply Supported_ Clamped 

Beams”, Journal of Sound &Vibration, 249, 2002, pp. 263-205. 

 

M. Haterbouch, R, Benamar, “The Effects of Large Vibration Amplitudes on the 

Axisymmetric Mode Shapes and Natural Frequencies of Clamped Thin Isotropic Circular 

Plates. Part I: Iterative and Explicit Analytical Solution for nonlinear Transverse 

Vibrations”, Journal of Sound &Vibration, 265, 2003, pp. 123-154. 

 

M. Haterbouch, R, Benamar, “The Effects of Large Vibration Amplitudes on the 

Axisymmetric Mode Shapes and Natural Frequencies of Clamped Thin Isotropic Circular 

Plates. Part II: Iterative and Explicit Analytical Solution for nonlinear Transverse 

Vibrations”, Journal of Sound &Vibration, 277, 2004, pp. 1-30. 

 

R. Benamar, “Non-linear Dynamic Behaviour of Fully Clamped Beams and 

Rectangular isotropic Laminated Plates”, Ph.D. Thesis, Institute of Sound and Vibration 

Research, 1990. 

 



A. A. Al-Rajihy                                                                           The Axisymmetric Dynamics of Isotropic Circular 

                                                                                                    Plates With Variable Thickness Under the Effect  

                                                                                                    of Large Amplitudes 
 

Available online @ iasj.net 2033 

R. Benamar, M.M.K. Bennouna, R.G. White, “The effects of Large Vibration 

Amplitudes on the Mode Shapes and Natural Frequencies of Thin Elastic Structures. Part 

I: Simply  Supported and Clamped-Clamped Beams”,  Journal of Sound &Vibration, 194, 

1991, pp. 179-195. 

 

S. Huang, “Nonlinear Vibration of a Hinged Orthotropic Circular Plate with a 

Concentric Rigid Mass”, Journal of Sound &Vibration, 241, 5, 1998, 873-883. 

 

S. Timoshinko, S. Woinowsky-Krieger, “Theory of Plates and Shells”, 2
nd

 Edd., 

Mcgraw-Hill, New York, 1959. 

 

T.W. Lee, P.T. Blotter, D.H.Y. Yen, “On the nonlinear Vibrations of a Clamped 

Circular Plate” Developments in Mechanics, 6, 1971, pp. 907-921. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Journal of Engineering Volume 14 march 2008       Number1   
 

Available online @ iasj.net 2032 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

First Mode 
Second Mode 

w
*
/w

*
m

a
x 

 

Fig. 3: Effect of Thickness Ratio  on the normalized mode shape of the first two 

nonlinear Axisymmetric modes of the clamped circular plate, 2max 
w . 
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Fig. 2: Effect of Thickness Ratio and Maximum Vibration 

Amplitude on the nonlinear Frequency. 
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Fig.4: Effect of Thickness Ratio the Normalized in-Plane Shape Functions of   

the nonlinear Axisymmetric Modes of a Clamped  Circular Plate, 2max 
w    
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Fig. 5: Effect of Thickness Ratio on the First Mode Shape          

from Model with 2, max 
wuandw . 
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