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ABSTRACT

Gypseous soils are distributed in many regions in lIrag. Therefore, it is necessary to study the
geotechnical properties of such soils due to the possible large damage that may incur
structures founded and constructed in or on them. The soil used in this study is from Al-Najef
City, Irag. It is poorly graded sand. It also has a gypsum content of about 28-32%. The
mineralogical and chemical properties of the soil are established at first. However, this study
is concerned with the dissolution of gypsum and its effect on the soil. The importance of the
progress of dissolution is verified through the study of the characteristics of the soil skeleton
and the pore fluid. Three differential equations are used to study this effect, namely,
continuity, equilibrium and dispersion. They are solved by using the finite element method. In
addition, this work uses the hyperbolic stress-strain idealization as a constitutive relationship.
Tri-axial (CD) tests are conducted to find the hyperbolic parameters. An experimental setup is
modified to find the longitudinal and lateral coefficients of dispersion. One- and two-
dimensional problems are solved to study the effect of dissolution. Results reveal high effects
of dissolution of gypsum on the settlement, pore water pressure, elastic modulus and Poisson's
ratio values. Settlement increases while other parameters (E, B and v) decrease with
increasing dissolution. Furthermore, there is a vast behavioral difference between one and two
dimensional problems.
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INTRODUCTION

The term "gypsiferous soil" and “gypseous soil” are used to specify the soil that contains
gypsum, the first is used by agronomists, while the second is used by civil engineers.
Gypsum is present in soils in the form of calcium sulphate dihydrate (CaSO4.2H,0). A
transitional form of calcium sulphate (CaS0O,4.0.5H,0) is sometimes found at the soil surface
in extremely dry climates (Doner and Lynn, 1977). There is no unique definition for gypseous
soils used by civil engineers. It can be stated that a gypseous soil is one in which has a
gypsum content enough to change or to affect its engineering properties. Gypseous soils are
distributed in many regions in the world including Irag. They cover about (207%) of Iraqg's area.
Gypseous soils in Iraq cover about 7.287 of the gypseous soils in the world and 16.27% from
Asia (FAO, 2001). Many problems relating to construction on gypseous soils were observed.
There are three main sources of these problems; first, the dissolution and transportation of
gypsum through soil causes a continuous loss of soil mass and increasing voids. A large
reduction in shear strength and an increase in compressibility are the main results of this
phenomenon. The second is the variation of shear strength and compressibility characteristics
of gypseous soils upon wetting and saturation. The third is the volume change accompanying
the dehydration of gypsum or hydration of anhydrite. In the first case, a volume decrease of
approximately 397 may be reached, while in the second case, the volume may be increased by
637 )Ismail-1993). The main purpose of this study is to simulate the mechanical behavior of
gypseous soils before and during leaching by using the finite element method for solving three
differential equations, namely, dispersion , flow and continuity. In addition to that, set up
experimental facilities which are used for the determination of the dispersive characteristics of
gypseous soils (Al-Hassanee, 2004).

LEACHING STRAIN

Consider the element shown in Figure (1) which has a volume (V,) and the water flows
through the element having a velocity (v;). This element contains some gypsum. Due to flow
of water, the gypsum dissolves and causes a decrease in volume: -

Omass = ACVy 1)
dmags = dC V| AAt (2)
where; -

C: concentration of gypsum in water (mg/l),
t: time (sec), Co — —+4— G

vi: velocity (m/sec),
V.. volume of water (L%), and

A: area of section (m?).
Fig (1) Variation of concentration through element
dC(v, AAt) 3)

GyVw

d volume=
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where:
Gy: specific gravity of gypsum (with an average value of 2.32),
Y., - density of water (kg/m?),

Leaching strain =dC| ! AAL ,and 4)
CHAA

V,: initial volume of element (L).

