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ABSTRACT 

A numerical finite-volume calculation method was used for application to fully-developed 

flow and heat transfer in straight ducts with 2-Cusp, 3-Cusp and 4-Cusp cross-sectional area. The 

method was formulated with reference to a non-orthogonal curvilinear coordinate system which 

was fitted exactly into duct shape. In turbulent flow, the Reynolds stresses were calculated by using 

the coupled algebraic stress model of Launder and Ying (1973) with a ( k  ) transport model. 

This turbulent stress model enabled secondary flows to be included in the non-circular duct 

calculations. In heat transfer solution, three thermal boundary conditions were 

investigated.Predictions were compared with available numerical and experimental data. The 

turbulent flow predictions of secondary and axial velocity, wall shear stress and Nusselt number 

were in reasonable agreement with experiment for the fully-developed flow cases. It is concluded 

that, although the maximum secondary flow was found to be (1.5%-2.5%) of the mean axial flow, 

the absence of this flows have significant influence on the flow and heat transfer parameters. 

Moreover, these flows will increase when the corners of a duct become more acute. Heat transfer 

results showed that the peripheral temperature variation around the duct has a significant effect on 

the heat transfer results, and confirmed the inadequacy of the hydraulic radius concept in the cases 

of the very non-circular ducts when comparison is made with Blasius correlation. 

 الخلاصة
دراسة عددية باستخدام طريقة الحجوم المحددة تم تطبيقيا لحساب الجريان وانتقال الحرارة في أنابيب ذات مقطع غير 

في الجريان  دائري وتحتوي عمى زوايا مستدقة.الدراسة اعتمدت عمى نظام المحاور الغير متعامدة والذي يأخذ شكل مقطع الأنبوب.
( , ىذا النموذج kمع نموذج ) Launder and Ying (1973)ينولدز باستخدام نموذج المضطرب, تم حساب اجيادات ر 

تم  قادر عمى حساب الجريان الثانوي  الذي يتولد في الأنابيب الغير دائرية المقطع. في حساب انتقال الحرارة, ثلاثة شروط حدية
تائج نظرية ومختبرية سابقة. نتائج الجريان المضطرب لمسرعة الثانوية والمحورية تطبيقيا. النتائج المستحصمة تم مقارنتيا مع ن

واجياد القص ورقم نسمت كانت مطابقة بشكل مقبول مع النتائج المختبرية المتوفرة. لقد تم الاستنتاج أنو رغم ان القيمة القصوى 
أن تأثيره عمى النتائج واضح, فضلا عن أن ىذا  ( من معدل الجريان المحوري ,الا%2.5-%1.5لمجريان الثانوي تصل الى)

الجريان تزداد قوتو مع وجود زوايا حادة في مقطع الأنبوب. نتائج أنتقال الحرارة أظيرت أن التغيير المحيطي لدرجة الحرارة حول 
ات الزوايا المستدقة عند في حالة الانابيب ذو  ءالأنبوب لو تأثير واضح عمى ىذه النتائج وكذلك تبين ضعف مفيوم القطر المكافى

 المقارنة مع علاقة بمسيوس للانبوب الدائري المقطع.
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INTRUDUCTION 

The need for compact flow passages in heat exchangers and other engineering component 

systems, like, the cooling and heating process in nuclear reactors and all kinds of waste-heat 

recovery have led to an urgent need for detailed knowledge of flow and heat transfer in non-circular 

ducts; in particle ducts with cusp corners. Such geometries, i.e. cusp corners, may be found in many 

applications like tube bundles and the shell and tube which form many types of heat exchangers. 

Therefore the study of these geometries, for both the flow and heat transfer, is very important in the 

industrial. This study will provide the require data for behavior of average and local properties for 

the flow and heat transfer like the friction resistance and the heat transfer coefficient. 

