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ABSTRACT 

Gypseous soils are distributed in many regions in Iraq. Therefore, it is necessary to study the 

geotechnical properties of such soils due to the possible large damage that may incur 

structures founded and constructed in or on them. The soil used in this study is from Al-Najef 

City, Iraq. It is poorly graded sand. It also has a gypsum content of about 28-32٪. The 

mineralogical and chemical properties of the soil are established at first. However, this study 

is concerned with the dissolution of gypsum and its effect on the soil. The importance of the 

progress of dissolution is verified through the study of the characteristics of the soil skeleton 

and the pore fluid. Three differential equations are used to study this effect, namely, 

continuity, equilibrium and dispersion. They are solved by using the finite element method. In 

addition, this work uses the hyperbolic stress-strain idealization as a constitutive relationship. 

Tri-axial (CD) tests are conducted to find the hyperbolic parameters. An experimental setup is 

modified to find the longitudinal and lateral coefficients of dispersion. One- and two-

dimensional problems are solved to study the effect of dissolution. Results reveal high effects 

of dissolution of gypsum on the settlement, pore water pressure, elastic modulus and Poisson's 

ratio values. Settlement increases while other parameters (E, B and υ) decrease with 

increasing dissolution. Furthermore, there is a vast behavioral difference between one and two 

dimensional problems.  

 

 الخلاصة
محتملة بسبب الاضرار الالترب تنتشر الترب الجبسية في مناطق عديدة من العراق. لذلك من الضروري دراسة الخواص الفيزياوية لهذه 

ان  الكبيرة التي تحدث بالمنشاءآت نتيجة لبناءها عليها او بداخلها. لقد استخدمت تربة من هذا النوع تم جلبها من مدينة النجف في العراق.
%. لقد تم التحقق من الخواص المعدنية و 28-82نوع التربة هو رمل متدرج بشكل سيء كما ان لها محتوى من الجبس قدره حوالي 

لقد تم التحقق من تقادم الاذابة من خلال دراسة  وية للتربة اولَا. بعد ذلك, تتطرق هذه الدراسة الى اذابة الجبس و تأثيره على التربة.الكيميا
خواص الهيكل الصلب و مائع المسام. لقد تم استخدام ثلاثة معادلات تفاضلية لدراسة هذه الظاهرة و هي : الاستمرارية و الاتزان و 

انفعال القطع الناقص   -لقد تم حل هذه المعادلات باستخدام طريقة العناصر المحددة. اضافة الى ذلك, تم استخدام تمثيل اجهاد الانتشار.
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تشار كعلاقة تكوينية. لقد تم اجراء فحوص ثلاثية محاور مبزولة لايجاد معاملات علاقة القطع الناقص. لقد تم تعديل جهاز لايجاد معاملي الان
لجانبي. لقد تم حل مسألتين ببعد واحد و ببعدين لدراسة خواص الاذابة. تظهر النتائج تأثيرات عالية لاذابة الجبس على الهبوط و الطولي و ا

يزداد الهبوط بينما تقل قيم المعاملات الاخرى )معاملي المرونة و التضخم و نسبة ضغط الماء المسامي و قيم معاملي المرونة و بويزون. 
  يادة الاذابة.تظهر الدراسة فرقاَ كبيراَ في الخواص عند دراسة المسألة ببعدين عن البعد الواحد.بويزون( مع ز 
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INTRODUCTION 

The term "gypsiferous soil" and “gypseous soil” are used to specify the soil that contains 

gypsum, the first is used by agronomists, while the second is used by civil engineers.  

Gypsum is present in soils in the form of calcium sulphate dihydrate (CaSO4.2H2O). A 

transitional form of calcium sulphate (CaSO4.0.5H2O) is sometimes found at the soil surface 

in extremely dry climates (Doner and Lynn, 1977). There is no unique definition for gypseous 

soils used by civil engineers. It can be stated that a gypseous soil is one in which has a 

gypsum content enough to change or to affect its engineering properties.  Gypseous soils are 

distributed in many regions in the world including Iraq. They cover about (20٪) of Iraq's area. 

Gypseous soils in Iraq cover about 7.28٪ of the gypseous soils in the world and 16.2٪ from 

Asia (FAO, 2001). Many problems relating to construction on gypseous soils were observed. 