CONSTITUTIVE EQUATION

The constitutive equation relating effective stress (o) to the strain of the skeleton is
independent of the pore pressure and for a general non- linear material, it can be written in a
tangential form thus allowing plasticity, if desired, to be incorporated. If leaching strain is
present, the expression is written in a general form as (Lewis and Schrefler, 1987): -

d6 = D, (de —dep—de,, —de,) (5)
where:

dep = —m| 32 (6)

3K,

de, =dCV,,G5,V, (7

in which: -
Dt . is the tangent matrix,
m . is equal to unity for the normal stress components and zero for shear stress

components,
de : the total strain of skeleton,

dep : the overall volumetric strain caused by uniform compression of the particles due to
the pressure of the pore fluid,

Ks : the bulk modulus of the solid phase,
de, the strain due to the dissolved mass of calcium sulphate,
deg, : represents all other strains not directly associated with stress changes (swelling,
thermal, etc.); (Zienkiewicz, 1977), and
dp  :isthe pore water pressure.

The equilibrium equation relating the total stress (&) to the body forces (b) and the boundary

traction (f) specified at the boundary (I") of the domain (€2) is formulated in terms of the
unknown displacement vector (u). Using the principle of virtual work, the general equilibrium
statement can be written as (Zienkiewicz, 1977): -

jasTch—jaudeQ—jaqudr =0 (8)
Q

r
Furthermore, upon taking into account the constitutive relationship given by Equation (5) and
dividing by dt, the following equation is obtained: -

jss ( )dQ jzss m@t)dgqs (aj{i)dg_

ISSTDT(@jV—dQ j&s (a de (dfj 0 ©
) o\ G,y.V, at dt
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DARCY’S LAW (FLUID PHASE)

The geometrical complexity of a porous medium renders impossible a strict analytical
treatment of the fluid velocity within the porous space. To overcome this obstacle, the
fictitious seepage velocity (also known as bulk or Darcy’s velocity) is defined as (Lewis and
Schrefler, 1987): -

q= —(1JkV(p +pgh) (10)
il

where:

k . is the absolute permeability matrix of the medium,

n : the dynamic viscosity of the fluid,

p : the fluid pressure,

p : the density of the fluid,

g : the gravitation acceleration, and

h : total head.

CONTINUTY EQUATION
The continuity of flow requires that the following expression is valid (Crichlow, 1977):

Rate of fluid accumulation = + V(pg) =0 (11)

which upon combining with Darcy’s law given by Equation (10) results in: -
- rate of fluid accumulation = 4 V{— (kij(p + pgh)} -0. (12)
il
There are many factors which contribute to the rate of fluid accumulation and these are
enumerated as follows (Lewis et al., 1976): -

a. Rate of change of total strain (agvj -m’ (‘38)
ot ot

b. Rate of change of the soil volume due to pressure change = (H](GPJ
K ot

S

c. Rate of change of saturation = np(asj.
ot

d. Rate of change of fluid density = ns(apj.
ot

e. Change of soil size due to effective stress change = (80) — (L)mT (6_6)
3 S

The continuity equation for water, therefore, becomes: -

MR & R S O
[(1*;”] ) [3*1< jz (D, )}@tpj =0 (13)

where:
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K=k (P9) (14)
1l

and is known as the coefficient of permeability or hydraulic conductivity matrix whose

coefficients have units of length over time.

DERIVATION OF THE ADVECTION-DISPERSION EQUATION

An important relationship in fluid flow is the principle of conservation of mass. This principle
is a statement of material balance with respect to a volume element fixed in space and may be
simply stated as: -

(Rate of Mass Outflow — Rate of Mass Inflow)= (Rate of Change of Mass Inside the volume
element). (15)
Applying this principle to the volume element shown in Figure (2) results in: -

M(X1+AX1/2) o M(Xl—AXuz) + M(X2+AX2/2) - M(Xz—sz/z) + (16)
(A_1)\
(M, ), + Ax,2
M(X +AX )_M(X ZAX ):Mp_aMVE 3 3 M), - b,
3 3/2 3 3/2 at ? /
i M
J ¥
¥ 7]
where: - b gty —
M M M _ (M')XI-AXI/Z > ! [ ] —— (M Xy 1
(X +AXy/5 ) (Xg+AXg2 ) "V (X3+AX3,2) ™ :
rate of mass out—flow across faces / A
X, +AXy,, . X, +AX,,,, X5 + AX;,,, and ‘
M,)x, +4x;72

M (Xy=AXyy2 ) M (Xa=AX52) M (Xg~AXz12) ™ (M), = 8,2

rate of mass in-flow across faces
X1 _AX1/2’X2 _AX2/2’X3 —AX3,2.