For its mathematical simplicity, the fully-developed laminar flow in non-circular ducts has 

been solved for most practical geometries to investigate the effect of shape on the friction factor by 

using the hydraulic diameter concept. Examples of these investigations are the work of (Gunn and 

Darling 1963) as they carried out numerical study on fluid energy losses in non-circular conduits, 

especially sections formed by close packed tube bundles and they also investigated these shapes 

experimentally. (Shah and London 1978) showed that solutions of the governing differential 

equations have been obtained by both analytical and numerical methods for many non-circular 

geometries. It was found that non-circular ducts friction factor is always different from that of 

circular duct. The main reason for this difference is the deformation of the local wall shear stress, 

which is caused by the duct shape deformation. 

A feature of turbulent flow in non-circular ducts which is absent from laminar flow is the 

“secondary flows” that are generated in the cross-sectional plane. These flows have the effect of 

transporting some of the core fluid into the corners of the duct, causing the flow to spiral in the 

axial direction in separate cells located across the cross-section. Although the secondary velocities 

are relatively weak compared with the main axial flow (about 1%-2.5% of mean axial velocity), but 

can have significant influence on the flow and heat transfer characteristics. Indeed, the distortions 

caused to the axial velocity distribution were the main early evidence of the existence of these flows 

in non-circular ducts. 

Experimental work on turbulent flow in non-circular duct geometry is mainly confined to 

friction factor measurements. Examples of those are, (Launder and Ying 1973) for square duct, 

(Hassan 1984) for isosceles right angle triangular and 4-cusp ducts and (Rijab et al 1991) for 3-

cusp duct. Previous experimental works showed that any prediction procedure must therefore 

include secondary flow effects if it is to produce realistic results. An alternative simplified approach 

was however taken by (Launder and Ying 1973) who developed approximate algebraic versions 

of the Reynolds stress transport equations for the calculation of square duct flow. These were later 

generalized by (Gesener and Emery 1976) who derived an algebraic equation set for the full 

Reynolds stress tensor. The prediction method of (Launder and Ying 1973) has been applied to the 

axial flow in equilateral triangular and square ducts (Rapley 1980); isosceles right angle triangular 

and 4-cusp ducts (Hassan 1984) and trapezoidal and a wavy ducts (Rokni and Gatski 1999). 
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The ducts shown in Fig.1 are of particular interest because it represents the limiting case of 

compact rod bundle flows with rods touching with flat plates. Closely spaced rod bundles have 

important applications in nuclear reactor cores and other compact heat exchangers and, over the 

years, much effort has gone into methods of prediction (Hassan 1984). However, no calculations of 

turbulent flow with predicted secondary flow appear to be available for 2-cusp and 3-cusp 

geometries. Such ducts yield a very non-circular passage shape with curved walls and cusped 

corners and are thus suitable for the present study. This should provide useful information on local 

mean flow, secondary flow and turbulence distributions and the problems associated with their 

prediction generally in this class of duct as well as specifically for the limiting case of rods touching 

in rod bundle flow. 

In the present study, a numerical finite-volume procedure, used for the prediction of fully-

developed turbulent flow in straight passages of arbitrary constant cross-section, is applied to 2-

cusp and 3-cusp ducts, as shown in Fig.1. The method solves the Reynolds, continuity and 

turbulence transport equations on a non-orthogonal curvilinear grid which is generated numerically 

to fit the duct cross-section. The Reynolds stresses are calculated with an algebraic stress transport 

model (ASTM) of (Launder and Ying 1973) which links the stresses to mean velocity gradients 

through the turbulence kinetic energy and its dissipation rate, whose values are obtained by solving 

their modeled transport equations; i.e. (k-) model.  

     

THEORETICAL MODEL 

 

Governing Equations 

The Reynolds equation for steady time-averaged incompressible turbulent flow can be 

written in Cartesian tensor form as (Hinze 1975): 
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and the continuity equation as: 
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The stress tensor ij  represents the sum of the viscous and turbulent (Reynolds) stresses, i.e.  

