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ABSTRACT 
    An application of neural network technique was introduced in modeling extraction 

efficiency in RDC column, based on a data bank of around 352 data points collected 

in the open literature. Three models were made, using back-propagation algorithm, 

the extraction efficiency was found to be a function of seven dimensionless groups: 

Weber number (we), ( cd VV ), ( dc  ), ( ts DD ), ( tr DD ), ( tc DZ ) and 

( ct ZZ ). Statistical analysis showed that the proposed models have an average 

absolute error (AARE) and standard deviation (SD) of 12.23% and 10.61% for the 

first model, 5.35% and 6.21% for the second model,  8.34% and 7.59% for the third 

model. The developed correlations also show better prediction over a wide range of 

operating conditions, physical properties and column geometry.  

 

KEY WORDS 

 Rotating disc contactor, Extraction Efficiency, Artificial neural network, Back-

propagation algorithm 

 
INTRODUCTION 

Liquid-liquid extraction has been emerging as a very important method for 

separation of liquid mixtures into its components by means of a solvent. The solvent 

used in the extraction process should be immiscible or partially miscible with one of 

the components of the mixture in order to facilitate the separation of the liquid phases 

(Laddha and Degaleesan, 1976). 

The rotating disc contactor (RDC) has received considerable attention as liquid-liquid 

extraction equipment for refining of vegetable oils, processing of nuclear fuels, 

refining of crude petroleum and purification of vitamins. In common with other 

agitated columns it relies upon the application of mechanical energy to the contactor 
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contents to gain high mass transfer efficiency (Laddha and Kannappan, 1978). It 

consists of a vertical cylindrical shell divided into a number of compartments by a 

series of stator rings. A rotating disc supported on a central shaft driven by an electric 

motor is located in each compartment. The feed inlets, at each end of the column, are 

arranged tangentially in the direction of rotation. The outlets are usually through the 

top and bottom plates of the column. The dense phase is introduced into the top of the 

column and the light phase into the bottom, so that, counter current flow is established 

by gravity. One of the phases is dispersed by the action of the rotating discs. At the 

ends of the column there are settling zones for phase separation (Alders, 1959), as 

shown in fig. 1. The advantages of such device are the acheivement high efficiency 

per unit height and high throughput for a given flow area. The column is relatively 

free from plugging, and thus can be operate in the presence of small amounts of 

suspended solids or other impurities. Moreover it requires low driving power and has 

comparatively low operation and maintenance costs (Zhang et al, 1981). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
COLUMN DESIGN VARIABLES: 

        The important column parameters that effect the performance of a rotating disc 

contactor for a given extraction system are; 

Column diameter            (Dt) 

Rotor disc diameter         (Dr) 

Stator diameter                (Ds) 

Compartment height         (Zc) 

Effective column height    (Zt) 

Speed of rotor disc             (N) 

        Fig.1. Rotating disc contactor column [Reman (1952)] 
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These dimensions are normally given as ratios with respect to (Dt). And may be 

varied slightly to provide flexibility in design. For the optimum design, the column 

dimensions should have the ratios (Remab and Olney, 1955; Logsdail et al, 1957). 

 

(Ds/Dt)  =  0.66  to  0.75 

(Dr/Dt)   =  0.5  to  0.66 

(Zc/Dt)   =  0.33  to  0.5 

 

EXTRACTION EFFICIENCY: 

      Numerous studies have been made to obtain the effect of  different parameters on 

RDC 's efficiency. Reman and Olney (1955) investigated the influence of column 

geometry and flow rates. Efficiency was found to increase with, 

1. Decreasing stator opening. 

2. Decreasing compartment height. 

3. Increasing of dispersed flow rate at constant continuous flow rate. 

4. Increasing rotor speed. 

5. Increasing diameter of rotor discs. 

6. Increasing specific load. 

           However, under certain conditions, increasing in rotor speed and specific load 

reduced the efficiency, due to back mixing. 

          Reman and Olney (1955) interpreted their results by plotting the efficiency, 

defined as the number of stages per foot column height, versus the energy input per 

unit volume (N
3
.R

5
 /H.D

2
). Data for two column diameters, 4 inches and 16 inches 

correlated well. 