Fig (2): Representative elementary volume of porous
medium used to develop continuity equation for gypsum in

Mve = mass contained inside the volume element, miscible fluid flow
MP = mass source or sink term which is positive \
when a sink.

Applying a Taylor series expansion about the point X;, X, and Xz, neglecting second and
higher order terms and then substituting into Equation (16), the following is obtained after
each one of the mass flow rate components is expressed in terms of the fluid density, the
dimensions of the volume element and the volume flux:

M= pqi.AXi. AXj (17)
Mg =pDSAX,.AX,.AX, (18)
MP = ppQ (19)

Equation (15) gives:

i(pql.sz.Axs)Axl + i(qu.Axl.Axs)sz +

a)a(l oX, 5 (20)
P (pg3.A%,.AX, )AX, = ppQ — a(p(l)S.Axl.sz AX,)

3

Reddle and Sunada (1974) used Fick’s law for describing diffusion on a microscopic scale in
a porous medium. The following is obtained: -

Available online @ iasj.net 2514



O. Al-Farouk Modelling of Iraqgi Gypseous Soil Behaviour Under

H. Mohammed Stress-Flow-Dissolution Conditions
&V, = &V -DdT, (C] (21)
X
¢ : concentration of tracer (gypsum in our case) in fluid element ,
\7—’ : velocity of the tracer in fluid element with respect to a fixed
t coordinate system,
\7/ : volumetric velocity of fluid element , and
Dd . is the coefficient of molecular diffusion.

By using macroscopic analysis and assuming isothermal conditions gives (Reddle and
Sunada, 1974):

(50 w35 o -<lassieme 2 (222

where,

B - fluid compressibility,

o : proportionality factor relating C and p,

Po . is the original value of pressure,

po . is the original value of density,

Co . 1s the original value of concentration, and

o . is the original value of the variable (Reddle and Sunada, 1974).

The following assumptions are made for simplifying the dispersion equation: -
1. The volume element is completely saturated with water (S = 1).
2. The porous medium is homogeneous so that the porosity will be independent of
position.
3. The density does not vary with concentration (o = 0).

Accordingly, Equation (22) becomes:
(@j _ (5]{(% T DdTij{ oc H - vi( oc j+ (Cp- c)[QJ ; Cg(@) ‘ev, (WJ (23)
ot oX; oX, oX, DSAX,AX,AX, ot oX,

V.V,
Dij = D228ij + (Dll -Dy, )Tj (24)

Expanding the advection — dispersion equation from equation (24) for a two—dimensional
flow, and considering that the transport by molecular diffusion is negligible, the Equation (23)
will be as follows: -

(acj:Dn[aczj+Dzz[mzj—\/{ac}(c‘)_c)( 1 J(VXAY +vyAx)+cB(5Pj+cv{apj(25)
ot ox oy o, Vo : aXi

FINITE ELEMENT APPLICATION

The fully coupled solution of the one-phase flow (a;—species) equation in a non-linear porous
medium will now be presented in detail. The particular form of the equilibrium equation (9),
together with the continuity equation (13) and the advection-dispersion equation (25)
represent the governing equations for soil mechanics problems within the lines of Biot’s self-
consistent theory. The first two mentioned equations are re-written again for the sake of
completeness: -
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[5:D (Z‘:’)dQ jss m(gtpde+J88 D m(gtp)(sl JdQ_

| o (2

i SSTDT(aa(t:)(GS:(/WV de [3:™D (
[%)-

Q_‘Q-

[o]