 

Fig.1: Ducts under consideration 
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And the energy equation: 
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The terms ( tu j ) represent the turbulent heat fluxes. Simply eddy diffusivity (SED) model based 

on the Boussinesq approximation is used to provide closure these fluxes, (Rokni and Gatski 1999).  
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substituting eq.(5) into eq.(4) gives: 
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Turbulence Modeling 

As attention previously, generation of secondary flows by numerical model is an important 

factor to accurately the prediction of turbulent flow in non-circular passages. A linear eddy-

viscosity model (EVM) does not have the ability to predict secondary flows, this being a 

consequence of the stresses being directly related to co-planar velocity gradients, as with fully-

developed laminar flow. This means that a higher order turbulent stress model is needed, which 

usually entails solving the Reynolds stress transport equations for each stress required. Therefore, 

the algebraic stress transport model (ASTM) of (Launder and Ying 1973) is used in the present 

study to describe the Reynolds stresses, as: 
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In order to be consistent with the aim of obtaining a prediction procedure for general 

geometries, no attempt has been made to optimize the empirical constant, whose values have simply 

been taken from previous studies, (Launder and Ying 1973) and (Rapely 1980) and may be 

summaries below: 

C1=0.23,C2=0.027,C3=0.562 and C4=C =0.09  
  

The axial plane shear stresses wu   and wv  are seen from eq.(11) and eq.(12) to be represented 

by a gradient diffusion model with an isotropic turbulent viscosity t given by (Jones and 

Launder(1972): 

 


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2k
Ct                                                                                                                        (13) 

 

In contrast the cross-plane stresses, which are responsible for secondary flows, are seen from 

eqs.(8)-(10) to depend on strain rates in planes normal to the cross-plane. 

The turbulence quantities k and  , required in the ASTM, were obtained here from the appropriate 

from of the well-known (k-) two equation turbulence model (Launder and Spalding 1974): 
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Where k=1.0 and =1.2 are the turbulent Prandtl numbers for k and , respectively, C1=1.55, 

C2=2.0 and G is the generation rate of turbulence kinetic energy, calculated from (Hassan 1984); 
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Transformation of the Governing Equations 

The governing equations can be written in terms of a single general equation for an arbitrary 

scalar dependent variable as 
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where   is an effective diffusion coefficient and S is a source term. Eq.(17) when cast into general 

non-orthogonal form with, the aid of the transformation of (Rhie 1985) to new independent 

variables (,,) and specialized to fully-developed flow in straight passages ( z =0 except 

zP  and zT   (Kays and Crawford 1993)), eqs.(1),(2),(6),(14) and (15) can be written: 
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u - Momentum:   
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w - Momentum:   
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Continuity Equation:  
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Energy eq.: 
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k-Equation: 
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-Equation: 
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here G1 and G2 are contravariant velocities: 
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Where J,, and  can be found in (Karki and Patankar 1989). Details of the source term S for 

each equation can be found in Table 1. The turbulent stresses appearing in these source terms were 

calculated with the ASTM eqs.(8)-(12). 

 

Table 1: Parameters in the General Transport Equation. 
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Turbulent dissipation   


21 CGC
k

  

 

 

Boundary Conditions 

The treatment of solid wall boundaries includes the most difficult part of solving the 

problem of flow and heat transfer in non-circular duct. The boundary conditions applied around the 

duct periphery involved the use of wall functions to bridge between the interior solution and wall 

surfaces. The functions used were conventional and based on the well-known “log-law of the wall” 

which is written (Versteeg and Malalasekera 1995); 

 

For momentum:                 YE
u

U
ln

1



                                                                                    (26) 

where U represents the local resultant velocity and  

                                          


  nyu
Y                                                                                          (27) 

with yn the distance from the wall along the appropriate coordinate line. u  is the local friction 

velocity taken here as 

                                           2/14/1/ kCu w                                                                               (28) 

 

with w the local wall shear stress, =0.42 and E=9.025 as in (Rapley 1980). 

The above relations were used to obtain local wall shear stress for solution of the 

momentum equations and together with the assumption of local turbulence equilibrium also to 

obtain relations for the near-wall generation and dissipation of turbulence kinetic energy for 

solution of the turbulence equations (Rapley 1980). 

