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ABSTRACT 

 In this research, a procedure to solve problems of unsteady flow to wells in confined 

aquifers by the computer is developed. The solution is based on the [THEIS:1935] procedure to 

solve such problems. The developed procedure is applied to (14) different sets of well – test data, 

including a predicted ideal one. The respective problems are solved completely by the computer 

without the need to construct or to refer to tables or nomographs; this, accordingly, deletes the role 

of personal judgment and the need to a high skill. 

 The applications indicate that the developed solution procedure is simple, easy to use, 

elaborate, superiorly fast in giving the required results, and comparatively accurate. 

 Despite that the developed solution procedure has been set for the case of a pumped well in 

an ideal confined aquifer, it is basically general; the computer program can be easily modified to fit 

the solution of problems of the other cases of groundwater flow to wells after introducing the 

additions that consider the respective boundary conditions. 
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 الخــلاصــة

هذاممزبهب تطممرهترممة شهلش سممله طمميهه ممر يهب بش ممرىهلآبممشهب ارذممرهب ممحهبرذممرسه ممسهب طلممرس هب وط ممةس ه ر مم هذر مم  ور ه  تممنب

س هعلمحه ه[5391]ثايس:ب طر ةب,ه ب  ٌذهب طيهعلحهلش سله (ههبوةعمله36 سهحيههايههزٍهب و ر ي.هجشىهترتبقهب رش سملهب ورمةب

هحيهب و ر يهربتهب  لاقلهكلبرهًذةب رلهب طر ةبهد ىهب طرجملهسبوةعلههار بلهه  ٌترل.ه هخ لفله شصةدبته طصهبرذرس،ههٌارهه ذهتنب

هب حهإعذبدهأ هب شجةعهب حهجذب  هأ هس ةمهذبرًبل,ه هزبهذر ٌ ببلهأ غحهد سهبلاج اردهب لخ سه ب طرجلهب حهب ختش هب  ر بل.

س ههممسهذ ممبرله  ممالله ممرهب  رتبسممرتهبىهلش سمملهب طمميهب ورممةب بلا مم  ور ه هق سٌممله  ر سمملهب  ممشعله ممسهإعرممر هب ٌ ممر  هه سممذهذببٌ

ه دقبسلهً تببرً.ب ورلةذله

ه سهحلش ههط ةسههامر س,ه نًامرهذلم يهه س ه قض ره طر لهذئشهضخب عرهملهإرهذرمه مرىههأ مر  سلآنهبىهلش سلهب طيهب ورةب

ب محهبرذمرسه ر م هذ مذهت موبيهذشًمره ههت ذ يهذشًره هب طر ةبهذ ماة له بمةب نهحميهه مر يهب طمرلاتهبلجمشىه بش مرىهب ومر هب بمة س

هب طر ةبهبمضر رتهب  سهتأجزهذ بيهبلاع ترسهبل ضرعهب  قخوببلهربتهب  لاقل.
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INTRODUCTION 

 Groundwater represents a major water resource – if not the only one – in too many localities 

all over the world. Beside its relatively good quality, in general, the attainable quantity of the 

world's groundwater (at depths less than 760 m) has been estimated at (3, 853, 213 km
3
) 

[UNESCO:1978], which is more than (33) times of the estimated total quantity of fresh water in all 

rivers, reservoirs, and lakes. 

 

 Groundwater is extracted mainly by means of pumped wells. The flow to a well is in fact 

unsteady. However, a steady state may be practically assumed after a continuous pumping from a 

well at a constant rate for a considerably long time. The pumped aquifers may be unconfined,    

semi – confined (leaky), or confined; the basic hydraulic principles for the aforementioned flow 

cases are essentially the same. 

 

 Practical problems of most concern in the field of groundwater hydrology and hydraulics 

fall in one of the following categories : 

(1). Estimating the average values of the aquifer characteristics, namely, the transmissivity (T) and 

storativity (S). 

(2). Determining the safe yield of a well (or an aquifer, or even a basin) for known (T) and (S). 

(3). Predicting the drawdown (z) at the pumped well or in an observation well at a distance (r) from 

the pumped well at any time (t) since the start of pumping, provided that aquifer's (T) and (S) 

are known. 

 

Pumping tests are the major tool for establishing the field data which are necessary for the 

solution of the aforementioned problems. Results of pumping tests are usually recorded in the form 

of tables giving the depth of water (d) in the considered observation well (measured from the 

ground surface) versus the respective time elapsed since the start of pumping, (t). The water surface 

in a well represents the instantaneous level of the piezometric surface in the confined aquifer (or 

that of the water table in an unconfined aquifer). 