There are three main sources of these problems; first, the dissolution and transportation of 

gypsum through soil causes a continuous loss of soil mass and increasing voids. A large 

reduction in shear strength and an increase in compressibility are the main results of this 

phenomenon. The second is the variation of shear strength and compressibility characteristics 

of gypseous soils upon wetting and saturation. The third is the volume change accompanying 

the dehydration of gypsum or hydration of anhydrite. In the first case, a volume decrease of 

approximately 39٪ may be reached, while in the second case, the volume may be increased by 

63٪ (Ismail-1993). The main purpose of this study is to simulate the mechanical behavior of 

gypseous soils before and during leaching by using the finite element method for solving three 

differential equations, namely, dispersion , flow and continuity. In addition to that, set up 

experimental facilities which are used for the determination of the dispersive characteristics of 

gypseous soils (Al-Hassanee, 2004). 

 

LEACHING STRAIN 

Consider the element shown in Figure (1) which has a volume (Vo) and the water flows 

through the element having a velocity (vi). This element contains some gypsum. Due to flow 

of water, the gypsum dissolves and causes a decrease in volume: -  

dmass = dCVw                                                                                                                                                                                      (1)                                                                                                                   

dmass = dC vi A t                                                                                                                  (2) 

where: - 

C: concentration of gypsum in water (mg/l), 

t: time (sec),                                                     Co                                                                            Ci     

vi: velocity (m/sec),                                                                                           

Vw: volume of water (L
3
), and 

A: area of section (m
2
).                                                                                                         

                                                   Fig (1) Variation of concentration through element 
 
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where: 

Gg: specific gravity of gypsum (with an average value of 2.32), 

w : density of water (kg/m
3
), 

Leaching strain =












 

owg

i

VG

tAv
dC


, and                                                                                    (4) 

Vo: initial volume of element (L
3
). 

 

CONSTITUTIVE EQUATION 

The constitutive equation relating effective stress ( ) to the strain of the skeleton is 

independent of the pore pressure and for a general non- linear material, it can be written in a 

tangential form thus allowing plasticity, if desired, to be incorporated. If leaching strain is 

present, the expression is written in a general form as (Lewis and Schrefler, 1987): - 

 omT ddpddDd                                                                                              (5) 

where: 











sK3

dp
mpd   (6) 

owgwm vGdCVd    (7)  

in which: - 

 

DT : is the tangent matrix, 

m : is equal to unity for the normal stress components and zero for shear stress     

components, 

d  : the total strain of skeleton, 

pd  : the overall volumetric strain caused by uniform compression of the particles due to    

the pressure of the pore fluid, 

Ks : the bulk modulus of the solid phase, 

md  : the strain due to the dissolved mass of calcium sulphate,  

od  

 

: represents all other strains not directly associated with stress changes (swelling,   

thermal, etc.); (Zienkiewicz, 1977), and 

  dp : is the pore water pressure. 

 

The equilibrium equation relating the total stress ( ) to the body forces (b) and the boundary 

traction ( t̂ ) specified at the boundary ( ) of the domain ( ) is formulated in terms of the 

unknown displacement vector (u). Using the principle of virtual work, the general equilibrium 

statement can be written as (Zienkiewicz, 1977): - 

0dt̂ubdud TTT   
  

 (8) 

Furthermore, upon taking into account the constitutive relationship given by Equation (5) and 

dividing by dt, the following equation is obtained: - 
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DARCY’S LAW (FLUID PHASE)                                                 

The geometrical complexity of a porous medium renders impossible a strict analytical 

treatment of the fluid velocity within the porous space. To overcome this obstacle, the 

fictitious seepage velocity (also known as bulk or Darcy’s velocity) is defined as (Lewis and 

Schrefler, 1987): - 

 pghpk
1

q 









  (10) 

where: 

k : is the absolute permeability matrix of the medium,  
  : the dynamic viscosity of the fluid, 

p : the fluid pressure, 
  : the density of the fluid,  

g 

h 

: the gravitation acceleration, and 

: total head. 