 

      Later Logsdail et al (1957), using the system toluene-acetone-water and 

butylacetate-acetone-water, the water being the continuous phase throughput, showed 

that the overall values of the mass transfer coefficient or H.T.U. , could be correlated 

by the expression; 
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Use of this expression for design purposes necessitates evaluation of the constant K, 

the exponent m, and the characteristic velocity NV  

            This may be determined from tests with the given system in a small-scale 

laboratory column. Alternatively for the case of transfer from an aqueous into solvent 

phase, i.e., a case of hindered coalescence, NV  may be evaluated using the equation 

below; 
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THE BACK-PROPAGATION ALGORITHM: 

         Back-propagation is a supervised learning technique used for training 

artificial neural networks. It was first described by Paul Werbos in 1974, and 

further developed by David E. Rumelhart, Geoffery E. Hinton and Ronald J. 

Williams in 1986. 

         It is most useful for feed-forward networks (networks that have no feedback, or 

simply, that have no connections that loop). The term is an abbreviation for 

"backwards propagation of errors". Back-propagation requires that the transfer 

function used by the artificial neurons (or "nodes") be differentiable. Back 

propagation networks are among the most popular and widely used neural networks 

because they are relatively simple and powerful. 

. The input is the input to the hidden layer and the output layer is the output 

from the immediate previous layer, so it is called feed forward neural network.   The 

number of the input units and the output units are fixed to a problem, but the choice of 

the number of the hidden units is somehow flexible as shown in fig. 2. Too many 

hidden units may cause over fitting, but if the number of hidden units is too small, the 

problem may not converge at all. Usually a large number of training cases may allow 

more hidden units if the problem requires so (Sivanadam, 2003). 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
                    Fig. 2. Multi layer feed forward neural network 

TRAINING A BACK-PROPAGATION NETWORK: 

         The conventional algorithm used for training a multi-layerd feed forward 

(MLFF) is the Bp algorithm, which is an iterative gradient algorithm designed to 

minimize the mean-squared error between the desired output and the actual output for 

a particular input to the network (Lendaris, 2004). 

     Two learning factors that significantly affect convergence speed as well as 

accomplish avoiding local minima, are the learning rate and momentum. 

. 

. 

. 

. 

 

 

 

 
 

 

 

 

     . 

     .  

 
  

. 

. 

. 

. 

 Input layer       Hidden layer    output layer   

Output layer 

          Vij            Wj k 

X1 

   

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

xn 

Y1 

. 

. 

. 

. 

. 

. 

. 

. 

. 

ym 



Journal of Engineering Volume 14 June 2008       Number2 
 

 

Available online @ iasj.net 2611 

   The learning rate () determines the portion of weight needed to be adjusted. 

However, the optimum value of  depends on the problem. Even though as small 

learning rate guarantees a true gradient descent, it slows down the network 

convergence process. If the chosen value of  is too large for the error value, the 

search path will oscillate about the ideal path and converges more slowly than a direct 

descent. The momentum () determines the fraction of the previous weight 

adjustment that is added to current weight adjustment. It accelerates the network 

convergence process. During the training process, the learning rate and the 

momentum are bring the network out of its local minima, and accelerate the 

convergence of the network. 

The algorithm of the error back-propagation training for one hidden layer is 

given below (Lendaris, 2004): 

Step1: initialize network weight values. 

Step2: sum weighted input and apply suitable activation function to compute the 

output of the hidden layer. 
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Where 

 hj: The actual output of hidden neuron j for input signals X. 

           Xi: Input signal of input neuron (i). 

          Wij: Synaptic weights between input neuron hidden neuron j and i. 

ƒ: The activation function. 

 

Step3: sum weighted output of hidden layer and apply activation function to compute 

output of output layer. 
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where 

Ok: The actual output of output neuron k. 

Wjk: Synaptic weight between hidden neuron j and output neuron k. 

 

Step4: compute back propagation error.
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where 

f   :The derivative of the activation function. 

dk: The desired output of neuron k. 

 

Step5: calculate weight correction term. 
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   1 njkWjhknjkW                         …  (6) 

Step6: sums delta input for each hidden unit and calculate error term. 
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Step7: calculate weight correction term. 

   1 nWXnW ijijij                                  … (8) 

 

Step8: update weights. 