 

As it is discussed later, solution of any problem related to the discussed subject necessates 

the reference to some pre – established tables. Besides, the available procedures for solving 

problems of category (1) are graphical (in which human judgment plays a major role). 

Realizing that the basic principles behind the Theis equation and Theis procedure of 

solution (mentioned hereafter) are unquestionable, this research aims at developing a simple and 

accurate methodology to solve problems of any of the three aforementioned categories. The 

solution is to be performed completely by computer and, consequently, there will be no further 

reference to tables, nomographs, or graphical solution for which high personal skill and experience 

are prerequisites. An ideal confined aquifer will be considered in establishing the methodology. The 

validation of the methodology is checked through application to some selected case studies. 

 

THE GOVERNING EQUATION 

 Actual groundwater flow is three – dimensional and unsteady, with the storage 

characteristics of the aquifer playing a major role. Thus, an actual soil – water system is so complex 

that the solution of any problem concerning it, no matter how simple is, cannot be performed 

straightforward and accurately; wells hydraulics is one such example. Consequently, accompanying 

simplifying assumptions are always indispensable. 

 

 For an assumed laminar groundwater – flow, the general governing differential equation is 

developed by combining Darcy's equation and the continuity (mass balance) equation. The resulting 

equation can be written as [MCWHORTER and SUNADA:1977] : 
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where, for a confined aquifer, the specific storage ( sS ) is a measure of compressibility of the 

aquifer and water. 

 The solutions of Eq. (1) give the time and space distributions of the piezonetric head (h) in 

heterogeneous, anisotropic, confined aquifers, in the usual three Cartesian coordinates (x, y, z). 

 To overcome the big difficulty and the complexity involved in solving Eq. (1), some 

practical simplifying assumptions, beside the assumption of laminar flow, are usually introduced. 

Such assumption involve [CHOW:1964] : 

1. The aquifer is homogeneous, isotropic, of infinite areal extent, bounded by impermeable 

(confining) strata above and below, and has constant coefficients of transmissivity and storage in 

all directions at all times. 

2. The discharging well is of infinitesimal diameter and completely penetrates the aquifer. 

3. Pumping is maintained at a constant rate (Q). 

4. Water is released instantaneously with decline in head. 

 It is to be noted, however, that for an assumed horizontal confined aquifer of a relatively 

uniform thickness (b) and an extensive areal extent, when average values of the effective soil 

characteristics, namely, the hydraulic conductivity (K) and the specific storage ( sS ), are considered 

then the assumptions of homogeneity and isotropy are implicitly justified. 

 

 Thus, under the aforementioned assumptions, Eq. (1) reduces to : 
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where : K = overall average hydraulic conductivity of the aquifer. 

 

 For a radial flow towards a well, Eq. (2), written in polar coordinates, becomes : 
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 With the assumption that the aquifer is of a uniform thickness (b), and defining the aquifer's 

storativity (S) and transmissivity (T) as :  

 

S = sS  . b                                                                                                                                       [4] 

 

T = K . b                                                                                                                                         

[5] 
 

then Eq. (3) could be written as : 
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which is the governing equation for the groundwater flow described hereinbefore. 
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SOLVING THE GOVERNING EQUATION 

 The difficulty in solving Eq. (6) led C.V. Theis to present a formula based on heat – 

conduction analogy, accounting for the effects of the storage characteristics of the aquifer and the 

time. For the conditions of (h = h0) at (t = 0) and (h   h0) as (r    ) for (t   0), the equation 

was [THEIS:1935] : 

h0 – hr = zr = 
T

Q

4
 
 

u

y

y

e
 dy                                                                                                        [7] 

 

which is the nonequilibrium or Theis equation. The parameters (h0), (hr), and (zr) are as shown in 

Fig. (1). The dimensionless parameter (u) is given by : 

 

u = r
2
 S / 4 T t                                                                                                                                [8] 

 

 In groundwater literature, the integral in Eq. (7), known in mathematics as the exponential 

integral, is commonly denoted by [W(u)] and called "the well function of (u)"; the log – log plot of 

[W(u)] versus [u] or [1/u] is called the type curve. Thus, Eq. (7) is commonly written as : 

 

zr = 
T

Q

4
  W(u)                                                                                                                             [9] 

 

 No analytic solution is available for [W(u)] but a numerical representation by the infinite 

series : 
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Based on that, [WENZEL:1942] prepared a table for the values of [W(u)] versus values of [u], 

available for the range ( 110
-15

   u   10). The solution of any problem in this respect necessates 

the reference to Wenzel's table. 