 

CONTINUTY EQUATION 

The continuity of flow requires that the following expression is valid (Crichlow, 1977):  

Rate of fluid accumulation =   0g   (11) 

 

which upon combining with Darcy’s law given by Equation (10) results in: - 

- rate of fluid accumulation =   0ghp
k






















 . (12) 

There are many factors which contribute to the rate of fluid accumulation and these are 

enumerated as follows (Lewis et al., 1976): - 

a. Rate of change of total strain 

























t
m

t

Tv . 

b. Rate of change of the soil volume due to pressure change = 


















 

t

p

K

n1

s

. 

c. Rate of change of saturation = 













t

S
n . 

d. Rate of change of fluid density = 












t
nS . 

e. Change of soil size due to effective stress change = 












t




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






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


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




t
m

K3

1 T

s

. 

The continuity equation for water, therefore, becomes: - 
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where: 
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K = k (


g )                                                                                                                       (14) 

and is known as the coefficient of permeability or hydraulic conductivity matrix whose 

coefficients have units of length over time. 

 

DERIVATION OF THE ADVECTION-DISPERSION EQUATION 

An important relationship in fluid flow is the principle of conservation of mass. This principle 

is a statement of material balance with respect to a volume element fixed in space and may be 

simply stated as: -  

(Rate of Mass Outflow – Rate of Mass Inflow)= (Rate of Change of Mass Inside the volume 

element).                                                                                                                         (15) 

Applying this principle to the volume element shown in Figure (2) results in: - 

 

 

       

   
t

M
MpMM

MMMM

VE

XXXX

XXXXXXXX

2/332/33

2/222/222/112/11












 (4-1)  

 

 

where: -                                                                                                 

 2/11 XXM  ,  2/22 XXM  ,  2/33 XXM  = 

rate of mass out–flow across faces               

2/11 xx  , 2/22 xx  , 2/33 xx  , and                                                        

 2/11 XXM  ,  2/22 XXM  ,  2/33 XXM  =  

rate of mass in-flow across faces 

2/11 xx  , 2/22 xx  , 2/33 xx  .                                     

MVE = mass contained inside the volume element, and  

MP = mass source or sink term which is positive when a source and negative 

          when a sink.  

Applying a Taylor series expansion about the point X1, X2 and X3, neglecting second and 

higher order terms and then substituting into Equation (16), the following is obtained after 

each one of the mass flow rate components is expressed in terms of the fluid density, the 

dimensions of the volume element and the volume flux: 

Mxi= ρqi.∆xi. ∆xj                                                                                                              (17) 

321VE x.x.x.SM                                                                                  (18) 

pQMP                                                                                                         (19) 

Equation (15) gives: 

   

   321321

3
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1

x.x.x.S
t

pQxx.x.3q
x
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X
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x
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


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













                                      (20) 

 

Reddle and Sunada (1974) used Fick’s law for describing diffusion on a microscopic scale in 

a porous medium. The following is obtained: - 

 

  (16) 
 

Fig (2): Representative elementary volume of porous 

medium used to develop continuity equation for gypsum in 

miscible fluid flow 
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
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


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j

ijti
x

Ĉ
T̂DdVĈV̂Ĉ                                                                                                    (21)                                

Ĉ  : concentration of tracer (gypsum in our case) in fluid element , 

tV̂  
: velocity of the tracer in fluid element with respect to a fixed     

  coordinate system, 

V̂  
: volumetric velocity of fluid element , and 

Dd : is the coefficient of molecular diffusion. 

 

By using macroscopic analysis and assuming isothermal conditions gives (Reddle and 

Sunada, 1974): 
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(22)  

where, 

  : fluid compressibility, 

  : proportionality factor relating C and ρ, 
Po : is the original value of pressure,  
 o : is the original value of density,  
Co : is the original value of concentration, and 
O : is the original value of the variable (Reddle and Sunada, 1974). 

 

The following assumptions are made for simplifying the dispersion equation: -  

1. The volume element is completely saturated with water (S = 1). 

2. The porous medium is homogeneous so that the porosity will be independent of 

position. 