  )()(1 njkWnjkWnjkW                                       … (9) 

                       
)()()1( nWnWnW ijijij 

                                                … (10) 

 

Step9: repeat step2 for given number of error. 
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Where    p: The number of patterns in the training set. 

Step10: END. 

 

COMPUTER SIMULATION RESULTS:- 

COLLECTION OF DATA: 

      In this work about 352 experimental points have been collected from 11 sources 

spanning the years 1954-1986. These data were divided into training part (75%) and 

testing part (25%). 224 data points were used in the first model which is for mass 

transfer from continuous to dispersed phase ( dc ), 128 data points used in the 

second model for mass transfer from dispersed to continuous phase ( cd  ) and 

over all 352 data points used in the third model for mass transfer for both directions 

( cddc  , ). These data includes six chemical systems with a large range of 

rotary speed, velocity of both continuous and dispersed phase, column geometry, also 

the physical properties for each chemical system. Table 1 gives the detailed listing of 

data used for the present work. 
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Table 1. Details of data bank used for the present work. 

 

CHOICE OF INPUT PARAMETERS: 

      In this study there are thirteen parameters used, these are: rotor speed (N), 

dispersed phase superficial velocity ( dV ), continuous phase superficial velocity ( cV ), 

dispersed phase density ( d ), continuous phase density ( c ), dispersed phase 

viscosity (µd), continuous phase viscosity (µc), interfacial tension ( ), rotor disc 

Author 

System 

….Dispersed phase 

….Continuous phase 

 

Direction of 

solute 

transfer 

No. of data 

Ismail (1985) 

Toluene 

Acetone 

Water 
( dc ) 57 

Al-Hemiri (1973) 

Toluene 

Acetone 

water 

( dc ) 

( cd  ) 
46 

Al-Hemiri (1973) 

Liquid paraffin 

Methyle ethyl ketone 

water 

( dc ) 

( cd  ) 
22 

Korchinsky (1982) 

 

Toluene 

Acetone 

water 
    ( dc ) 15 

Zhang(1985) 

 

Kerosene 

n-butyric acid 

water 

( dc ) 

( cd  ) 
30 

Al-Aswad (1985) 

Clairsol 350 

Acetone 

water 

( dc ) 

( cd  ) 
22 

Al-Husseini (1986) 

Toluene 

Acetone 

water 
( dc ) 52 

Cruz-pinto (1983) 

Toluene 

Acetone 

water 
( dc ) 4 

Chartres and 

Korchinsky (1978) 

Toluene 

Acetone 

water 
( dc ) 7 

Korchinsky and 

Cruz-pinto (1979) 

Toluene 

Acetone 

water 
( dc ) 4 

Vermijs and 

Kramers (1954) 

Water 

Acetic Acid 

Methyl isobutyl ketone 
( dc ) 38 

Krishnaiah (1967) 

Benzene 

Acetic acid 

water 
( cd  ) 55 
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diameter (Dr), stator diameter (Ds), column diameter (Dt), compartment height (Zc) 

and column height (Zt).           
  These parameters are input to the network as seven dimensionless groups that affect 

the efficiency of (RDC). 

        The main advantage of dimensionless group is to reduce the number of input 

parameters to the network. 

           

 The dimensionless group input to the network are: 

1. Weber number: that consists the density difference of two phases (  ), interfacial 

tension ( ), rotor disc diameter (Dr) and rotor speed (N) 

                                 


 2)..(. rr DND
We


   

2. Ratio of dispersed to continuous phases velocities =( cd VV ) .         

3. Viscosity ratio of the phases = ( dc  ). 

4.  Ratio of stator to column diameters = ( ts DD ). 

5.  Ratio of disc to column diameters =  ( tr DD ). 

6. Ratio of compartment height to column diameter = ( tc DZ ). 

7. Ratio of column to compartment height =( ct ZZ ). 

     This is number of compartment. 

 
THE STRUCTURE OF ARTIFICIAL NEURAL NETWORKS: 

       The ANN structure is determined by trial and error. For the first model it 

consists of seven input neurons in the input layer, twenty one neurons in the hidden 

layer and one neuron in the output layer, for second case it has the same structure but 

different in number of neurons in the hidden layer it consists of twenty four neurons. 