    

For energy:                       )( TLT fUT                                                                        (29) 

where T is a non-dimensional temperature defined by(Versteeg and Malalasekera 1995): 

 

       Pw
w

P TT
q

cu
T  

                                                                                                              (30)  

 

where wT is the wall temperature, PT is the near wall temperature and wq is the wall heat flux. 
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as well as, three thermal boundary conditions are applied for heat transfer field as in (Rapley 1980) 

H1: Constant peripheral temperature and axial heat flux. 

H2: Constant peripheral and axial temperature (isothermal wall). 

H3: Constant peripheral and axial heat flux. 

 

THE NUMERICAL SOLUTION 
The transport equations, i.e. eq.(18), eq.(19) and eq.(20) for momentum, eq.(22) for energy and 

eq.(23) and eq.(24) for turbulence, can all be cast into the following common form: 
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Where  stands for any of the main dependent variables u, v, w, T, k and  .  and STotal are 

respectively the corresponding diffusion term and source, where STotal=SN+JS, and SN  is the source 

term arising from the nonorthogonality of the grid system,  
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and the details of the appropriate  and S for each equation can be found in Table 1. 

A finite-volume method was used, based on a non-orthogonal grid in the duct cross-plane, 

Fig. 2, and employing a staggered grid arrangement for u and v (Versteeg and Malalasekera 

1995). 
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Fig. 2: The cross-plane non-orthogonal curvilinear grid 
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Integration of each term in eq. (32) across the appropriate control volumes led to the final 

discretized algebraic equation, i.e. 

 

CSSNNWWEEPPP SAAAASA  )(                                                      (34) 

 

where SNWEP AAAAA   and SP and SC are coefficients of the linearized sources. The A 

coefficients contain the combined effects of convection and diffusion approximated by a standard 

hybrid differencing scheme (Patankar 1980). The solution procedure consisted of a repeated outer 

sequence in which the cross-plane momentum and continuity equations were dealt with by the 

SIMPLE method of (Patankar 1980), and an inner iteration sequence in which the discretized 

algebraic equations were solved with a conventional line-by-line method based on the well known 

tri-diagonal matrix algorithm (TDMA). Because of the inherent non-linearity of the discretization 

equation it is sometimes necessary to slow down the change in  from one iteration to the next, so 

in the present study, under-relaxation used to avoid divergence to the solution (Rapley 1980). The 

convergence requirement used was that the sum of the absolute residual sources over the whole 

field be less than 10
-3

 of reference quantities based on overall mass and momentum flows.  

  

RESULTS AND DISSCUSION 

 

Grid Generation 

The non-orthogonal body-fitted curvilinear grid used in the flow and heat transfer 

predications for 2-Cusp and 3-Cusp ducts was generated numerically by using the most common 

elliptic partial differential equation, Laplace equation, in the form: 
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                                                                                                                 (35) 

 

The above were solved by finite differences using central differencing and a similar ADI 

algorithm to that used in the flow solution. Typical full mesh generated for the present cases shown 

in Fig. 3 and Fig. 4. Tests with different meshes were used to obtain mean flow solutions that were 

substantially independent of the mesh and as may be expected, the secondary flow field was found 

to be more sensitive to mesh changes than mean flow particularly in the regions where nodes 

became sparse. 

 

The Flow and Heat Transfer Calculations 

    At first of these calculations, the flow was assumed to be unidirectional flow (without 

secondary flows). The unidirectional solution severed a number of purposes. The primary purpose 

was to set it as a first estimate to the solution when the full flow problem is considered. This was 

found to be very effective in enhancing the stability and convergence rate of the numerical solution. 