 

 There is only one equation, the governing equation, which is available for solving the faced 

problems. Problems of categories (2) and (3) involve one unknown only and, therefore, can be 

solved directly, of course with the aid of Wenzel's table. However, the case is not so for a problem 

of category (1) because it involves two unknowns, namely, (T) and (S). For this [THEIS:1935] 

proposed his well – known graphical solution. Later, [COOPER and JACOB:1946] proposed a 

modified graphical procedure to solve problems of this category, provided that (u) has a small 

value. [CHOW:1952] developed a method that avoids the curve fitting of the Theis method and not 

being restricted to small values of (u). Nevertheless, the method is also graphical and necessates the 

use of a second table for a new function (Fu), beside Wenzel's table. 

 In an extensive study to solve some subsurface flow problems by the use of a computer, 

[AL-ASSAF:1976], supported by some hypothetical and real examples, established the respective 

computer programs. One such a program is to estimate the aquifer characteristics directly from well 

test data through an iterative approach and in two stages. The first stage involves approximating the 

Theis equation and solving the approximated version for the considered data. The second stage uses 

the approximate results obtained in the first stage to solve the exact Theis equation and thus, 

obtaining the exact results aimed at. 

 

PRACTICAL CONSIDERATIONS 
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 To keep the computer work within some reasonable limits, the following practical 

considerations would be helpful. However, the developed solution procedure, in general, and the 

computer work, in particular, are by no means limited to these considerations as they are only 

indicative. 

 

 

[A] Values of (u) 

Theoretically, the dimensionless parameter (u), as defined in Eq. (8), may take any value in 

the range (0 < u <  ). However, in real practice, the following may be considered. 

(1): Values of (r)  

With a specified constant pumping rate (Q), the value of the radial distance (r) from the 

pumped well depends mainly on the characteristics of the aquifer. Values of (r) of (5 – 100 m) 

are common in practical use. Reasonable values of (10 – 50 m) will be considered in the 

following analysis. 

(2): Values of (S) 

Values of the aquifer storativity (S) in the range (1   10
-6

 – 5   10
-3

) have been recorded. 

Values of (1   10
-4

) and (1   10
-3

) will be used in the following analysis. 

(3): Values of (T) 

The hydraulic conductivity (K) of a natural soil is the most variable soil characteristic; it 

ranges from as low as (1   10
-7

 m/day) for clay to as high as (10
3
 m/day) or even more for 

gravel [CHOW:1964]. However, establishing a pumped – wells scheme in an aquifer of low 

permeability is not a feasible practice. Consequently, practical values of (2 – 20 m/day) seem 

reasonable for the purposes of this research. 

The average thickness (b) of the source confined aquifer could be from few meters to 

several hundreds of meters. For the purposes of this research, values in the range (20 – 100 m) 

shall be considered. 

Based on the considered values of (K) and (b) hereinbefore, the extreme values of (T), as 

defined by Eq. (5) would be (40 – 2000 m
2
/day). 

(4): Values of (t) 

Duration of pumping, (t), in a pumping test, i.e., the time of continuous pumping from its 

start until stoppage, depends on the characteristics of the aquifer and the degree of accuracy of 

results aimed at. Values of (t) in the range (0.5 – 2 day) are practically reasonable. 

 

On considering the extreme values of (r), (S), (T), and (t) mentioned hereinbefore, the 

respective values of (u) would be in the range (6.25   10
-7

 – 3.125   10
-2

). Consequently, the 

practical range of (u) for the purposes of this research will be considered as (1   10
-7

 – 0.1). 

 

[B] Values of (Q) 

The pumping rate (Q) should be high enough to produce measurable drawdowns in the 

respective observation wells. Values of (5 l/s   Q   40 l/s) shall be considered when needed in 

this research. 

 

THE DEVELOPED PROCEDURE OF SOLUTION 
 The type curve, {the log – log plot of [W(u)] vs. [u]}, resembles the theoretically – expected 

trend of the observed data of a pumping test when drawn as [(z) vs. (r
2
 / t)] on a log – log paper of 

the same scale as that of the type curve. Two basic assumptions in the derivation of Eq. (9) are that 

(Q) is constant throughout the test, and water is released instantaneously with decline of head. 

Practically, these two assumptions are commonly not well met during the first few observations. 

Consequently, less weight is usually given to the data of such observations. 
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 With the progress of the pumping, the plot of the pumping – test data, [(z) on an arithmetic 

scale versus (t) on a logarithmic scale], will be close to a straight line, the longer (t) is the more the 

closeness will be. For such a straight line, the data could be represented by : 

 

z = C + m  log(t)                                                                                                                          [11] 

 

where : (C) is the logarithmic intercept; (m) is the slope of the line, calculated between any two 

points, [(ta, za) and (tb, zb); (tb > ta)] as : 

 

m = 
)()( ab

ab

tlogtlog

zz




 = 

)/( ab ttlog

z
                                                                                        [12] 

 

 If the two points were chosen such that they cover a complete logarithmic time cycle, i. e., 

(tb = 10 ta), then [log (tb / ta) = 1] and Eq. (12) reduces to (m = z ). 