3. The density does not vary with concentration ( 0 ). 
 

Accordingly, Equation (22) becomes: 
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2211ij22ij                                                                                                         (24) 

Expanding the advection – dispersion equation from equation (24) for a two–dimensional 

flow, and considering that the transport by molecular diffusion is negligible, the Equation (23) 

will be as follows: -  
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FINITE ELEMENT APPLICATION 

 

The fully coupled solution of the one-phase flow (α1–species) equation in a non-linear porous 

medium will now be presented in detail. The particular form of the equilibrium equation (9), 

together with the continuity equation (13) and the advection-dispersion equation (25) 

represent the governing equations for soil mechanics problems within the lines of Biot’s self-

consistent theory. The first two mentioned equations are re-written again for the sake of 

completeness:  - 
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By using Green's theorem (26) and (27) become (Zienkiewicz, 1977): 
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The Galerkin method is applied where a = N. The finite element discretization gives the result 

(Zienkiewicz and Morgan, 1982):  
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As for the third differential equation for advection-dispersion (Equation 25), assuming a trial 

function of the form (Zienkiewicz and Morgan, 1982): 
 

     tPxNtCĈC IiII      (32) 

 

Applying the weighted residual method with Galerkin’s method and integrating the second 

spatial derivative term by using Green’s theorem (Zienkiewicz, 1977), Equation (25) 

becomes: - 
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The resulting finite element discretization in space of the three above governing equations 

yields the following system of semi-discrete coupled equations (refer to the appendix for 

definition of matrices): 
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The matrices listed above form the coefficient matrices of the combined equations: - 
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SOLUTION PROCEDURE 

 

The analysis of displacement, fluid flow and dispersion through a deforming porous medium 

represents a three-degree of freedom field problem. The most obvious solution procedure of 

the three-coupled semi-discrete Equations (37) developed in the previous section consists of 

adding the concentration (C) as an additional variable to the existing nodal variable 

displacement (u) and pressure (P) parameters to solve the system of equations simultaneously. 

This is usually done by the monolithic augmentation approach (Park and Felippa, 1983), first 

proposed by Lewis and Karahanglu in 1981, but instead of the advection-dispersion equation, 

the heat flow equation was used. Following this approach, Equation (37) becomes: 
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The matrices in the above equation need to be evaluated once per time step. 

 

THE HYPERBOLIC MODEL STRESS-STRAIN LAW 

Setting out constitutive relations relevant for gypseous soils is still a topic under research. The 

adoption of the hyperbolic model is an appropriate first step towards this goal, for it is 
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basically a curve fitting technique of available stress-strain curves from laboratory tested 

specimens (Majeed, 2000). The hyperbolic stress-strain relationship was first proposed by 

Kondner (1963), and developed by Duncan and Chang (1970), in an attempt to provide a 

simple framework encompassing the most important characteristics of soil stress-strain 

behavior, using the data available from conventional laboratory tests such as the 

unconsolidated un-drained UU tri-axial compression test or the consolidated drained CD tri-

axial compression test. The relationship between stress and strain is assumed to be governed 

by the generalized Hooke’s law of elastic deformations which, for plane strain conditions, 

may be expressed as follows (Wong an Duncan, 1974): 
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Kondner (1963), and Kondner and Zelasko (1963) have shown that the stress-strain curves for 

a number of soils, both clay and sand, could be approximated reasonably accurate by 

hyperbolas. This hyperbola can be represented by an equation of the form: 
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It may be noted that a and b are, respectively, the intercept and the slope of the best fit 

resulting straight line. The asymptotic stress value (σ1-σ3) may be related to the compression 

strength, (σ1-σ3), by means of a factor Rf as follows: 
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ult31ff31 R                                                                                                    (43) 

By expressing the parameters a and b in terms of the initial tangent modulus value and the 

compressive strength, Equation (40) may be rewritten as: 
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The variation of Ei and σ3 is represented by an equation of the form (Janbu, 1963): 
n
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Equation (45) can also be used for unloading-reloading conditions, but replacing E by Eur  and 

k  by kur. For saturated soils under un-drained conditions, there is no volume change and 

Poisson's ratio vi is equal to one-half for any value of confining pressure. For most other soils 

the value of vi decreases with confining pressure and this variation of vi with 3 may be 

expressed by the equation:  
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                                                                                                                 (46)   

where: 

G: is the value of vi at a confining pressure of one atmosphere. 
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F: is the reduction in vi for a tenfold increase in 3. 

