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ABSTRACT 

This investigation presents a coupled analysis of a dam-reservoir problem which includes all 

aspects of fluid-structure interaction (class I coupling) and soil-pore fluid–structure 

interaction (class II coupling) under earthquake excitations using the finite element method. 

The analysis involves the compressibility of water, the flexibility of the dam, the earthquake 

excitation, the structural damping and the material nonlinearity on the response. 

     An efficient computer program in FORTRAN is developed for this analysis from the 

original computer code named MIXDYN. The new software for predicting and analyzing the 

coupled behaviour is established using the pressure formulation for modelling of fluid and the 

u-p formulation for modelling of soil-pore fluid behaviours. Also, the program prepared is 

provided with post-processing routines to plot the original and deformed meshes of the 

problem.  

     A staggered partitioned solution technique for coupled field problems is implemented and 

used in the computer code. This scheme is incorporated in terms of sequential execution of 

single-field analyzers. The Drucker Prager model is used to simulate the behaviour of the soil 

and concrete. Implicit-Implicit Newmark’s scheme with a predictor-corrector algorithm is 

employed for time integration of the equations of motion. The capability and efficiency of the 

model are found to be very useful when applied on a dam-reservoir system. 

 

 الخلاصة :
الدادة الصلبة  لدسألة سد مع خزان و الذي يتضمن كافة اوجو التفاعل الدتبادل مابين الدائع و اا مزدوج يقدم ىذا البحث تحليلا 

( تحت ثانيبين التربة و مائع الدسام و الدادة الصلبة )ازدواج من الصنف الما )ازدواج من الصنف الاول( فضلا عن تفاعل متبادل 
زة ارضية باستخدام طريقة العناصر المحددة. يتضمن التحليل انضغاطية الداء و قابلية تكيف السد و الذزة الارضية و تأثيرات ى

 الاخماد الانشائي و لا خطية الدادة من خلل تأثيرىا على الاستجابة.
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لقد تم التحقق لحاسوبي. ا MIXDYN لقد تم تطوير برتامج حاسوبي باستخدام لغة فورتران خاصة بهذا التحليل من برنامج
  u-p   من البرالريات الدستحدثة من خلل توقع و تحليل التصرف الدزدوج باستخدام معادلة الضغط لتمثيل الدائع و معادلة

 لتمثيل التربة مع مائع الدسام. لقد تم تحضير خوارزميات ما بعد الدعالجة لرسم التقسيمات الاصلية و ما بعد التشوه للمسألة.
لحل مسائل الوسط الدزدوج في البرنامج الحاسوبي الدطور. لقد تم اضافة ىذه  تم تضمين و استخدام طريقة حل التقسيم الدتعرجلقد 

لقد تم استخدام طريقة دروكر بريكر لتمثيل تصرف التربة و الخرسانة.   الطريقة بدلالة التنفيذ الدتناوب لتحليلت الاوساط الدنفردة.
لقد وجد  التصحيح للتكامل الزمني لدعادلات الحركة. –التوقع الضمنية مع خوارزمية  –ة نيومارك الضمنية كما تم استخدام طريق

  .عند تطبيقها على نظام سد مع خزان ان امكانية و كفاءة النموذج عالية جداا 
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INTRODUCTION 

The dynamic analysis of soil-fluid-structure interaction includes all aspects of both fluid and 

solid mechanics (i.e., fluid-structure interaction (class I coupling) and soil-pore-fluid 

interaction (class II coupling)). In a fluid-phase, the viscosity of the fluid, the magnitude of 

the gradient of the velocity field throughout the flow and whether the fluid is (compressible or 

incompressible), depending on whether density variations are large or small, play a key role in 

choosing the kind of formulation to be used. However, in the solid-phase, the time scale and 

the solver algorithm to be used depend on the loading rate and the permeability of the porous 

medium.  Traditionally, fluid problems can be classified into two categories: (i) non-flow 

problems, such as impounded water in a reservoir, tank, etc. and (ii) flow problems, such as 

free surface flow, flow around an airfoil etc... 