 Each observation shall be denoted by (R) with a subscript to denote its serial number. Thus, 

an observation will be [(Ri); i = 0, 1, …, N; N = the serial number of the last observation]. 

Consequently, and if the available data permit, the analysis will consider (J) observations [from   

(Ra) or ( 1JNR ) to (RN)] that cover the last complete time logarithmic – cycle [that is from (ta) to 

(tN), where  (ta = tN / 10)]. If (ta) is not the time of an existing observation then an existing 

observation (Ra') is to be considered such that the time (ta') is just preceding (ta). 

 

 The developed solution procedure is summarized in the following steps : 

 

[A] Verification of the observed data : 
(1): Imagine that all data points have been located on a semi – log plot, (z) on the vertical 

arithmetic scale versus (t) on the horizontal logarithmic scale. After deciding on the (J) data 

points to be considered in the analysis (as mentioned hereinbefore), imagine that each two 

consecutive data points of the chosen ones are connected by a chord. 

(2): Use Eq. (12) to calculate the slope of the established chords, (mj;  j = 1, 2, …, J–1). Of course, 

(mj) as calculated would never be (–ve); otherwise, a point creating a (–ve) (mj) should be 

considered as an outlier and, consequently, discarded. 

It is to be noted that whenever an observation is discarded from the analysis, the number 

of involved observations (J) is decreased by one for the following calculations. 

(3): For the considered data points to form a single, reasonably – acceptable straight line [outlined 

by the established (J–1) chords], the computed values of (mj) should be insignificantly 

different.  

 

[B] For the (J) observations still under consideration, the best – fit straight line is found by the least 

squares method. 

 Denoting [log(t)] as (X) and (z) as (Y), then Eq. (11) becomes : 

 

Y = C + m X                                                                                                                            [13] 

 

According to the least – squares fitting [MONTGOMERY et al.:1998] : 
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 m = 
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and the respective regression coefficient (R) is computed as : 

 

R = 
Total

Explained
                                                                                                                    [16] 

 

which, for linear regression, could be set in a form simpler for calculation as :  

 

R = 
  
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])()(][)()([

))(()(

2222 YYJXXJ

YXXYJ
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[C] The function (Fu) of [CHOW:1952] 
 To connect the observed data with the type curve, [CHOW:1952] defined a function (Fu) 

such that : 

In relation to the considered observed data : 

 

Fu = zi / m                                                                                                                               [18] 

 

where (zi) is the drawdown of an observation (Ri) chosen arbitrarily from the considered set of 

observations. 

In relation to the type curve : 

 

Fu =           W(u) . e
u
                                                                                                               [19]           

 

where (Fu), [W(u)], and (u) are all evaluated at (Ri). 

 

The value of (Fu) is calculated by Eq. (18). Then, the solution of Eq. (19) would give unique 

values of (u) and [W(u)] evaluated at (Ri). This would enable solving Eq. (9) for (T) and then 

solving Eq. (8) for (S). 

 

[D] Solving for [W(u)] and (u) 
What is mentioned in item [C] hereinbefore sounds attractive. However, it involves an 

obstacle in that, despite of that [W(u)] being a function of (u) (and vice versa), Eq. (19) could not 

be solved explicitly, neither for (u) nor for [W(u)]. 

To overcome the involved dilemma, [CHOW:1952] prepared a table (and also a log – log 

nomograph) for values of (Fu) corresponding to a range of values of [W(u)] and their respective 

values of (u). 

 

 For a solution to be performed completely by a computer, the reference to tables or 

nomographs should be avoided. Accordingly, the case under consideration could be tackled by a 

computer through a trial – and – error solution. Such a solution would involve assuming a 

reasonable value for (u), computing the respective value of [W(u)] by Eq. (10), computing the 

respective value of (Fu) by Eq. (19), and comparing this value with that computed by Eq. (18); 

the two values should be insignificantly different (within a pre-specified tolerance limit). If the 

two values were not so, the calculations are repeated for modified values of (u) until the aimed 

goal is achieved. However, this would be a cumbrous and tedious task. An elaborate alternative 

is to provide the necessary explicit mathematical relationships between each two of the three 

    variation 
 

variation 

1 

ln 10 
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involved parameters, namely, (Fu), [W(u)], and (u). This implies the establishment of the 

following functional relationships : {W(u) = f1[u]}, {u = f2[W(u)]}, and {u = f3[Fu]} or {W(u) = 

f4[Fu]}. 

 Taking into consideration the practical range of values of (u) of ( 7101   – 0.1) mentioned 

before, the following has been deduced in this respect.  