Moreover, the results of the unidirectional solution for the ducts under consideration are compared 

with these with secondary flow to see the effect of secondary flows on the various parameters. The 

unidirectional flow is considerably simpler than that with secondary flow, since the mathematical 

problem is reduced to a one-dimensional problem. It is necessary to solve the axial momentum 

equation with the ( k ) turbulence model. The results of this flow will be shown and discussed 

along with the other results in the following section. 
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For 2-Cusp duct, the flow in this geometry must represent one of the more severe tests of the 

present calculation method, particularly in the absence of the smaller acute angle, where the axial 

velocity, turbulence properties and stresses change rapidly across the narrow duct. A further 

physical feature of this flow should be the significant damping effect of the walls on turbulence in 

the acute-angled corner. Fig. 5 shows the axial velocity plotted at side bisector. The difference 

between the prediction for unidirectional flow and the real situation is attributed to the influence of 

the direction of rotation of the secondary flow which caused a reduction of the axial velocity in the 

side bisector. The effect of Reynolds number on the axial velocity is shown also and as expected, as 

the flow rate increases the velocity field becomes more full. The predicted secondary velocity 

vectors in the whole duct geometry are shown in Fig. 6. In the symmetry half of the duct, three 

swirls of secondary flow are predicted with two counter-rotating cells near the acute angle and the 

other near the right angle. Although there are no theoretical or experimental data available for 

comparison, the overall pattern seems a logical extrapolation of the isosceles right angle triangular 

duct flow pattern of (Hassan 1984), and contains the usual features of flow from the core region 

along corner bisectors into the corners, then returning to the core via the walls and their 

perpendiculars. The largest secondary velocities are about 1.2% of the mean axial velocity and 

occur along the corner bisectors and base wall. The effect of secondary flows on the axial velocity 

contours can be seen in Fig. 7.  

The predicted wall shearing stress along the curved side and the flat side is plotted in Fig. 8. 

The effect of flow rate and secondary flows is apparent on the distribution of the wall shear stress 

along the two walls of the duct, and it is similar to that in the axial velocity. The effect of secondary 

flow in reducing the peripheral variation is evident with reduced shear stress as approach to the 

center wall. This tendency of secondary flow to make wall shear more uniform is apparent in all 

previous non-circular passages studied (Rapley 1980) and (Rokni and Gatski 1999) and can be 

considered a further characteristic effect of secondary flow on the mean flow. 

   In heat transfer calculations, the heat transfer was obtained for three thermal boundary 

conditions, H1, H2 and H3. Details of the treatment of these boundary conditions can be found in 

(Rapley 1980). Air was chosen as a working fluid in these calculations and its properties were 

taken at bulk temperature of the flow field as in (Kays and Crawford 1993). The local distribution 

of the heat transfer coefficient for the three boundary conditions, H1, H2 and H3 is presented in 

Fig. 9. The heat transfer coefficient in the case of H3 boundary condition varies steeply in the 

peripheral direction when compared with that for the other two boundary conditions H1 and H2. 

This behaviour of the heat transfer coefficient is strongly related to the distribution of the wall 

temperature in the peripheral direction. The effect of flow rate is presented in Fig. 9; therefore as 

the flow rate increases the profile of the heat transfer coefficient becomes more full. However, the 

variation of the heat transfer coefficient with the flow rate is very slight for the range of Reynolds 

numbers in the figure. The effect of the secondary flow is also evident in Fig. 10 and it is similar to 

that observed on the local wall shear stress. Therefore, the secondary flow acts to increase the heat 

transfer coefficient in the corner region and at the same time reduces it in the central region. The 

mean Nusselt number-Reynolds number characteristics are shown in Fig. 11. The relation between 

the three thermal boundary conditions confirms the previous conclusions from the distributions of 

heat transfer coefficient. As expected, the predicted results for H1 and H2 are (40%) and (50%) 

respectively below the pipe flow correlation, whereas the H3 line is about (87%) lower than that of 

the pipe flow. Moreover, the uniform wall temperature (H1) boundary condition has the maximum 

value of mean Nusselt number whereas the uniform heat flux case, (H3) is always the smallest. This 

is caused by the presence of the transverse temperature gradient which is accompanying the H3 

boundary condition and does not exist in the H1 boundary condition. 