      In this study, the former type of problems is considered. The second class of problems to 

be considered here lies between the undrained and drained extremes where dynamic loading 

is applied and transient pore fluid motion is significant (Simon et al. [36]). The undrained 

analysis is possible when relatively rapid loads are applied and permeability is low, i.e., where 

the load rate is greater than the pore fluid diffusion rate. Otherwise, drained analysis is 

possible for situations with a relatively slow loading and high permeability, i.e., where the 

load rate is less than the pore fluid diffusion rate. Consequently, the problem to be solved in 

this research is a triple interaction: fluid-structure-soil pore fluid. 

 

Fluid-Structure Interaction (Class I Coupling): 

The dynamic interaction between an elastic structure and a fluid has been the subject of 

intensive investigations in recent years, e.g. ([10], [11], [21], [22], [32] and [35]). Since 

analytical solutions procedures are available only for very simple problems, numerical 

approaches, which can be formulated in the time or frequency domains, had to be employed, 

e.g. ([15], [17], [19], [27], [33] and [34]).  

Many researchers have attempted to derive variational functionals for different classes of 

fluid-structure interaction problems. The size of the coupled fluid-structure interaction 

problem is generally large. That is why attempts were made to reduce the problem size in 

different ways  

Out of all the works done in the area of developing a finite element method for fluid-

structure interaction problems, two approaches predominate. The first approach is the 

displacement-based method where the displacements are the nodal variables in both the fluid 
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and the structure. Bathe and Hahn [3], Belytschko [4], Belytschko and Kennedy ([5] and [6]), 

Chopra et al [9] and Nitikitpaiboon and Bathe [24] described the method in detail. This 

approach is not well suited for problems with large fluid displacements. Another difficulty 

with this method is that special care must be taken to prevent zero-energy rotational modes 

from arising. In the second approach, the potential-based method, displacements remain the 

nodal variables in the structure, while velocity potentials or pressures are the unknowns in the 

fluid. Everstine [12], Everstine and others ([13] and [14]), Hamdi et al. [16], Morand and 

Ohayon [23], Ohayon and Valid [25], Olson and Bathe ([26] and [28]) and Zienkiewicz  and 

others ([38], [39] and [42]) demonstrated techniques for formulating finite elements using 

potential-based methods. In all these works, only a linearized version of the problem has been 

considered.  

Several finite element studies have considered the gravity and free surface effects along 

with the fluid structure interaction.  

 

SOIL-PORE FLUID-STRUCTURE INTERACTION (CLASS II COUPLING): 

    Soils are multiphase materials exhibiting a strong mechanical coupling between the solid 

skeleton and the fluid phase. This coupling can be particularly strong in the case of saturated 

soils of low permeability and under fast transient or dynamic loading, where the pore pressure 

plays a significant role. The first successful attempt to develop a model for solid skeleton-

pore fluid interaction was due to Biot [7 and 8] for linear elastic materials. This work was 

followed by further development at Swansea University, where Zienkiewicz and others ([41], 

[43], [44], [45], [46] and [47]) extended the theory to non-linear materials and large 

deformation problems. 

         Zienkiewicz [37] described extensively several kinds of coupled problems and their 

numerical solutions with some applications. The analysis of coupled soil-pore fluid 

interaction during an earthquake shock applied to a dam shows that the non-linear soil 

response causes a pore pressure build up and failure of the actual structure.  

     Park and Felippa [30] reviewed several developments of computational procedures for 

solving coupled field problems with emphasis on stabilization of partitioned analysis. It was 

found that the resulting matrices after semi-discretization are not symmetric. The non-

symmetry in the coefficient matrices often induces conditional stability of partitioned 

solutions and, therefore, stabilization at the differential equation level before attempting to 

implement a partitioned solution procedure is necessary.       