The instantaneous slope of the curve representing the variation of tra isand  . By 

differentiating the equation (  avr
2

1
  ) with respect to r , substituting Equation (46) 

and eliminating the strain using Equations (40 to 44), the tangent value of Poisson’s ratio may 

be expressed in terms of the stresses as follows (Majeed, 2000): - 
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where  
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DISPERSION TEST 

A simplified form of the mass conservation equation was presented in above for the one-

dimensional flow through a homogeneous and isotropic porous medium. In order to apply the 

analysis presented in the derivation of the advection-dispersion equation, it is necessary to 

have data obtained from one-dimensional flow experiments (Al-Damluji and Al-Rawi, 2005). 

The schematic diagram in Figure (3) shows the details of the modified setup. The porous 

medium box has outer dimensions of (7x30x30) cm. It is made up of 6 mm thick glass sheets   

and 4mm thick steel sheets where the removable upper cover was manufactured from 1mm 

thick steel sheets having (3) pores for the outlet water. A matrix of conductivity probes was 

embedded in the box at various locations to monitor the movement of the gypsum by using an 

Ohmmeter probe.                                          

Longitudinal dispersion coefficients are determined according to the following equation:  

v
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A plot is made between time and relative concentration (C-Co)/(Cmax-Co). The longitudinal 

apparent dispersivity (A11) is calculated by plotting the values of (D11) against the 

corresponding values of (v) on log-log paper, as shown in figure (4a). The best fit equation is: 

D11= 0.3997 (v)
0.904

                                        (49) 
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                           Fig (3) Schematic diagram of the porous medium box        

Lateral dispersion coefficients are obtained for various seepage velocities by using the 

following equation:  
2
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where; 

L = distance from inlet, and 

X = lateral distance from 50 % composition point. 

The lateral apparent dispersivity (A12) is calculated by plotting the values of (D22) against the 

corresponding values of (v) on log-log paper, as shown in Figure (4b). The best fit equation is: 

D22 = 0.00255 (v)
6.304 

                                                                                                                               (52)  
 

              Table (1) Coefficients of longitudinal and lateral dispersions (D11 and D22) 

Velocity (cm/min)   1.51   1.006 0.5033 

                      X=5 cm 

 

                     X=15 cm  

    D11 (cm/min) 

                     X=25 cm        

 

                      Average 

 

0.566 0.403 0.244 

0.755 0.289 0.1617 

0.705 0.503 0.236 

 

0.675 

 

0.398 

 

0.2138 

    D22 (cm/min) 0.0344 0.00225 0.0002 
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Fig (4) Longitudinal and lateral dispersive curves for tested soil 

 

 

CONSOLIDATED DRAINED TRIAXIAL TEST (CD TEST) 

The consolidated drained tri-axial (CD) test was carried out under three different confining 

conducted in three different stages which are the saturation, the consolidation and finally the 

shearing stages. Figures (5a, b, c, and d) show the results of the tests. 
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                               -c-                                                                               -d- 

Fig (5) Results of drained tri-axial compression (CD) tests under confining stresses of (a)100, 

(b)150, (c)300kPa, respectively and (d) is the variation of the initial tangent Poisson’s ratio 

with confining stress 
 

 Table (2) shows the obtained parameters for the hyperbolic stress-strain relationship. These 

parameters are used as input data in the developed algorithm. The parameters k, kur and n 

from Equation (45), Rf from Equation (43) and G, F and d from Equations (46) and (47) are 

assumed constant during the dissolution process of gypsum. 

 

 

 

          Table (2) Parameters of hyperbolic stress-strain relationship 
                  

 

k 

 

kur 

 

  n  

 

 Ф 

 

Rf 

 

  G  

 

 F  

 

    D 

 

250 

 

420 

 

3.331 

 

38º.67 

 

0.91 

 

0.374 

 

-0.08 

 

0.0 

 

 

One Dimensional Problem 
The finite element mesh is shown in Figure (6). The width of the mesh is assumed to be equal 

to 0.5m. An external surface load of 50kN/m2 is assumed to be applied. The time stepping 

scheme and the material properties for this problem are given in Tables (3) and (4), 

respectively. There are two cases for this problem with some assumptions: 

Case (one): Dissolution of gypsum does not happen in the first problem by assuming Co=Cs. 