A= —VT{EV(P + pgh)}+(mT —(mTK[j ]

3
(5 o Hac oo )
B:—nTEV(p+pgh)—q:0 (28)

By using Green's theorem (26) and (27) become (Zienkiewicz, 1977):
[ kK T| AT mTDT Ot mTDT oC 2 (29)
i{Va (MJV(p+pgh)+a {m ( 3K )(&}L[ 3K, j(atj(esywvoj+
-n n T 0 TAT E TAT kj J T } —
Hle ]{KWJ_[@KlS)ij D,m (Ep) }dg_l{a n (MJV(p+pgh)+b n ((u V(p+pgh) |+bTqdl =0

i{vaT(EJV(Dergh)Jra {m {KWJ@?H}M [a"qdr=0 (30)

The Galerkin method is applied where a = N. The finite element discretization gives the result
(Zienkiewicz and Morgan, 1982):

| 570, oo %) orran( 2 - 670 % o € -

(:}JE[BTDTdaOdQ} ou {IN( ) l ( )} (31)

[ N
[(VN)' (ijNde+IN m BdQ — [NdQ —p INTVT(ijpgthJNqufzo
Q u d Q u r

As for the third differential equation for advection-dispersion (Equation 25), assuming a trial
function of the form (Zienkiewicz and Morgan, 1982):

C~C= C, (t)N | (Xi )PI (t) (32)
Applying the weighted residual method with Galerkin’s method and integrating the second

spatial derivative term by using Green’s theorem (Zienkiewicz, 1977), Equation (25)
becomes: -
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fon 2 2o o

WN, ( JC +N,N [GC j+CBN N [aPJJwLCVXN,[aNJJPJ + (33)
ot ot X

CVyN[ayjP TNV, (Cp- c)(A\/XJ+Nv (Cp- c)[ \Zﬂdxdy f{Dxx[ngl +Dy;{g(y3J }N,dr=o

The resulting finite element discretization in space of the three above governing equations
yields the following system of semi-discrete coupled equations (refer to the appendix for
definition of matrices):

KU 9P ycdC _df (34)
dt dt dt dt
rdu, gdP e (35)
dt  dt
CPc:jT+KTc:j(t:+KD LKV, +PC=F, (36)
The matrices listed above form the coefficient matrices of the combined equations: -
K L ul (u] [0 L 0 (u ‘;'Tf
; d s S (37)
L S 0 p Pt+(0 H 0 Pt={F

0 CP KT C| |0 CP KD+KV|C F,
SOLUTION PROCEDURE

The analysis of displacement, fluid flow and dispersion through a deforming porous medium
represents a three-degree of freedom field problem. The most obvious solution procedure of
the three-coupled semi-discrete Equations (37) developed in the previous section consists of
adding the concentration (C) as an additional variable to the existing nodal variable
displacement (u) and pressure (P) parameters to solve the system of equations simultaneously.
This is usually done by the monolithic augmentation approach (Park and Felippa, 1983), first
proposed by Lewis and Karahanglu in 1981, but instead of the advection-dispersion equation,
the heat flow equation was used. Following this approach, Equation (37) becomes:
K L ucC u

L"  S+aHA, 0 P =

0 CP+aPCA, KkT+a(KD+KV)A

L tk ko C tk+Ag

K L uc u of
L"  S—(1-a)HAtk 0 Pe o+ aﬁt Atk (38)
|0 CP—(l-@PCatk KT-(1-a)KD+KV)Atk | _(C], |F

k,o
The matrices in the above equation need to be evaluated once per time step.
THE HYPERBOLIC MODEL STRESS-STRAIN LAW