    The behaviour of multiphase flow in deforming porous media is of interest in engineering 

problems such as the simultaneous flow of three immiscible fluids; e.g. gas, oil and water 

through a tar sand formation during the bitumen recovery process, with environmental 

studies, etc.. For most cases of fluid transport in soil, two or more fluid phases are present 

simultaneously in the pores and are separated from one another by interfaces. Li and 

Zienkiewicz [20] developed a numerical procedure for modelling the behaviour of porous 

media interacting with the flow of multiphase immiscible fluids based on Biot’s theory and 

the principle of effective stress. The displacement of the solid, pressure and saturation of the 

wetting fluid were taken as primary unknowns of the model. Unconditionally stable direct and 

staggered solution procedures were used for the time domain while the numerical solution of 

the coupled finite element equations were set with u-pw-Sw form and discreteized by 

Galerkin’s method. 
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Fluid Formulations: 

     Various formulations are generally used for inviscid fluid fields. The most common 

formulations for non-flow problems are the displacement, displacement potential, velocity 

potential and pressure formulations. In finite element analysis, the displacement formulation 

gives rise to two or more variables compared with one in the other formulations (Paul, [31]). 

Therefore, in this work, the pressure formulation is used because it results in fewer 

unknowns.  

 
PRESSURE FORMULATION: 

Governing Equation of Motion: 

 The equation governing fluid motion is the well-known wave Equation (Joseph [18]): 


2 

P+   2 P = P /c
2
      (Linearized-Navier-Stokes Equation).........(1) 

where:   = 4 /3 ρf c
2
, = the dynamic viscosity of fluid and c

2
 = K/ρ. 

For an inviscid fluid, Equation (1) reduces to: 


2 

P = P /c
2
………………….…………………………………....(2) 

 

Boundary Conditions: 
(i) At moving boundaries (at interface with solid) where the fluid has a normal acceleration, 

n
u , n being the direction of the unit normal to the boundary, the pressure gradient can be 

expressed as:  

 P/ n = - ρf n
u ……………...…….………..…………………....(3) 

       At fixed boundaries;  P/ n = 0.  

(ii) At a free surface with surface waves (considering only primary waves): 

P = ρf  g uy     or     P/ y = p / g ……...………………..……..….(4) 

       At a free surface without surface waves: P = 0.  

(iii) At radiating boundaries, the condition for no reflection of pressure waves can be 

expressed as:                                                                                                                                                                                                                                                                                                                                                                                                

       P/ n = - P /c …..……………………………………….………(5) 

       where: n = the direction of the unit normal at the radiating boundary.  

 

Fluid Isoparametric Element: 

    The fluid domain is usually represented by finite elements in Cartesian coordinates. The 

number of nodes may be variable (4-9) in two dimensions, with one degree of freedom per 

node inside the fluid domain. This degree of freedom is the value of the pressure P at the 

nodes. At the free surface, the element has an extra translational degree of freedom to 

accommodate the free surface motion. This element enforces the continuity (equilibrium in 

solids) equation along the mesh domain. The applied forces represent the water pressure (unit 

volume per second) at this node. The positive pressure is in-pressure and the negative one is 

out-pressure. For global equilibrium, the in-pressure must equal to the out-pressure. At the 

boundaries, only the normal velocity may be specified because the tangential velocity does 

not affect the pressure. The nodal equilibrium is satisfied if the sum of the water pressure 

increments at the node is equal to the total applied pressure. 

  

Fluid-Structure Interaction (Pressure Formulation): 

The structure and fluid are together idealized as a two dimensional system subjected to 

support excitations both in the horizontal and vertical directions and the equations of motion 
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can be expressed, after spatial discretization, by two sets of second order coupled differential 

equations. The fluid can be modeled using any of the various formulations mentioned before. 