In this case, the developed algorithm solves two equations only, namely, flow and 

equilibrium. 

Case (two): Dissolution of gypsum happens by assuming Co<Cs. In this case, the advection-

dispersion equation is included with the two mentioned in case one equations. Here, Co will 

be taken equal to 0.4 gm/l. 

σ
1
 –
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 (
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Fig (6) Finite element mesh for the one-dimensional problem 

Table (3) Time steps taken for different time values 

Time Interval (day) Number of Time Steps 

0.25 8 

0.5 8 

1.0 104 

 

 

 

Figures (7), (8) and (9) show the variation of the elastic modulus, pore water pressure and 

settlement ratio, respectively at the center of element (1) for cases (one) and (two).   

 

 

 

Table (4) Adopted material properties for the one-dimensional problem 

  

Value The Material properties  

2.5 *10
-5

 m/second 

 
Horizontal Coefficient of Permeability, kh (from tests) 

2.5 *10
-5

 m/second 

 
Vertical Coefficient of Permeability, kv (from tests) 

250 Modulus number k (from tests) 

420 Modulus number kur (from tests) 

3.331 Modulus Exponent n (from tests) 

38.67° Angle of internal friction Φ (from tests) 
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0.91 Failure ratio Rf (from tests) 

0.374 Poisson's ratio Parameter G (from tests) 
-0.08 Poisson's ratio Parameter F(from tests) 
0.0 Poisson's ratio Parameter d  (from tests) 
23230 KN/m

2 
Elastic modulus (initial) (from tests) 

0.37 Poisson's ratio (initial) (from tests) 

 (3α χ γd )/(nr Gs γw ) Surface area of gypsum (Al-Mufty, 1997) 

 (0.15 +8.6 v)/10
5
 dissolution rate Ќ (Al-Mufty, 1997) 

 

0.3997 (v)
0.904

 Longitudinal Dispersion (D11 ) (from tests) 

0.00255 (v)
6.304

 Lateral Dispersion (D22 ) (from tests) 

18.8 KN/m
2 

Soil density  

0.0 Cohesion (c) (from tests) 

   

  

 

                                                                                

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig (7) Elasticity modulus-time relation                           Fig (8) P.W.P.-time relation  
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                                         Fig (9) Settlement ratio-time relation 

 

 

Two Dimensional Problem 

 

Figure (10) shows the finite element mesh. The width of the loaded area B is equal to 9.15m. 

The applied load is 50kN/m
2
.The time stepping scheme and the material properties are the 

same as those in Tables (3) and (4). Figures (11) and (12) show the results of analysis against 

time for the elastic modulus and bulk modulus at the center of elements 2, 8, 14, 20, and 26. 

These results show the variation of values against depth. All the parameters become constant 

after (5) days of loading and these values are very low when compared to the results of 

problem one. The values of the elastic modulus are between 500 and 5300 kN/m
2
, bulk 

modulus between 5300 and 22000kN/m
2
 and Poisson's ratio between 0.27 and 0.365. Figures 

(13) and (14) show the variation of pore-water pressure against depth and the settlement 

against time for cases one and two, respectively. 
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Fig (10) Finite element mesh for the two-dimensional problem 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                         

 

 

 

 

                             

                                    -a-                                                                                    -b- 

Fig (11) Variation of elastic modulus with time for (a) case one; and (b) case two  
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                                        -a-                                                                         -b-                          

          

      Fig (12) Variation of bulk modulus with time for (a) case one; and (b) case two 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig (13) Pore water pressure-depth relation at center of elements 2, 8, 14, 20 and 26 
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                          -a-                                                                                        -b- 

Fig (14) Variation of settlement with time in nodes 1 to 13; (a) case one and (b) case two 

 

CONCLUSIONS 
* Results of analysis by using the finite element method show a high effect of dissolution of 

gypsum on the values of elastic modulus and Poisson's ratio. These parameters and pore water 

pressures decrease with the increase in dissolution. Dissolution of gypsum is the main reason 

for this decrease. In addition, there is a high difference in values between the one-dimensional 

and two-dimensional cases. 