(1): {W(u) = f1[u]} 

Such a relationship is already given by Eq. (10). However, it is logical and more practical 

that for small values of (u), the series may be truncated after the second term. Thus, Eq. (10) 

becomes : 

 

W(u) = – 0.5772 – ln u = ln (1 / 1.781 u)                                                                          [20] 

 

To check the validity of such an approximation, consider values of (u) of (0.001), (0.01), 

and (0.1). Moreover, and for illustrative purposes and based on the practical considerations 

outlined before, consider average practical values of the involved parameters, say [Q = 10 l/s;  

T = 400 m
2
/d]. The drawdowns calculated for the aforementioned cases are summarized in 

Table (1). For drawdowns calculated to the nearest millimeter, the results show that the 

approximation of [W(u)] for the considered values of (u) will yield a relative percent decrease 

(D1) in the computed drawdowns of (0.0), (0.29), and (5.35), respectively. The relative 

percent decrease (D2) would be (0.0), (0.0), and (3.23), respectively, if the drawdowns were 

calculated to the nearest centimeter. This indicates that the use of Eq. (20) is well justified, at 

least for the purposes of this research, for (u < 0.01). 

(2): {u = f2[W(u)]} 

(i): Since Eq. (20) was found satisfactorily accurate for (u < 0.01) [for which W(u) > 4.0379], 

then the inverse functional relationship will be valid too. That is : 

For [W(u) > 4.0379] : 

 

u = 1 / {1.781 exp. [W(u)]}                                                                                            [21] 

 

(ii): For [4.0379   W(u)   1.8229], [that is 0.01   u   0.1] : 

For purposes other than this research, the researcher solved Eq. (10) up to (n = 34) 

(which was the limit of the capacity of the used computer) and prepared a table similar to 

Wenzel's table and for the same values of (u) involved therein. The respective type curve is 

then divided into several overlapping hypothetical sectors. The data of each sector were 

regressed, [W(u) on (u) and vice versa]; the sectors were shortened or elongated until the 

best regression, i. e., the highest regression coefficient (R), was obtained. 

For the aforementioned relationship, the obtained one was : 

 

u = Exp. {– [1.04 W(u) + 0.41]};  {R = 1.0}                                                                  [22]   

 

(3): {W(u) = f4[Fu]} 

(43) values of (u), covering the range (110
-7

   u   0.1) were selected. The respective 

values of [W(u)] were calculated by Eq. (10) or Eq. (20), as the case indicated. Then, Eq. (19) 

is used to calculate the corresponding values of (Fu). 

The software GRAPHER was used to perform the regression of [W(u)] on (Fu). Of the 

various styles the software offers, the best functional relationship obtained in this respect was 

a third – degree polynomial which, after modification, came as : 

 

a0 = – 0.34; a1 = 2.55; a2 = – 0.0567; a3 = 0.004124; {R = 1.0}                                      [23] 

 

[E] Solving for (T) and (S) 



Journal of Engineering Volume 14 march 2008       Number1  
 

 

Available online @ iasj.net 4545 

With known (Q), (r), and [W(u)] in respect to the chosen observation (Ri) with known (t) and 

(z), the solution for (T) and (S) would be systematic and straightforward and as follows : 

(1):Solve Eq. (5) for (T). 

(2):Solve Eq. (22) [or Eq. (21) as the case may be] for (u); then, solve Eq. (4) for (S). 

 

It is known in statistics that when a set of data points {X, Y} is fitted linearly, a point       

( X , Y ), whether real or predicted, would locate on the fitted straight line. Consequently, it was 

thought that such a point would be an appropriate choice for (Ri). Thus, the established computer 

program has been set accordingly; it computes ( t , z ) of the considered (J) data points and uses 

the respective values to represent the chosen observation (Ri). 

 

APPLICATION 

 The researcher was hoping to apply the developed solution procedure to some recent, 

dependable well – test data, Iraqian in particular. However, he was almost unfortunate in this 

respect. Nevertheless, (14) different data sets were used to form the application cases. The 

information regarding these sets are outlined hereinafter. 

 

[1] For a rigid check of the applicability of the developed procedure, an ideal hypothetical data set 

has been fabricated as follows : 

(a) (24) values of (u) representing the practically – common range of (2.5E–1   u   4E–5) have 

been selected. The respective values of [W(u)] were calculated by Eq. (10) [for (u   0.01)] or 

by Eq. (20) [for (u < 0.01)]. 

(b) For assumed reasonable values of (Q = 20 l/s = 1728 m
3
/d), (r = 25 m), (T = 400 m

2
/d), and  

(S = 2.5E–4), the values of (z) [by Eq. (9)] corresponding to the calculated values of [W(u)] 

and then the values of (t) [by Eq. (8)] corresponding to the chosen values of (u), were 

calculated. 