However, in this study, only the pressure formulation is used in which the coupled fluid-

structure equations can be expressed as: 

Ms u  + Cs u + Ks u = fs – Ms d  + L P ......………………………….(6) 

Mf P + Cf P + Kf P = ff  – ρf L
T
(u +d ) .…………….……….…….(7) 

where: 

Ms = 


dNN u

T

u  ….……………………………………….……..(8a) 

Cs = α Ms + β Ks .....….........…(Rayleigh Damping)……………..(8b) 

Ks = 


d.BDB T
T

 ............................................................................(8c) 

fs = 
u

T

u tN dΓ + 


T

uN ρ b dΩ + 


T
B D

T
 dε

o
 dΩ ..………….….…….(8d) 

L = 


c B
T
 δ Np dΩ……….….……………………..…………….(8e) 

(Mf)ij = 
F

piN 1/g  Npj d
 
Γ + 

F

T

piN 1/c
2  

Npj dΩ ………….…………..(8f) 

(Cf)ij  = 
R

T

piN 1/c
2
  Npj d

 
Γ ………………….……………………...(8g) 

(Kf)ij = 



F

T
pi )N( (Npj) dΩ ……………….……………………..(8h) 

        
(L

T
)ij = 

I

T

uiN n Npj d Γ………………….…………………………..(8i) 

and Np and Nu are the shape functions used for pore pressure and solid skeleton, respectively. 

α  and β are Rayleigh damping constants, Ω
 
is the domain, Γ is the boundary surface, B is the 

strain-displacement matrix and t is the surface traction. 
 

Pore Fluid–Solid Interaction (u-p Formulation):  

     When the seepage velocity relative to the solid skeleton is small compared with the motion 

of the solid skeleton or if the permeability is low, the relative acceleration of the fluid with 

respect to the solid can be neglected. With this approximation (i.e., neglecting the w  term) 

and replacing the unknown w with the pressure P, the equilibrium equation of the fluid can be 

rewritten as (Paul [31]): 

w = – k P + kρb – kρ u …………………..……………………..(9) 

which can be used to eliminate w from the continuity equation. Upon discretization, it is 

possible to write: 

u = Nu u ………………………………………………………….(10) 

P = Np P ………………………………………………………….(11) 

and using the standard Gelerkin method, the resulting equations can be expressed as: 

Ms u + Cs u + Ks u = fs – Ms d  + L P .………………………..….(12) 

CP P + KP P = fP  –L
T uM̂u   .…………….……….…….(13) 

where: 

Ms = 


dNN u

T

u ..….……………….…………………………..(14a) 

Cs = α Ms + β Ks…..…...........(Rayleigh Damping)…….….…...(14b) 
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Ks = 


 d.B).Q.D(B T2
cT

T
….....…………………………….(14c) 

fs = 
u

T

u tN dΓ+ 


T

uN ρ b dΩ + 


T
B D

T
 dε

o
 dΩ…....…….………...(14d) 

L = 


c B
T
 δ Np dΩ.…...……………………………….………..(14e) 

Cp = 


T

PN 1/Q Np dΩ …..………………………………..……….(14f) 

         Kp = 


 T
P )N( k (Np) dΩ…..………………………………….(14g) 

         fp  = 
p

T

PN P dΓ + 


 T
P )N( k ρf b dΩ ……..……………………(14h) 

L
T 

= 


c Np
T
 δ B dΩ………………………………….…………(14i) 

 M̂ = 


 T
P )N( k ρf Nu dΩ………………………..………………(14j) 

In this study, this formulation is implemented and used in the computer program. 

  

Staggered Solution for Coupled–Field Problems: 

     Many engineering problems involve two or three fields, such as soil-structure interaction, 

fluid-structure interaction, soil-fluid-structure interaction, etc…Such problems are generally 

partitioned into well defined fields which are distinct in behaviour, material model or solution 

technique. These fields are linked continuously together through two-way interaction with 

other fields. Each field may be coupled (totally or partially) with all the other participating 

fields or with only few of them (at interfaces via the contact boundaries only).  