Setting out constitutive relations relevant for gypseous soils is still a topic under research. The
adoption of the hyperbolic model is an appropriate first step towards this goal, for it is
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basically a curve fitting technique of available stress-strain curves from laboratory tested
specimens (Majeed, 2000). The hyperbolic stress-strain relationship was first proposed by
Kondner (1963), and developed by Duncan and Chang (1970), in an attempt to provide a
simple framework encompassing the most important characteristics of soil stress-strain
behavior, using the data available from conventional laboratory tests such as the
unconsolidated un-drained UU tri-axial compression test or the consolidated drained CD tri-
axial compression test. The relationship between stress and strain is assumed to be governed
by the generalized Hooke’s law of elastic deformations which, for plane strain conditions,
may be expressed as follows (Wong an Duncan, 1974):

Ao, [(1-v,) v, 0 v, |[Ae,
Ao, E, v, (1-v,) 0 v, || A, (39)
ae, [ @roiov)| o 0 Hj o |y,
Ac, | Y, Vv, 0 1-v || Ag,

Kondner (1963), and Kondner and Zelasko (1963) have shown that the stress-strain curves for
a number of soils, both clay and sand, could be approximated reasonably accurate by
hyperbolas. This hyperbola can be represented by an equation of the form:

(cl_cg):afb (40)

IS

a= El (41)
P = ) (42)

It may be noted that a and b are, respectively, the intercept and the slope of the best fit
resulting straight line. The asymptotic stress value (o1-03) may be related to the compression
strength, (o1-03), by means of a factor R¢ as follows:

(51 —Gj3 )f =R; (51 — G )ult (43)
By expressing the parameters a and b in terms of the initial tangent modulus value and the
compressive strength, Equation (40) may be rewritten as:

44
(01 - 03): 2 (44
e
R + - -
E; (01 — O3 )f
The variation of E; and o3 is represented by an equation of the form (Janbu, 1963):
E, =kP, {63} (45)

Equation (45) can also be used for unloading-reloading conditions, but replacing E by E, and
k by k. For saturated soils under un-drained conditions, there is no volume change and
Poisson's ratio v;is equal to one-half for any value of confining pressure. For most other soils
the value of v; decreases with confining pressure and this variation of v; with o3 may be
expressed by the equation:

(e}
=G —Flogd—=
v g{P}

2 (46)
where:

G: is the value of v;jat a confining pressure of one atmosphere.
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F: is the reduction in v; for a tenfold increase in os.
The instantaneous slope of the curve representing the variation of €, and €, is v,. By

differentiating the equation (g =1(g —g,) ) with respect tog,, substituting Equation (46)
r 2 v a

and eliminating the strain using Equations (40 to 44), the tangent value of Poisson’s ratio may
be expressed in terms of the stresses as follows (Majeed, 2000): -

G -Flog % (47)
Pa
v, = 5
1 d(Gl - c53)
AKP, {%}
Pa
where

e 1 Blezolisna)

- 2C COS ¢ + 20,Sin ¢

DISPERSION TEST

A simplified form of the mass conservation equation was presented in above for the one-
dimensional flow through a homogeneous and isotropic porous medium. In order to apply the
analysis presented in the derivation of the advection-dispersion equation, it is necessary to
have data obtained from one-dimensional flow experiments (Al-Damluji and Al-Rawi, 2005).
The schematic diagram in Figure (3) shows the details of the modified setup. The porous
medium box has outer dimensions of (7x30x30) cm. It is made up of 6 mm thick glass sheets
and 4mm thick steel sheets where the removable upper cover was manufactured from 1mm
thick steel sheets having (3) pores for the outlet water. A matrix of conductivity probes was
embedded in the box at various locations to monitor the movement of the gypsum by using an
Ohmmeter probe.

Longitudinal dispersion coefficients are determined according to the following equation:

D, = o.s{t“t_tlﬁ}v (48)
50

A plot is made between time and relative concentration (C-C,)/(Cmax-Co). The longitudinal

apparent dispersivity (A;;) is calculated by plotting the values of (Di;) against the

corresponding values of (v) on log-log paper, as shown in figure (4a). The best fit equation is:

D1:= 0.3997 (v)%9% (49)
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<A 1A Inlet compartments
2. Sieve
3. Washer
q. Steel frame