The last case has the same structure of previous models but different in number of 

neurons with nineteen neurons in the hidden layer. And then the networks trained with 

back-propagation algorithm then calculate the weights and biases matrices.  

    The trial and error to find the best ANN correlation model for the case ( dc ), 

case ( cd  ) and for over all two cases together are shown in tables (2), (3) and (4) 

respectively. 

 

 

Table (2) Some of the trial and error attempts for finding the best ANN model for the 

case (cd). 

Structure MSE No. of   

iteration 

Learning 

rate  

Momentum 

coefficient  

Transfer 

function 

[7-15-1] 0.01 2379 0.2 0.8 Tan sigmoid 

[7-16-1] 0.005 1313 0.7 0.8 Tan sigmoid 

[7-17-1] 0.008 1303 0.4 0.9 Tan sigmoid 

[7-18-1] 0.003 1074 0.8 0.9 Tan sigmoid 

[7-20-1] 0.002 2078 0.65 0.8 Tan sigmoid 

[7-21-1] 0.001 2101 0.75 0.9 Tan sigmoid 
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Table (3) Some of the trial and error attempts for finding the best ANN model for 

mass transfer from ( cd  ). 

Structure MSE No.of 

iteration 

Learning rate  Momentum 

coefficient  

Transfer 

function 

[7-15-1] 0.01 678 0.2 0.8 Tan sigmoid 

[7-16-1] 0.008 721 0.5 0.8 Tan sigmoid 

[7-17-1] 0.004 768 0.6 0.9 Tan sigmoid 

[7-18-1] 0.003 362 0.7 0.9 Tan sigmoid 

[7-24-1] 0.001 542 0.75 0.9 Tan sigmoid 

 
Table (4) Some of the trial and error attempts for finding the best ANN model for 

mass transfer for all two cases. 
structure MSE No.of 

iteration 

Learning 

rate  

Momentum 

coefficient  

Transfer 

function 

[7-15-1] 0.1 3180 0.5 0.9 Tan sigmoid 

[7-16-1] 0.008 2352 0.6 0.9 Tan sigmoid 

[7-17-1] 0.004 2718 0.7 0.8 Tan sigmoid 

[7-19-1] 0.002 8320 0.75 0.9 Tan sigmoid 

 

The weights and biases matrices for the three models are shown in equations below: 

For the first model: 
      0.6712   -3.3673   -1.9696   10.9379   -15.2399   12.0679   -0.5428                             8.7672    

     -0.2061    0.0393   -2.5898    5.9822    23.5954    -4.8994     0.5979                           -23.9633 

     -0.0663   -6.6292    2.4579    0.9583   -39.1761    8.0865      0.2162                            16.0111  

     -1.4236    9.1276   -1.2101   -1.0746   -60.9264   -0.1834      4.8962                            33.8680 

      0.2418   -7.4610   11.5550   -2.9587   23.0981   -1.2386     -0.4613 33.8680 

      0.5020    6.7192   -1.5953    5.5997   -47.1539   -1.1287     -0.4449                          24.9955 

     -0.1585    4.9900    2.8305   -6.8283   35.0873    1.4067      -0.5246 -6.5297  

      0.0117   -6.6071    0.7065    1.2093   -0.9628    6.0162      -0.2302 1.0558 

      0.0881   -3.6348   -0.5344   -5.8485   -37.5682   -2.7069     0.0733 25.3744 

     -0.1074   -0.4881    0.4455   -9.2231   -29.7618   -2.9980    0.4807   13.1758        

hw     -0.0043   -3.0572    1.4106   -1.2227   -31.5198   -5.0645    0.0121             , 1b  20.0840 

       0.0049   -1.3719    0.8255   15.8067   -39.7171   -8.2089   -0.0138                            12.9769 

     -3.1340   -3.2529   -0.1819   -2.4573   -30.3152    6.3427      0.1685 13.7197 

     -6.4694   -20.1816   11.4064   -4.6109   30.2074   -1.0619    2.6669 -17.5943 

      0.0339    4.3099   -3.1361     8.3781   12.1996    7.8483      0.0662                            -19.9880 

     -0.0617   -7.1877    7.2925   -3.4151   17.3276   -6.9807     -0.0961 3.2111 

     -0.0504    3.4739    3.5516    3.8803   -15.4565   -1.8829    -0.0897                             5.5152 