    The concept of staggered solution can be organized in terms of sequential execution of 

single-field analyzers. This leads in the nodal based implicit-explicit partitioning of time 

stepping, to a complete solution of the explicit scheme independently of the implicit one and 

then using the results to progress with the implicit partition. This approach offers several 

advantages over the field elimination and simultaneous solution approaches as follows:  

(1) Completely different methodologies could be used in each part of the coupled system. (2) 

Independently developed codes dealing effectively with single systems could be combined. 

(3) Parallel computation with its inherent advantages could be used. (4) The time step size 

restrictions can be excluded from consideration. (5) In systems of the same physics, efficient 

iterative solvers could easily be developed. (6) This approach permits decoupling of high 

frequency and low frequency components of a single system, so that an alternative time 

marching algorithm can be used in each part (Zienkiewicz and Taylor [40]). Finally, (7) it 

turns out to be unconditionally stable with a predicted (approximate) value of u at t+ t  and 

with suitable integration formulae for each set of equations of motion (Li and Zienkiewicz 

[20]. Therefore, in the present study, the staggered partitioned solution scheme for a coupled 

field problem as shown in Figure (1) is implemented and used in the computer code. 

 
NUMERICAL ALGORITHM: 
Based on the procedures and equations described, a coupled dynamic finite element algorithm 

is developed from the original uncoupled code MIXDYN (Owen and Hinton [29]) by the 

name DCAPII (Al-Nu'aimy [1]). It is also an extension of the computer code DCAPI 
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developed by Al-Shereffi [2] under the supervision of al-Damluji. DCAPII includes classes I 

and II couplings presented above. 

 

Numerical Example: Dam-Reservoir System:  

    The Koyna concrete gravity dam-reservoir system (India) is analyzed with all the aspects 

of fluid-structure interaction (class I coupling) and soil-pore fluid interaction (class II 

coupling). The shape and dimensions of this dam-reservoir system are shown in Figure (1). 

The material properties of the system are taken from Paul [31] and listed in Table (1). The 

analysis involves the compressibility of water, the flexibility of the dam, the structural 

damping, the earthquake excitations and structural nonlinearity on the response. This problem 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (1): Koyna dam-reservoir system (India). 

 

 

 

Table (1): Dimensions and properties of Koyna  

                     dam-reservoir system (from Paul, [31]). 

 

 

Material and Property Value 

1. Dam (concrete)  
Height of dam above foundation (m). 107.00 

Depth of reservoir (m). 81.45 

Young’s modulus of concrete, Ec (T/m
2
) 3164000.0 

Poisson’s ratio of concrete, υc  0.20 

Density of concrete, ρc (T/m
3
)   2.690 

2. Soil (rock)  
Young’s modulus of soil, E (T/m

2
) 1800000.0 

Poisson’s ratio of soil, υs  0.20 

Density of soil, ρs (T/m
3
)   1.830 

3. Fluid (water)  
Compressibility of water, c (m/sec) 1439.0 

Density of water, ρf (T/m
3
) 1.000 

Number of nodes = 274 

Total number of elements        = 74 

Number of fluid elements        = 30 

Number of concrete elements = 18 

Number of soil elements         = 26 

Rigid impervious boundary 

81.45 m 
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The ratio of fundamental periods of 

reservoir to the dam: 

γT = (Tf) reservoir/ (Tf) dam  

  

 

 

0.566 

 
 

is solved by Paul [31] as a fluid-elastic structure interaction (i.e., with class I coupling) only. 

The eight node isoparametric element is adopted for both the solid and fluid phases as shown 

in Figure (1). The boundary conditions are as depicted in the figure.  

  
RESULTS AND DISCUSSION:  

Effect of Water Compressibility:  

     For this study, the rigid Koyna dam is subjected to a horizontal Heaviside unit base 

excitation. The velocity of water is taken as a measure of water compressibility (K = c
2 

ρf). 