(c) The resulting (24) (t, z) data points formed the application set [1] for the present research.  

 

[2] To illustrate his developed graphical approach, [CHOW:1952] used  the well - test data shown 

in his Fig. (3). The values of (22) data points (t, z) abstracted from the aforementioned figure 

formed the application set [2]. 

  

[3] Test data for well (1) at Gridley, Illinois is used as an illustrating example in 

[WALTON:1970], (P 229). The data of the example formed the application set [3]. 

 

[4] Data constituting (29) observations are given in Problem (4-1), P 283 in [WALTON:1970]. He 

indicated the solution to be (T = 358000 gpd/ft ; S = 4.7E–4) without mentioning the procedure 

of solution. This data formed the application set [4]. 

  

[5]; [6]; [7]: Data from the pumping test Qude Korendjik are given in [KRUSEMAN and DE 

RIDDER:1970], (P 53). Observations were made in three piezometers, (P1), (P2), and (P3), 

located at radial distances from the pumped well of (30 m), (90 m), and (215 m), respectively. 

The basic assumptions mentioned before were closely satisfied in the test. 

[KRUSEMAN and DE RIDDER:1970] used the aforementioned data to estimate (T) and 

(S). The procedures of solution used were as follows : 

(a) [THEIS:1935] procedure applied to the data of the three piezometers collectively. 

(b) [COOPER and JACOB:1946] procedure. This was used in three approaches :  

(i): The traditional approach, that is : [(z) vs. (t)] for constant (r), for each piezometer 

separately. 

(ii): [(z) vs. (r)] for constant (t); solved for (t = 140 min.). 
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(iii): [(z) vs. (t/r
2
)] for the data of the three piezometers collectively. 

(c) [CHOW:1952] procedure applied to the data of (P1). 

The data of (P1), (P2), and (P3) have been considered as the application sets [5], [6], and 

[7], respectively. 

 

[8]; [9]; [10]: [LOHMAN:1972] used data observed at three observation wells (N–1), (N–2), and 

(N–3) in a solution by the Theis procedure. These data  have been considered as the application 

sets [8], [9], and [10], respectively. 

 

[11]: [LINSLEY et al.:1988] present an illustrative example on (P 179). They solved  for (T) and 

(S) by the Theis and the Jacob procedures. The data of the example have been considered as the 

application set [11]. 

 

[12]; [13]; [14]: [ABDULLA:2001] used data sets observed at seven observation wells in the Jolak 

Basin (Al-Ta'miem Governate, Iraq), each corresponds to a certain pumped well. Those 

corresponding to the wells Yarimja, Kurzi, and Nabi Awah have been considered as the 

application sets [12], [13], and [14], respectively, for the purposes of the present research. 

 

RESULTS AND ANALYSIS 

 The basic results of applying the developed solution procedure to the considered (14) data 

sets are summarized in Table (2). In this respect, the following is worth mentioning : 

 

[A] No data point has been found to be as an outlier. 

 

[B] The respective values of the regression coefficient (R) were high enough to indicate excellent 

linear fittings. 

 

[C] Values of (T) and (S) estimated by the solution procedure developed in this research are 

designated as (CT) and (CS), respectively. The corresponding reference values are designated 

(RT) and (RS), respectively; those concerning data set [1] are the assumed values; those 

concerning the other data sets are the values estimated by the respective researchers; the 

abbreviations (TH), (JA), and (CH) denote that the respective values have been estimated by the 

[THEIS:1935], [COOPER and JACOB:1946], and [CHOW:1952] procedures, respectively. 

 

[D] Values of (T) and (S) could be described as exact only when they are obtained by a purely – 

theoretical solution (without any added assumptions other than those accompany the derivation 

of the governing equation) and for ideal well – test data. This is virtually the case of (RT) and 

(RS) of application case [1]. 

The values (CT) and (CS) obtained by the solution procedure developed in this research and 

for the same data set [1] were identical to the reference values. This clearly proves the 

elaborateness and accuracy of the developed procedure. 

 

[E] The developed procedure solves the involved problem completely by the computer without the 

need neither to construct nor to refer to any table or graph. In fact, when the computer program 

is ready in the computer, the time to obtain the results is just that time for inputting the data and 

pressing the "run" button. 

   

[F] Recalling that the keystone in the solution of the considered problems is the Theis equation. 

However, actual field conditions are never ideal; the percent deviation between the two could be 

anywhere between the two extreme limits, (0) and (100). The error in the results due to ignoring 

such a deviation may be exaggerated when using different data sets for the same aquifer, using 
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different approximate procedures of solution, or when the solutions are performed by different 

persons and by procedures in which the personal skill and judgment play a significant role. 