      0.0011   -6.8589    3.4766   -10.6542    0.5341   -4.1628     0.0705 9.1235 

      0.1253    4.0017   -3.8548    4.7763    38.7567   -3.3763    -0.1087                            -24.3990 

      3.3161    8.4312   -0.8098   -3.1555   31.0113    8.4326     -1.4653                            -17.2059 

       0.0677   -0.7855    0.8125    6.3748   -8.6399   -5.8645      0.2365                             2.0656 

 ……(12)                              …..(13) 

 

2b [1.1006]                            ….(14) 
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0w   [-3.4891   -8.9789    6.1570   -1.3785   -2.6963    2.1895   10.3487   -5.3463   10.0372    7.6532    

              -11.0769    6.0423    6.2067   -17.6195   -8.3889   -4.9637   1.2610    3.6164   7.3337   

               - 19.1532    1.7628] 
                                                                                                                               ….(15)  

For the second model: 
  0.1234     0.2889   -0.2098    3.4187   35.7059     2.6383    -0.1933                                 -22.4296 

 -0.0357     0.7395   -0.0531     4.1740   -13.3786    3.6104     0.3944                               -3.2096  

 0.0930    -0.3501    0.0753    10.3319   -23.1379    3.9859     0.0543                                6.9129  

-0.6547     0.0229    0.2226    -3.9909    1.1249      5.5466     0.1787                                -2.1792 

 0.0956    -0.0465    0.0034    -1.7553   -60.4389    0.2748    -0.0457                                37.2682 

-0.0011    -1.4635    1.5229    -0.6160    4.4112      5.8333    -0.1594                                -0.5794 

 0.1889    -0.8623    -0.1330    4.4915   35.6777     0.5701     0.0534                                -17.6551 

 -0.0900    0.5578    -0.0051    -7.9568   -72.2110    2.3670     0.0189                               43.7335 

 0.1622     0.4424    0.0356    -10.2791   42.3113    8.6717     0.1048                              -18.8823 

-0.0716    -0.1468   -0.0947    6.5884     41.9295    6.5861    -0.2150                              -28.9934 

 0.0011    -0.7969    0.1646     0.4433    37.0766    -5.1581    0.1260                               -19.2918 

 -0.4757    -0.4012    -0.0098    -9.3298   -7.5400    2.5654    -0.3187           ,   1b        11.2014 

 0.1050     0.7325    -0.1837    -8.4602   -54.0223   -7.0581   -0.1633                               37.5087 

 0.0316    -0.5672   -0.3076    -7.5982    43.0925    -4.9177    0.0049                              -18.3603 

-0.2175    -0.3830    0.0075    -2.4090   -48.6293    7.1045     0.0400                               23.8124 

-0.1616     0.6706   -0.0360    -2.3382   -8.4124      3.8209    -0.1280                              0.3039 

-0.0489     0.1188   -0.1397    -8.7265   -57.7659    -8.5403   -0.1149                              36.8954 

-0.1628    -0.2300   -0.1223    12.8269   -33.7744    1.6003    -0.0373                             10.3930 

 0.0281     0.6424    -0.1755   -10.5666   68.4840    -1.2927    0.0101                             -28.2146 

 0.5449     0.0258    0.0105    -2.9365    51.8078     9.2572    -0.1245                              -29.5656 

 -0.1760    -0.5069   -0.3172    -5.9202   -31.6383    -6.1096    0.1793                            21.5242 

 0.4355    -0.5017    0.0074    -6.3292   44.2235    -7.4766     0.1543                              -14.6105 

-0.1672     0.0926    0.4492    10.6306   -3.2991    -0.5583     0.6760                               -7.9138 

-0.0400    -1.8825    0.2747    -4.7801   10.1719    11.9353    -0.0195                                -2.0174 

                                                                                                             ….(16)                                 ….(17) 

 

2b   [0.0214]                                             …..(18) 

 

ow [0.6345    0.4762   -0.5996    0.1780    0.3690    1.3332    1.1331    1.0184    0.1551  

          0.7346    1.6231   -0.0963    0.9227    0.6875    0.0962    0.2680   -0.6648   -0.6382  