* Assuming constant values of hyperbolic stress-strain relationship parameters during the 

dissolution of gypsum is not correct, because when the content of gypsum varies, some 

parameters undergo change like specific gravity, density, cohesion and the angle of internal 

friction. This implies that the values for hyperbolic parameters must vary as the process of 

dissolution progresses. 

* The results of analysis show the soil in a dense state, because the value of the elastic 

modulus is more than 3000 kN/m
2
 and Poisson's ratio more than 0.3. This is similar to 

laboratory test results. 

* The one-dimensional and two-dimensional problems have shown that the dissolution of 

gypsum decreases with the increase of depth. 

* The area of a gypsum particle depends mainly on the diameter. This study assumes that all 

particles have the same diameter. If the particles considered have varying diameters, then this 

would have its effect on the results. 
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Abbreviations:  

ASCE = American Society of Civil Engineers. 

PWP   = pore water pressure. 
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List of Symbols: 

 

A : is area of section of flow (m
2
).                   

 

A11 : is the longitudinal apparent dispersivity. 

A12 : is the lateral apparent dispersivity. 

a : is the intercept of the best fit resulting straight line. 

b : is the slope of the best fit resulting straight line. 

b : are the body forces. 

B : is the bulk modulus. 

C : is the concentration of gypsum in water (mg/l). 

Ĉ  : is the concentration of gypsum in the fluid element. 

Co : is the original value of concentration. 

c : is the cohesion (from tests). 

DT : is the tangent matrix. 

Dd : is the coefficient of molecular diffusion. 

D11 : is the longitudinal dispersion (D11 ) (from tests). 

D22 : is the lateral dispersion (D22 ) (from tests) 

dp  : is the pore water pressure. 

d : is Poisson's ratio Parameter (from tests) 

F : is the reduction in Poisson's ratio vi for a tenfold increase in 3 (from tests). 

G : is the value of Poisson's ratio vi at a confining pressure of one atmosphere. 

Gg : is the specific gravity of gypsum (usually taken as 2.32). 
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g 

 

: is the gravitational acceleration. 

h : is the total head. 

Ks : is the bulk modulus of the solid phase. 

k : is the absolute permeability matrix of the medium,  

kh : is the horizontal coefficient of permeability, (from tests). 

kv : is the vertical coefficient of permeability, (from tests). 

K : is the modulus number (from tests). 

kur : is the modulus number (from tests). 

K : is the dissolution rate Ќ. 

L : is the distance from inlet. 

M : is the mass. 

MVE : is the mass contained inside the volume element. 

MP : is the mass source or sink term which is positive when a source and negative when 

a sink. 

m : is equal to unity for the normal stress components and zero for the shear stress 

components. 

n : is the porosity. 

n : is the modulus exponent (from tests). 

O : is the original value of the variable. 

P : is the fluid pressure. 

Pa : is the atmospheric pressure. 

Po : is the original value of pressure.  

Rf : is the failure ratio (from tests). 

t : is time (sec).                                                   

 

t̂ : is the boundary traction ( t̂ ) specified at the boundary. 

u : is the unknown displacement vector. 

υ : is Poisson's ratio. 

vi : is the velocity (m/sec).                                                                                           
 

Vw : is the volume of water (L
3
). 

 

Vo : is the initial volume of element (L
3
). 

 

tV̂  
: is the velocity of the gypsum in the fluid element with respect to a fixed coordinate 

system. 

V̂  
: is the volumetric velocity of the fluid element. 

 
X : is the lateral distance from 50 % composition point. 
 : is the proportionality factor relating C and ρ. 

 : is the fluid compressibility. 

d  : is the total strain of skeleton. 

pd  : is the overall volumetric strain caused by the uniform compression of the particles   

due to the pressure of the pore fluid. 

md  : the strain due to the dissolved mass of calcium sulphate,  
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od  

 

: represents all other strains not directly associated with stress changes, e.g. swelling,   

thermal, …etc. 

Φ : is the angle of internal friction (from tests). 

  : is the boundary. 

w   

 

: is the density of water (kg/m3). 

  : is the dynamic viscosity of the fluid. 
  : is the density of the fluid.  
 o : is the original value of density.  

  : is the total stress. 

  : is the domain. 
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