Consequently, the comparison of different mere results for the same data would be indicative 

only. 

All the known procedures of solution in this respect are issued from the same theoretical 

basis. The differences between them are basically the additional assumptions, simplifications, 

and approximations to facilitate and accelerate the solution process while keeping the results 

closely comparable to some references ones, usually taken as those of the Theis procedure of 

solution. Accordingly, one can pronounce that no other solution procedure may be more 

accurate than the one developed in this research since it adds no further assumptions or 

conditions, except that the well test should last long enough to make the plot [(z) vs. (log t)] 

closely approximates the expected straight line (which is, in fact, a general prerequisite to any 

well test). Moreover, the procedure involves no approximations other than those required to 

give the highest reasonable computation accuracy the computer provides. Yet, the fully – 

computerized solution by the developed procedure leaves no role to personal judgment or the 

necessity to highly – skilled personnel. 

 

 Keeping in mind the aforementioned merits of the developed solution procedure, the 

obtained values (CT) and (CS) for the application cases [2] through [14], given in Table (2), 

indicate that they were : 

 Close to (RT) and (RS) for [2] by (CH). 

 Identical to (RT) and (RS) for [3] by (TH). 

 Somehow comparable to (RT) and (RS) for [4] (for which the reference do not mention his 

procedure of solution). 

 Somehow different from (RT) and (RS) for [5] as obtained by all the five applied procedures. 

 Somehow comparable to (RT) and (RS) for [6] as obtained by all the five applied procedures. 

 Identical to (RT) and (RS) for [7] by (JA–1). 

 Different from the average (RT) and (RS) obtained for [8], [9], and [10] collectively, by (TH). 

 Very closely comparable to those obtained for [11] by both (TH) and (JA). 

 Ditto, for [12]. 

 (CT) was identical to (RT) for [13] obtained by both (TH) and (JA). However, (CS) was 

identical to (RS) by (TH) but different from that by (JA) {unless there is a misprint}.  

 Almost identical to (RT) and (RS) for [14] by (TH) and closely comparable to those by (JA). 

 

CONCLUSIONS 

 In summary, the following conclusions could be stated : 

1. The fully – computerized procedure developed in this research for solving problems of unsteady 

flow to wells in confined aquifers is simple, elaborate, superiorly fast in giving the required 

results, and without the need of graphics or the reference to tables or nomographs. Moreover, on 

considering the results obtained by the available solution procedures for the same data, the 

accuracy of the results of the developed procedure are comparatively unquestionable.  

2. The procedure is basically general; it is equally applicable to the different problems encountered 

in wells hydraulics (such as those for data of water – level recovery, for unconfined or semi – 

confined aquifers, or when accretion is present) after introducing the additions that count for the 

relevant boundary conditions. 
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Table (2) : Summary of results [ The cases and symbols are explained in the text ] 

 

It
em

 

P
a
ra

m
et

er
 

U
n

it
s Case Number 

( 1 ) ( 2 ) ( 3 ) ( 4 ) ( 5 ) ( 6 ) ( 7 ) 

1 

2 

3 

4 

Q 

r 

N 

J 

M
3
/d 

m 

--- 

--- 

1728 

25 

24 

9 

4088 

245 

22 

16 

1200 

251.2 

22 

13 

8176 

91.44 

29 

11 

788 

30 

34 

11 

788 

90 

35 

15 

788 

215 

9 

9 

5 

6 

7 

8 

9 

10 

C 

m 

R 

t 

Z 

∆ Z 

m 

--- 

--- 

min. 

m 

m 

0.4763 

0.7914 

1.0000 

1524.41 

2.995 

0.792 

-0.8848 

0.6519 

0.9984 

166.79 

0.564 

0.652 

-1.2823 

1.6993 

0.9988 

142.45 

2.377 

1.699 

0.2346 

0.2890 

0.9982 

503.09 

1.015 

0.289 

0.4169 

0.2297 

0.9977 

281.53 

0.982 

0.230 

0.0256 

0.2390 

0.9991 

274.88 

0.608 

0.239 

-0.1679 

0.1450 

0.9948 

274.44 

0.186 

0.145 

11 

12 

13 

F(u) 
W(u) 

u 

--- 

--- 

--- 

3.782 

8.7084 

9.28E-5 

0.865 

1.8260 

9.94E-2 

1.399 

3.1278 

2.57E-2 

3.512 

8.0867 

1.73E-4 

4.270 

9.8320 

3.02E-5 

2.544 

5.8578 

1.60E-3 

1.283 

2.8470 

3.44E-2 

14 

15 

CT 

CS 

M
2
/d 

--- 

399.8 

2.51E-4 

1053.1 

8.08E-4 

125.6 

2.00E-5 

5183.2 

1.50E-4 

627.8 

1.60E-5 

604.1 

9.10E-5 

959.7 

5.44E-4 

 

16a 

17a 

 

RT 

RS 

 

M
2
/d 

--- 

(TH) 

400 

2.50E-4 

(CH) 

1008.1 

8.83E-4 

(TH) 

125.24 

2.00E-5 

(?) 