          -0.9553   -0.8878   -0.6872    -0.0673    0.4206   -0.7015] 

                                                                                                         ……(19) 

For the third model: 
     0.0249   1.3648   -0.4491    6.3232   14.8117    3.6421    0.1036                             -18.6431                   
      -0.5099   6.1151   -3.4781   -2.5083  -29.4055   8.2767   1.0769                                        17.0586           

      -0.2348   0.1972   0.1672     6.2039    33.9799  -1.8162   0.1033                                       -21.0471 

       0.0389   0.1031   -0.2641    6.1485    32.9483   6.0856  -0.2337                                       -18.3708       

      -0.0083   7.5839   -0.1512   7.5159   -24.7785   -7.7478   0.2997                                        7.2773     

       0.6398   -2.2457  -1.4695   6.8300   13.4595    3.5864  -22.9526                                       -15.4990               

      -0.1163   -0.9637  -0.0369  -7.0662   23.4879   -5.2558   0.0320                                        -4.3358 

      -0.0034   11.6483  -1.5612  -9.4009  17.8948    2.6496   -0.0233                                       -5.8046      

      -0.0057  -3.1547   0.0702    -8.9703   -5.5169  12.0045  -0.5636                                       17.4021              

       0.0155   1.8149    2.1384     3.6038    -3.8340   3.4886   -0.9107                 ,       1b       8.6129                                                                   

       0.4714   2.1124   -3.7127   -8.5942   -4.6193    7.6501   -1.0597                                        -0.1512    

      -0.0031   -1.1453   0.7689   -13.9756    24.5252   4.0808   0.0316                                      -4.3949     

      -0.0182   -0.2930   -5.5158   10.5766   -1.3630    8.9686   -0.0562                                    -4.2431 

       0.1329   -5.2441   -0.0645  -11.1016  -13.7026   8.0867  -1.0243                                       9.2810   

      0.1777   4.4825    -0.6572    0.9513      2.4935   3.7738   -0.5070                                       3.6552 

     -0.0015   0.0619    0.8831   -3.2606      2.1586   -7.8348    0.0943                                      1.8434   

      -0.0022  -0.0247    3.2039   12.9280    -31.2622  -0.6524  -0.2862                                    7.8422        

      -0.1088  -1.7109   3.5722   10.5591    18.5896    -5.4965    0.0918                                    -20.6339         

     -0.9543   0.1094   0.0729  -10.0114    -5.1432    -6.9029   -0.0312                                      14.1979        

hw = 

hw = 
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                                                                                                           …..(20)                                         …(21) 

2b [-1.4308]                            …..(22) 

 

 ow [1.5043   0.3633   -0.8227   -1.9027   -13.4247    -18.5098    1.8115   -0.5788 

        -7.8875    -0.8821    1.2929   0.9230   -5.8703   -4.1934    0.4554    

        -11.1639   7.4440   -1.5360   5.0601 

                                                                                                                        ………(23)      

 

TEST OF THE PROPOSED ANNS: 

    The ANN models were tested using another data set to show the accuracy of the 

network for prediction extraction efficiency in (RDC). The first model was used to 

generate (60) new data values for mass transfer from (cd), the second model was 

used to generate (38) new data values for mass transfer from ( cd  ) and the third 

model was used to generate (98) new data values for mass transfer from 

( cddc  , ). The comparison between experimental and predicted efficiency for 

three cases were plotted in figures below: 

 

 
Fig. 3 .Comparison between experimental and predicted efficiency for the case 

( dc ) in testing set. 

 
Fig. 4 . Comparison between experimental and predicted efficiency for mass transfer 

from ( cd  ) in testing set. 
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Fig. 5 . Comparison between experimental and predicted efficiency 

for all cases in testing set. 

 
DISCUSSION 

1-  In the present work an attempt was made to correlate an ANN model for extraction 

efficiency prediction in (RDC). Three models were proposed, a model for mass 

transfer from ( dc ), mass transfer from ( cd  ), and a model for the two cases 

together ( cddc  , ). 

         The accuracy of each model was validated by testing it with an experimental 

data not used in the training set and then compares the efficiency predicted from the 

ANN model with the experimental efficiency. Figures (3), (4) and (5) show the 

comparison between the predicted and experimental efficiency for ( dc ), 

( cd  ) and for ( cddc  , ) respectively.  