Figure (2) shows the pressure distribution for cases with incompressible and compressible 

water. It is observed that as the velocity of water is increased from 1c to 4c, the peak 

hydrodynamic force does not change significantly. But, there is a shift in the occurrence of 

the peak force. The ratio of the peak hydrodynamic pressure to the hydrostatic force is 0.15 

for the compressible water (at 1c) when compared with the incompressible one. This implies 

that the compressibility of water has a significant effect on the distribution of pressure on the 

rigid dam. 

 

EFFECT OF DAM FLEXIBILITY:  

     Again, the rigid Koyna dam is subjected to a horizontal Heaviside unit base excitation. 

The pressure distribution for several cases of dam-foundation flexibilities are shown in Figure 

(3). For the case of dam on a flexible foundation, as the flexibility of the dam system 

increases (by decreasing its modulus of elasticity), the hydrodynamic force or the pressure 

distribution on the face of the dam also increases. The maximum effect is obtained when both 

the dam and the foundation are most flexible. Conversely, when the dam is rigid, foundation 

flexibility is not so important.  
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           Fig (2): Effect of water compressibility on hydrodynamic pressure          

distribution due to a Heaviside unit base excitation. 
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              Fig (3): Effect of dam flexibility on hydrodynamic pressure 

 distribution due to a Heaviside unit base excitation. 

 
    The peak hydrodynamic force is given in Table (2). This table shows that as the flexibility 

increases, the response also increases. 

 

Table (2): Effect of dam flexibility on hydrodynamic pressure 

                                        distribution due to a Heaviside unit base excitation. 
Response 

Description 
Fexible Foundation 

 

Rigid Foundation 

Ē = 1E Ē = 1E Ē = 2E Ē = 4E Ē = ∞ 

P
h
d/Ps 1.360 -- 0.505 0.500 0.395 

 

 
EFFECT OF EARTHQUAKE EXCITATION: 

 
     For this study, three different earthquakes each with different ground motion 

characteristics are considered as shown Figure (4a-e).  

 

 

 

 

 

 

Hydrodynamic/ Hydrostatic pressures (
h

dP / sP ) 
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(a) Transverse component of El-Centro earthquake of May 1940. 
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(b)Vertical component of El- Centro earthquake of May 1940. 

 

 

 

Fig (4): Earthquakes (from Paul, [31]). 
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          (c) Transverse component of Koyna earthquake of Dec., 1967. 
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       (d) Vertical component of Koyna earthquake of Dec., 1967. 
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       (e) San-Fernando earthquake N18E component Feb., 1971. 

Figure (4): Continued 
     The undamped response (0 % damping) of the crest displacement (element 72), the stress 

at the dam heel (element 33) and the hydrodynamic pressure at the base of the dam (elements 

33, 34 and 35) when subjected to both transverse and vertical components of either the El-

Centro or Koyna or San Fernando earthquakes, simultaneously are shown in Figures (5), (6) 

and (7), respectively. It is noticed that the response characteristics are very much dependent 

on the type of earthquake excitation. This is because of the strong interaction between the 

impounded water and the foundation when the vertical component of the earthquake is 

considered in comparison with that due to only the transverse component of earthquake. The 

peak responses of the dam for various earthquake (transverse and vertical) excitations are 

summarized in Table (3). 
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             (a)  El-Centro earthquake. 
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      (b) Koyna earthquake. 
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                   (c) San-Fernando earthquake. 

                 Note : 1cm = 10 mm. 

Figure (5): Response of dam crest displacement when subjected to 

                          various earthquakes ( transverse and vertical) excitations. 
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(a) El-Centro earthquake. 
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(b) Koyna earthquake. 
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                     (c) San-Fernando earthquake. 

       Note: 1 t/m2 = 9.81 kN/m2 

Figure (6): Response of normal stress at the dam heel when subjected  

                            to various earthquake ( transverse and vertical) excitations. 
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   (a) El-Centro earthquake. 
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    (b) Koyna earthquake. 
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                (c) San-Fernando earthquake. 

               Note: 1 t/m2 = 9.81 kN/m2 

Figure (7): Response of pressure at the dam base when subjected to 

                           various earthquakes ( transverse and vertical) excitations. 