In 3-Cusp duct, Fig. 12 shows the predicted axial velocity at two sections, the corner and 

side bisectors; a comparison between the present predictions and experimental data of (Rijab et al 

1991), is also made. It is clear that the agreement along the side bisector is very good. Moreover, 
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the effect of secondary flow is clear also as it tends to make the axial velocity more full near the 

corner and reduces it near the side bisector. The predicted secondary velocity vectors in the 3-Cusp 

duct are shown in Fig. 13. Although, there is no experimental or theoretical pattern available with 

which to compare the latter, the three eddies obtained in the symmetry cell are consistent with the 

equilateral triangular duct case of (Rapley 1980) and (Rokni and Gatski 1999), in that flow is 

from the core region towards the corner along the line of the corner bisecting plane, returning via 

the walls and wall bisecting planes. The largest secondary velocities were about 1.5% of the mean 

axial velocity and were located near the wall and along the corner bisector. The axial velocity 

contours which are presented in Fig. 14 shows clearly the effect of the secondary flow in 

convecting the momentum from high momentum central regions towards the low momentum corner 

regions.        

In Fig. 15 the predicted local wall shear stress is compared with the measurements that 

made by (Rijab et al 1991). Several indications can be drawn from this figure which confirms those 

observed earlier in the axial velocity predictions. It is clear that the shear stress decreases near the 

corners, with higher gradient near the smaller angle. This is due to the laminarization of the flow 

near the corners. The decrease near the center of the flat is attributed to the existence of the 

secondary flow, as the secondary flow tends to make wall shear stress more uniform along the 

section and this similar to the results of (Hassan 1984), in isosceles right angle triangle. 

The present calculations for the local distribution of heat transfer coefficient are compared 

with the experimental measurements of (Rijab et al 1991). The experimental duct had electrically 

heated walls which were assumed to produce a constant heat flux, H3, boundary condition. This 

comparison is shown in Fig. 16 where the present prediction is seen to be in reasonable overall 

agreement with experiment. The local distribution of heat transfer coefficient for the three boundary 

conditions H1, H2 and H3 is presented in Fig. 17. The present calculations show, however, that the 

peripheral variation of the heat transfer coefficient in the case of H3 is very steep compared with 

that of H1 and H2. The main reason is the steep variation of the temperature field in the peripheral 

direction. The significant effect of secondary flow in making the peripheral variation more uniform 

is evident from these results. The mean heat transfer coefficient is shown in Nusselt number form in 

Fig. 18. It is apparent from this figure that the difference between H1 and H2 Nusselt number is 

small. This is expected since the peripheral temperature variations are quite small. On the other 

hand, the mean Nusselt number for H2 and H3 cases is about 5% and 65% respectively below that 

of H1; this is caused by the severe wall temperature variations in the peripheral direction in H3 

boundary condition. 

 

CONCLUSIONS: 

A numerical solution was developed for solving the flow and heat transfer fields in 2-Cusp 

and 3-Cusp ducts. In flow field, the flow was assumed to be hydrodynamically and thermally fully-

developed flow. The secondary flows calculated by using ASTM of (Launder and Ying1973). In 

heat transfer field, three thermal boundary conditions, H1, H2 and H3 were investigated. The results 

of the present study were in good agreement with the previous measurements. The following 

conclusions are indicated from the predictions: 

1. In turbulent flow, it is evident that the two-equations ( k ) model is quite a satisfactory 

model for turbulent flow in non-circular ducts. 

2. The predicted axial velocity and wall shear stress distributions obtained for turbulent flow 

in corresponding ducts studied were generally found to be flatter than might be expected from the 

equivalent laminar calculations, taking into account the increased shear due to turbulence. The 

reason for this was clearly revealed by taking advantage of the facility in the present method of 

being able to make calculations for the hypothetical situation in which the turbulence secondary 

flow is suppressed. 
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3. The algebraic stress transport model (ASTM) of (Launder and Ying 1973) have the 

ability, rather than eddy-viscosity turbulence models, to predicate the secondary flow in straight 

non-circular ducts. 

4. The secondary flows so generated, will distort the mean flow since axial velocity 

gradients, turbulence kinetic energy and wall shear stress will tend to increase in regions where 

secondary flow is directed towards the wall, and decrease in regions where it is directed away from 

the wall. This effect will be seen in axial velocity contours which will bulge into a wall 

convergence, and in wall shear stresses which will be made more evenly distributed. 