            Also the accuracy of these models was validated by statistical analysis (AARE, 

S.D and R). The model gives best output prediction based on AARE and S.D values 

respectively as shown in table 5. 

 

Table 5. Statistical analysis information of three neural networks models 

ANN models Structure AARE% S.D% R 

Case 1 ( dc ) [7-21-1] 12.23 10.61 0.879 

Case 2 ( cd  ) [7-24-1] 5.35 6.21 0.962 

Both cases [7-19-1] 8.34 7.59 0.938 

 

2. In this work back-propagation algorithm was used. This algorithm uses the (trainlm) 

training function, which appears to be the fastest method for training feed forward 

neural network. 

 

3. The tansig (Hyperbolic tangent sigmoid) transfer function was used in the neurons in 

the hidden layer may be more accurate and is recommended for applications that require 

the hyperbolic tangent, especially prediction. Because the output from tan sigmoid 

varying from -1 to +1. The output neuron has a log sigmoid transfer function "logsig". 

Which is the best transfer function used in the output neuron for efficiency prediction. 

Because it generates outputs between 0 and 1. 
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4. Neural networks often encounter the well known 'overfitting' problem, which can 

make use of the ANN unreliable. To avoid 'overfitting' and make the ANN more useful, 

the following approach was used. The whole database was split into two parts, learning 

and generalization. The first part, called the 'learning file', was used to perform 

minimization using the ANN. The remaining part, called the 'generalization file', was 

used to validate the model 

5.  Third model concerning the two cases combined which cover cases of mass transfer 

from ( dc ) and from ( cd  ) is found to be flexible and more comprehensive. 

Also it has optimum structure. 

 
CONCLUSIONS: 

      It is very difficult to know which training algorithm will be the fastest for a given 

problem. It will depend on many factors, including the number of the experimental data 

points in the training set, the desired output (target) from the network, the relationship 

between the input and the desired output, the complexity of problem and the error goal. 

The number of neurons in the hidden layer was arrived at by trial and error starting 

from a minimum of fifteen neurons and according to the Hecht number.  

    ANN model can predict the extraction efficiency for a wide range of physical 

properties, operating parameters and column geometry. It has been demonstrated that 

the optimal model is a network that predicts for the two cases together 

( cddc  , ) with one hidden layer. 

 

NOMENCLATURE 

 a = Interfacial mass transfer area,  m
2
/m

3
. 

 b = Bias. 

kd = The desired of output neuron k 

rD =Diameter of rotary disc, m. 

sD = Stator ring diameter, m. 

tD  =Diameter of RDC column, m. 

f = The activation function.                                           

f =The derivation of the activation function. 

g  = Acceleration due to gravity, m/s
2
. 

jh  = The actual output of hidden neuron j. 

Koc =Over all Mass transfer coefficient,  m/s. 

K= Constant (dimensionless). 

N= Speed of rotor disc, rps. 

ko = The actual output of output neuron k. 

P =The number of patterns in the training set. 

R =Correlation coefficient. 

cV  = Velocity of continuous phase, m/s. 

dV = Velocity of dispersed phase, m/s. 
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NV = Characteristic velocity, m/s. 

ijW , hw = Synaptic weights between input and hidden neurons. 

jkW , 0w Synaptic weight between hidden and output neuron. 

We = Weber number (dimensionless). 

x = Hold up. 

ix = Input signal of input neuron i. 

cZ = High of compartment, m. 

tZ = High of RDC column, m. 

 

GREEK SYMBOLS 

 = Momentum rate. 

k =The error term 

  = The learning rate 

  =Density, kg/m
3
. 

 =Viscosity, kg/m.s. 

 = Interfacial tension, N/m.     

 =Difference in density, kg/m
3
. 

 

SUBSCRIPTS 

  c                 continuous phase. 

  d                  dispersed phase. 

   

ABBREVIATIONS 
AARE= Average Absolute Relative Error. 

BP=Back Propagation. 

H.T.U =Height Transfer Unit, m. 

MLFF= Multi-Layer Feed Forward. 

MSE=Mean Square Error. 

S.D=Standard Deviation. 
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