 

Table (3): Comparison of peak responses of dam for various  

                    earthquakes (transverse and vertical) excitations. 
Response  

Description 

El-Centro  

Earthquake 

Koyna 

Earthquake 

San-Fernando 

Earthquake 

Dam crest 

displacement (cm) 

10.00 at 3.33 sec. 9.33 at 4.53 sec. 13.67 at 9.72 sec. 

-9.66 at 3.53 sec. -9.33 at 4.00 sec. -13.33 at 9.24 sec. 

Stress at the dam 

heel (T/m
2
) 

800 at 3.55 sec. 853.33 at 4.20 sec. 1066.67 at 7.59 sec. 

-720 at 3.50 sec. -746.67 at 4.47 sec. -1013.33 at 9.19 sec. 

Pressure at the  50 at 3.85 sec. 166.67 at 5.47 sec. 180.00 at 8.92 sec. 

Energy transmitting reservoir 

implicit-implicit, damping = 0 % 

50 

65 

Energy transmitting reservoir 

implicit-implicit, damping = 0 % 

Energy transmitting reservoir 

implicit-implicit, damping = 0 % 
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Dam base (T/m
2
) -65 at 3.60 sec. -180.00 at 3.15 sec. -166.67 at 8.98 sec. 

 
EFFECT OF STRUCTURAL DAMPING: 

     The responses of Koyna dam when subjected to the transverse component of the Koyna 

earthquake for 0%, 5% and 10% damping are shown in Figures (8), (9) and (10), respectively. 

It is observed that the effect of structural damping is significant and, therefore, estimation of 

damping in the evaluation of the response should be made carefully. The peak responses of 

the dam for different damping ratios are given in Table (4). 
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                   Note : 1cm = 10 mm. 

Figure (8): Response of dam crest displacement when subjected 

                  to transverse component of Koyna earthquake. 
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              Note: 1 t/m2 = 9.81 kN/m2 

Fig (9): Response of normal stress at the dam heel when subjected 

    to a transverse component of Koyna earthquake. 
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                 Note: 1 t/m2 = 9.81 kN/m2 

Fig (10): Response of pressure at the dam base when subjected 

                To a transverse component of Koyna earthquake. 

 

Table (4): Effect of structural damping on the response of dam when 

                the transverse component of Koyna earthquake is applied. 

 
Response  

Description 

0 %  

damping 

5 %  

damping 

10 %  

damping 

Dam crest 

displacement (cm) 

8.75 at 5.8 sec. 5.31 at 4.4 sec. 4.68 at 3.66 sec. 

-8.75 at 4.8 sec. -4.37 at 4.5 sec. -3.44 at 3.46 sec. 

Stress at the dam 

heel (T/m
2
) 

700 at 4.55 sec. 300 at 4.6 sec. 375 at 3.8 sec. 

-650 at 7.95 sec. -350 at 4.4 sec. -275 at 4.07 sec. 

68.67 

80.12 

39.13 

26.08 

32.60 

26.08 
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Pressure at the  

Dam base (T/m
2
) 

68.67 at 9.26 sec. 39.13 at 3.5 sec. 32.60 at 2.93 sec. 

-80.12 at 7.4 sec. -26.08 at 3.26 sec. -26.08 at 0.8 sec. 

 

 

EFFECT OF MATERIAL NONLINEARITY: 

 

    The nonlinear response of the Koyna dam when subjected to transverse and vertical Koyna 

earthquake components is shown in Figure (11). The concrete and foundation-rock-soil are 

represented by the Drucker-Parger yield criterion (Owen and Hinton [29]). The yield stress 

values of the concrete and the foundation rock are taken equal to be 323.94 T/m2 and 257.75 

T/m2, respectively (1T/m2=9.81kN/m2). It is found that the effect of material nonlinearity is 

significant and when the nonlinearity in the dam structure is considered, the response reduces 

appreciably.   