Fig (3) Schematic diagram of the porous medium box
Lateral dispersion coefficients are obtained for various seepage velocities by using the
following equation:
ZV{Xgo _Xlo }2 (51)
2 L| 3625
where;
L = distance from inlet, and
X = lateral distance from 50 % composition point.
The lateral apparent dispersivity (Aj2) is calculated by plotting the values of (Dy,) against the
corresponding values of (v) on log-log paper, as shown in Figure (4b). The best fit equation is:
D,, = 0.00255 (v)>3 (52)

Table (1) Coefficients of longitudinal and lateral dispersions (D11 and Dy,)
Velocity (cm/min) 1.51 1.006 0.5033

X=5cm | 0.566 0.403 0.244

X=15c¢m | 0.755 0.289 0.1617

D11 (cm/min)
=25 cm | 0-705 0.503 0.236

Average
0.675 0.398 0.2138

D, (cm/min) 0.0344 |0.00225 |0.0002
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Fig (4) Longitudinal and lateral dispersive curves for tested soil
pressures, namely 100, 150 and 300kN/m?. It is worthy to mention that all these tests were
CONSOLIDATED DRAINED TRIAXIAL TEST (CD TEST)
The consolidated drained tri-axial (CD) test was carried out under three different confining
conducted in three different stages which are the saturation, the consolidation and finally the
shearing stages. Figures (5a, b, ¢, and d) show the results of the tests.
400 400
Cell Pressure=100 kpa Cell Pressure =150 kpal
300 - 360 ) N4
< 4
200 o S 2w
6‘; <
| 1
s 5 ‘
100 100 ‘
0 ' ' ' 900 I 0.02 I 0.04 I 0.06
0.00 0.02 ‘0.04 ' 0.06 0.06 Axial Strain
Axial Strain
-a- -b-
e | cell Pressure =300 KP4 0.3
- . . i GX. 100 kpa
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Log o3/Pa
-C- -d-
Fig (5) Results of drained tri-axial compression (CD) tests under confining stresses of (a)100,
(b)150, (c)300kPa, respectively and (d) is the variation of the initial tangent Poisson’s ratio
with confining stress

Table (2) shows the obtained parameters for the hyperbolic stress-strain relationship. These
parameters are used as input data in the developed algorithm. The parameters k, k, and n
from Equation (45), R¢ from Equation (43) and G, F and d from Equations (46) and (47) are
assumed constant during the dissolution process of gypsum.

Table (2) Parameters of hyperbolic stress-strain relationship

k Kur n o Ry G F D

250 | 420 3.331 | 38°67 | 091 | 0.374 | -0.08 |0.0

One Dimensional Problem

The finite element mesh is shown in Figure (6). The width of the mesh is assumed to be equal
to 0.5m. An external surface load of 50kN/m2 is assumed to be applied. The time stepping
scheme and the material properties for this problem are given in Tables (3) and (4),
respectively. There are two cases for this problem with some assumptions:

Case (one): Dissolution of gypsum does not happen in the first problem by assuming C,=C..
In this case, the developed algorithm solves two equations only, namely, flow and
equilibrium.

Case (two): Dissolution of gypsum happens by assuming C,<Cs. In this case, the advection-
dispersion equation is included with the two mentioned in case one equations. Here, C, will
be taken equal to 0.4 gm/I.
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Fig (6) Finite element mesh for the one-dimensional problem
Table (3) Time steps taken for different time values

Time Interval (day) Number of Time Steps
0.25 8
0.5 8
1.0 104

Figures (7), (8) and (9) show the variation of the elastic modulus, pore water pressure and
settlement ratio, respectively at the center of element (1) for cases (one) and (two).