4439.2 

4.70E-4 

(TH) 

418 

1.7E-4 
 

16b 

17b 

 

RT 

RS 

 

M
2
/d 

--- 
    

(JA-1) 

401 

1.7E-4 

 

480 

1.8E-4 

 

960 

5.8E-4 
 

16c 

17c 

 

RT 

RS 

 

M
2
/d 

--- 
    

(JA-2) 

355 

4.5E-4 
 

16d 

17d 

 

RT 

RS 

 

M
2
/d 

--- 
    

(JA-3) 

438 

1.7E-4 
 

16e 

17e 

 

RT 

RS 

 

M
2
/d 

--- 
    

(CH) 

375 

2.2E-4 
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Table (2) :  [ Continued ] 

 

It
em

 

P
a
ra

m
et

er
 

U
n

it
s Case Number 

( 8 ) ( 9 ) ( 10 ) ( 11 ) ( 12 ) ( 13 ) ( 14 ) 

1 

2 

3 

4 

Q 

r 

N 

J 

M
3
/d 

m 

--- 

--- 

2718.4 

61 

25 

12 

2718.4 

122 

25 

12 

2718.4 

244 

25 

12 

3672 

30 

11 

10 

3120 

50 

17 

15 

691.2 

30 

20 

17 

907.2 

30 

25 

19 

5 

6 

7 

8 

9 

10 

C 

m 

R 

t 

Z 

∆ Z 

m 

--- 

--- 

min. 

m 

m 

0.5382 

1.3184 

0.9999 

83.38 

3.071 

1.318 

-0.2137 

1.3003 

0.9998 

83.38 

2.284 

1.300 

-0.8924 

1.2545 

0.9994 

83.38 

1.518 

1.255 

-5.3440 

2.6451 

0.9829 

422.34 

1.601 

2.645 

-0.5443 

0.6516 

0.9961 

69.53 

0.656 

0.652 

-0.1741 

1.1292 

0.9991 

249.59 

2.533 

1.130 

-0.1632 

0.4103 

0.9987 

453.64 

0.927 

0.411 

11 

12 

13 

F(u) 
W(u) 

u 

--- 

--- 

--- 

2.330 

5.3650 

2.63E-3 

1.757 

4.0456 

9.83E-3 

1.210 

2.6698 

4.13E-2 

0.605 

1.1829 

1.94E-1 

1.006 

2.1721 

6.93E-2 

2.242 

5.1624 

3.22E-3 

2.255 

5.1923 

3.12E-3 

14 

15 

CT 

CS 

M
2
/d 

--- 

377.9 

6.2E-5 

383.1 

5.9E-5 

380.4 

6.1E-5 

215.9 

5.46E-2 

822.0 

4.40E-3 

112.1 

2.78E-4 

404.3 

1.78E-3 

 

16a 

17a 

 

RT 

RS 

 

M
2
/d 

--- 

(TH) 

1267.0 

1.98E-4  

(TH) 

196.7 

6.4E-2 

(TH) 

856.2 

4.8E-3 

(TH) 

114.6 

2.8E-4 

(TH) 

424.7 

1.7E-3 
 

16b 

17b 

 

RT 

RS 

 

M
2
/d 

--- 
 

 

 

(JA) 

200.8 

5.6E-2 

(JA) 

878.9 

4.9E-3 

(JA) 

110.0 

1.53E-3 

(JA) 

437.2 

4.3E-3 
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Fig. (1) : Definition sketch for a confined flow to a pumped well. 

 

 

 

 

 

 

Table (1) : Results by approximating W(u) . [ Q = 10 l/s ; T = 400 m
2
/d ] 

 

Parameter Units 
Values of ( u ) 

0.001 0.01 0.1 

W(u) { Eq. (10) } ---- 6.3315 4.0379 1.8229 

Z1 { Eq. (9) } m 1.088 0.694 0.313 

W(u) { Eq. (15) }  ---- 6.3306 4.0280 1.7255 

Z2 { Eq. (9) } m 1.088 0.692 0.297 

D1
(*) 

% 0 0.29 5.35 

D2
(*) 

% 0 0 3.23 

 

(*) D = 
1

21

Z

ZZ 
 × 100 ; (D1) and (D2) are calculated for values of (Z) computed to the nearest 

millimeter and centimeter, respectively. 
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