0 1 2 3 4 5 6 7 8 9 10

Time (sec.)

-15

-10

-5

0

5

10

15

D
is

p
la

c
em

e
n

t 
(c

m
.)

 
    (a) Response of dam crest displacement. 
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              (b) Response of normal stress at the dam heel. 
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                              1 t/m2 = 9.81 kN/m2. 

Fig (11): Nonlinear response of dam when subjected to transverse 

 

                                  and vertical components of Koyna earthquake. 

 
CONCLUSIONS: 

From this investigation, the following points can be drawn:  

-   The computer code developed is found to be very useful and can be used for a wide range 

of applications in many soil-fluid-structure interaction problems. 

-   The partitioned solution scheme in which the fluid, structure and soil-pore fluid is 

integrated in a staggered fashion is found to be very efficient.  

- Two-phase materials subjected to dynamic loadings can be formulated with approximate 

numerical solutions and acceptable degrees of accuracy. 

-   Analysis of the actual behavior of constructions during dynamic loading exemplify the fact 

that the soil-structure interaction and, in the case of hydraulic structures, the fluid-

structure interaction are phenomena which may have an important influence on the 

structural seismic response.  
-   The compressibility of water has a significant effect on the distribution of pressure on the 

rigid dam. 

-  As the flexibility of the dam system increases, the pressure distribution on the face of the 

dam also increases. The maximum effect is obtained when both the dam and the 

foundation are most flexible. Conversely, when the dam is rigid, foundation flexibility is 

not so important. 

-  The response characteristics of the dam-reservoir are very much dependent on the type of 

earthquake excitation, structural damping and material nonlinearity. 
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LIST OF SYMBOLS: 

b = Displacement of fluid relative to the solid skeleton. 

B = Strain –displacement matrix. 

c = Speed of sound. 

Cs =  Rayleigh damping matrix. 

Cf =Compressibility matrix. 

Cijkl = Components of the elasticity tensor. 

Dt = Constitutive matrix. 

E  = Modulus of elasticity specified by Table (1). 

Ē = Adopted modulus of elasticity in analysis. 
g = Gravitational acceleration. 
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G = Shear modulus. 

)L(h Heaviside step function defined as 1 for l > 0 and 0 at l   0 . 

H = Dam height. 

Ĥ = Positive shape hardening scalar function of ij  and nq . 

î , ĵ , k̂  = Unit vectors in x, y and z directions, respectively. 

k  = Permeability coefficient. 

K = Bulk modulus . 

Ks = Stiffness matrix. 

Kf =Flow matrix. 

Kf = Bulk modulus of the fluid. 

KS= Bulk modulus of the solid phase. 

KT = Total bulk modulus of the solid skeleton. 

L = Coupling matrix . 

L = Loading index. 

ijL = Loading direction. 

Ms = Solid skelton mass matrix. 

Mf =Fluid mass matrix. 

n = Porosity. 

n = the direction of the unit normal at the radiating boundary. 

Np = Shape functions for pore pressure. 

Nu = Shape functions for solid skeleton displacements. 

Ρf  = Mass density. 

P = Pressure above the hydrostatic value. 

Pd
h 

 =  Hydrodynamic pressure. 

Ps    = Static pressure. 

1/Q = 










 


s

c

f K

n

K

n 
 

t = Surface traction. 

T = Time. 

u = Solid phase translation. 

xu , yu  and zu = Velocity of solid phase components in x, y and z directions, respectively. 

w  = Fluid velocity. 

Y = Rise from dam base. 

α  and β are Rayleigh damping constants. 

α c= 1-KT/ KS. 

ε
o
= Autogenous strains. 

εij  = Strains due to stresses and the superscripts. 

Γ = Boundary surface.  

= The dynamic viscosity of fluid. 

ρ  = Solid phase density. 

ρf  = Fluid density. 

ij  = Stress tensor. 

Ώ = The domain. 

    = Macauley brackets defining the operation L = L)L(h . 

A superposed dot indicates the rate. 