Table (4) Adopted material properties for the one-dimensional problem

The Material properties Value

Horizontal Coefficient of Permeability, ki, (from tests) 2.5 *10™ m/second
Vertical Coefficient of Permeability, k, (from tests) 2.5 *10™ m/second
Modulus number k (from tests) 250

Modulus number k,, (from tests) 420

Modulus Exponent n (from tests) 3.331

Angle of internal friction ® (from tests) 38.67°
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Hastic Modulus  (KPa)

Failure ratio R¢ (from tests) 0.91
Poisson's ratio Parameter G (from tests) 0.374
Poisson's ratio Parameter F(from tests) -0.08
Poisson's ratio Parameter d (from tests) 0.0
Elastic modulus (initial) (from tests) 23230 KN/m?
Poisson’'s ratio (initial) (from tests) 0.37
Surface area of gypsum (Al-Mufty, 1997) (Bauy yd )/ (nr Gs yw)
dissolution rate K (Al-Mufty, 1997) (0.15 +8.6 v)/10°
Longitudinal Dispersion (D1; ) (from tests) 0.3997 (v)?%%
Lateral Dispersion (D) (from tests) 0.00255 (v)***
Soil density 18.8 KN/m*
Cohesion (c) (from tests) 0.0
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Fig (7) Elasticity modulus-time relation Fig (8) P.W.P.-time relation
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Fig (9) Settlement ratio-time relation

Two Dimensional Problem

Figure (10) shows the finite element mesh. The width of the loaded area B is equal to 9.15m.
The applied load is 50kN/m®The time stepping scheme and the material properties are the
same as those in Tables (3) and (4). Figures (11) and (12) show the results of analysis against
time for the elastic modulus and bulk modulus at the center of elements 2, 8, 14, 20, and 26.
These results show the variation of values against depth. All the parameters become constant
after (5) days of loading and these values are very low when compared to the results of
problem one. The values of the elastic modulus are between 500 and 5300 kN/m?, bulk
modulus between 5300 and 22000kN/m? and Poisson's ratio between 0.27 and 0.365. Figures
(13) and (14) show the variation of pore-water pressure against depth and the settlement
against time for cases one and two, respectively.
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Fig (10) Finite element mesh for the two-dimensional problem

170
.oy

6000 5000
¢ Hem?2 *FHemli4
® Hem8  |Fem 2o * Eem26 9 ’ . . .
o o -
5000 . . /
< 4000
[a
<
4000
0
. ) . ) . § 3000
3000 N / \
Q + * + +
' g 1 \
2000 + g 2% [\’/l S
1000 1000
- ]
0 e e e e e e
0 20 40 60 80 100 120 0
Time (day) 0 20 40 60 80 100
Time (day)
-a- -b-

Fig (11) Variation of elastic modulus with time for (a) case one; and (b) case two
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Fig (12) Variation of bulk modulus with time for (a) case one; and (b) case two
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Fig (13) Pore water pressure-depth relation at center of elements 2, 8, 14, 20 and 26

Auvailable online @ iasj.net 2527

120



Number2 Volume 14 June 2008 Journal of Engineering

Horizontal Distance (X/ b) Horizontal distance (x/ b)
00 02 04 06 08 1.0 1.2 1.4 1.6 1.8 2.0 00 02 04 06 08 1.0 1.2 1.4 1.6 1.8 2.0
15 15
10
10 /
/'I'\ /P\\'F’ )
5
§ 5 S / /"_\.-/b
S —T—e— Y =l
NJ e N 0
i Le— T T —* " /"_’_*/
% 0 ———T] IS ad /
S o e § 5 =
L =g g i o Z2day
b ! -
& d // r o 2 day % ,/-/.// 0 hisid
. -10 ¥30t01100a
5 day < g
/ * 30to0110 day /
-15 -20
- -b-

Fig (14) Variation of settlement with time in nodes 1 to 13; (a) case one and (b) case two

CONCLUSIONS
* Results of analysis by using the finite element method show a high effect of dissolution of
gypsum on the values of elastic modulus and Poisson's ratio. These parameters and pore water
pressures decrease with the increase in dissolution. Dissolution of gypsum is the main reason
for this decrease. In addition, there is a high difference in values between the one-dimensional
and two-dimensional cases.
* Assuming constant values of hyperbolic stress-strain relationship parameters during the
dissolution of gypsum is not correct, because when the content of gypsum varies, some
parameters undergo change like specific gravity, density, cohesion and the angle of internal
friction. This implies that the values for hyperbolic parameters must vary as the process of
dissolution progresses.
* The results of analysis show the soil in a dense state, because the value of the elastic
modulus is more than 3000 kN/m? and Poisson's ratio more than 0.3. This is similar to
laboratory test results.
* The one-dimensional and two-dimensional problems have shown that the dissolution of
gypsum decreases with the increase of depth.
* The area of a gypsum particle depends mainly on the diameter. This study assumes that all
particles have the same diameter. If the particles considered have varying diameters, then this
would have its effect on the results.