5. In turbulent heat transfer, the effect the secondary flow on the local temperature 

distributions and local heat transfer coefficient was found to be quite significant which indicates the 

importance of including the secondary flow in the calculations. 
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NOMENCLATURE 

Latin Symbols 

A: Coefficient of the discretized equations 

C1,C2,C3,C4:Constants in ASTM 

cp :Specific heat at constant pressure , J/(kg.K) 

C,C1,C2 :Constants in ( k ) turbulence model  
D :Diffusion term 

E :Logarithmic law constant, equation (3.58) 

F :Convection term 

g :Metrics tensor element 

G :Generation term of the turbulent kinetic energy 

G1,G2,G3 :Contravariant velocity components 

h :Heat transfer coefficient, W/(m
2
.K) 

J :Jacobian of transformation 

k :Turbulence kinetic energy, m
2
/s

2
 

Nu :Nusselt number 

P :Pressure, N/m
2
 

q  :Heat flux, W/m
2
 

Re :Reynolds number 

S :Source term of  ,table (3-1) 

SN :Source term due to non-orthogonality, equation (3.40) 

STotal :Total source terms 

T :Temperature, K 

Tb :Bulk (mixed) fluid temperature, K 

u,v,w :Cartesian velocity components, m/s 

x,y,z :Cartesian coordinate, m 

U
+ 

:Dimensionless velocity, eq. 3.54) 
 

Y
+ 

:Dimensionless distance from a wall, equation(3.52)
 

 

Greek Symbols 

,, :Coordinate transformation parameters, equation(3.29) 

ij :Kronecker delta 

 :Grid spacing, m 

 :Under-relaxation factor 

V :Elementary volume, m
3
 

 :Diffusion coefficient 

 :Dissipation rate of kinetic energy, N/(s.m
2
) 

 :Von Karman constant 

 :Laminar viscosity, kg/(m.s) 

e :Effective total viscosity,(+t), kg/(m.s) 

t :Turbulent viscosity, kg/(m.s) 

 :Kinematics viscosity, m
2
/s 

,: Curvilinear coordinates 

 :Density, kg/m
3
 

ij  :Stress tensor, N/m
2
 

k, :Effective Prandtl numbers  

ij  :Viscous stress tensor, N/m
2
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w :Wall shear stress, N/m
2
 

 :Dependent variable 

Subscripts 

e,w,n,s :Face of the control volume 

E,W,N,S :Neighbor nodes of point p 

i,j :Index Notations or coordinate direction identifiers  

L :Local value 

m :Mean value 

MX,MY,MZ :Refers to source term of momentum equation in Cartesian coordinates  

nb :Abbreviation of neighboring 

 

Superscripts 

*    :Guessed quantity or quantity from last iteration  

’     :Fluctuating quantity in the time averaging or correction quantity   

— :Averaged quantity 
 

Abbreviations  

ASTM :Algebraic stress transport model  

CFD :Computational Fluid Dynamics 

SIMPLE :Semi- Implicit Method for Pressure Linked Equation 

TDMA :Tridiagonal Matrix Algorithm  

Fig.3: Non-orthogonal curvilinear grid for 

2-cusp duct 

Fig.4: Non-orthogonal curvilinear grid for 

3-cusp duct 
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Fig.10: Predicted local distribution of heat transfer coefficient in 2-Cusp duct 
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Fig.12-a: Axial velocity in turbulent Flow 
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Fig.12-b: Axial velocity in turbulent flow 

in 3-cusp duct (side bisector) 
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Fig.14: Axial velocity contours in turbulent flow 

in the 3-cusp duct, Re=45525 

Fig.13: Predicted secondary velocity vectors 

in 3-cusp duct, Re=45525 

Fig.15-a: Wall shear stress in turbulent flow 

in 3-cusp duct. 
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Fig.16: Effect of the secondary flow and the flow rate on the distribution of heat transfer coefficient  
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Fig.17: Effect of thermal boundary conditions on the distribution of heat transfer coefficient  

Fig.18: Predicted Nusselt Number in 3-Cusp Duct. 
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