Acknowledgement: The authors wish to express their gratefulness to the State Company
for Geologic Surveys and Mining, Ministry of Industry of Iraq for the assistance shown
without which this research would not have seen light.

Abbreviations:

ASCE = American Society of Civil Engineers.

PWP = pore water pressure.
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List of Symbols:

A

A1
A1
a

b

b

B
C
C
Co
C
DT
Dd
D11
Do
dp
d

F

G
Gq

 is area of section of flow (m?).

. is the longitudinal apparent dispersivity.

. is the lateral apparent dispersivity.

- is the intercept of the best fit resulting straight line.
. is the slope of the best fit resulting straight line.

. are the body forces.

- is the bulk modulus.

. is the concentration of gypsum in water (mg/l).

. is the concentration of gypsum in the fluid element.

. 1s the original value of concentration.

. is the cohesion (from tests).

. Is the tangent matrix.

- is the coefficient of molecular diffusion.

. is the longitudinal dispersion (D11 ) (from tests).

. is the lateral dispersion (D) (from tests)

. Is the pore water pressure.

. Is Poisson's ratio Parameter (from tests)

. is the reduction in Poisson’s ratio v; for a tenfold increase in o3 (from tests).
. is the value of Poisson’s ratio v; at a confining pressure of one atmosphere.
. is the specific gravity of gypsum (usually taken as 2.32).
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. is the gravitational acceleration.

(@]

. 1s the total head.

. is the bulk modulus of the solid phase.

. 1s the absolute permeability matrix of the medium,

. is the horizontal coefficient of permeability, (from tests).
. is the vertical coefficient of permeability, (from tests).

. is the modulus number (from tests).

. is the modulus number (from tests).

: is the dissolution rate K.

. is the distance from inlet.

. is the mass.

. 1s the mass contained inside the volume element.

. is the mass source or sink term which is positive when a source and negative when
a sink.

. is equal to unity for the normal stress components and zero for the shear stress
components.

. is the porosity.

- is the modulus exponent (from tests).

. is the original value of the variable.

- is the fluid pressure.

. is the atmospheric pressure.

. 1s the original value of pressure.

. is the failure ratio (from tests).

. is time (sec).

SZIZIFRARZITARZISIXRXRZT
< = o

- T U T > 5
PIFTO 3

~—+>

. is the boundary traction (f) specified at the boundary.

u - is the unknown displacement vector.

v : is Poisson's ratio.

Vi . is the velocity (m/sec).

Vw  :isthe volume of water (L°).

Vo, :isthe initial volume of element (L°).

\7 . is the velocity of the gypsum in the fluid element with respect to a fixed coordinate

t  system.

6 . is the volumetric velocity of the fluid element.

X - is the lateral distance from 50 % composition point.

o . is the proportionality factor relating C and p.

i - is the fluid compressibility.
de . is the total strain of skeleton.
dep :is the overall volumetric strain caused by the uniform compression of the particles

due to the pressure of the pore fluid.
de, the strain due to the dissolved mass of calcium sulphate,
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de, : represents all other strains not directly associated with stress changes, e.g. swelling,
thermal, .. .etc.

d . is the angle of internal friction (from tests).
I . is the boundary.
Y . is the density of water (kg/m3).

w

n . is the dynamic viscosity of the fluid.
p . is the density of the fluid.

Po :isthe original value of density.
o
Q

. is the total stress.
. is the domain.
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