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ABSTRACT 
 

The behavior of prestressed concrete box-girder bridges has been studied under short term loading. 

The 20-noded isoparametric three-dimensional brick elements have been used to model the concrete 

in the box-girder with its two cantilever flanges. The reinforcing bars are idealized as axial 

members embedded within the brick elements. The behavior of concrete in compression was 

simulated by an elastic-plastic work hardening model followed by a perfectly plastic response, 

which is terminated at the onset of crushing. In tension, a smeared crack model with fixed 

orthogonal cracks is used with the inclusion of models for the retained post-cracking stress and 

reduced shear modulus. The prestressing forces in the tendons are transformed into equivalent nodal 

forces and by Lin's method. The contribution of the prestressing tendon stiffness to the global 

stiffness matrix is considered by treating the tendon as axial member embedded within the brick 

element. Two types of short-term prestress losses are considered in this study. The bond-slip 

phenomenon at concrete-tendon is considered by reducing the tendon axial stiffness.  Several 

examples of prestressed concrete box girders are analyzed and compared with available 

experimental and theoretical studies in order to demonstrate the validity and efficiency of the 

proposed method. Good agreements between the results are obtained. 
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INTRODUCTION 
 

The relative economy of the box-girder bridges contributed greatly to its popularity, as it has 

relatively slender and unencumbered appearance. The structural simplicity of the box-girder 

bridges, particularly in continuous structures of medium to long spans, has been well demonstrated. 

The efficiency of the cross-section for positive and negative longitudinal bending moments, as well 

as torsional moments is apparent even to casual observer. 

 A box-girder bridge is a particular case of a folded plate structure where the plate elements 

are arranged to form a closed section. One of the main differences between the general shell and the 

box-girder (folded plate) is that in the general shell only two elements can meet at the same edge 

and the change of slope is smooth, while in the box-girder more than two elements can meet at the 

same edge at different inclinations. This causes a problem of slope discontinuity at corners
[4]

. 

  Problem of the slope discontinuity at corners by the use of brick elements does not 

exist due to existing of three translation degrees of freedom at each node. 

 The finite element method is the most versatile and appropriate numerical method that can 

cater for most of the following requirements: detailing, geometric and material behavior, loading 

characteristics, and the boundary conditions of the structure and any significant interaction among 

them. The finite element method employs an assemblage of discrete one, two and three-dimensional 

members to represent the structure. The structure is divided into elements that are only connected at 

their nodes which possess an appropriate number of degrees of freedom
[20]

.  

This work is devoted to study the overall prestressed concrete box-girder bridges subjected 

to monotonically increasing load. In order to achieve this main objective, a computer program is 

used, which was originally developed by Al-Shaarbaf
[3]

, but modified to be capable of analyzing 

prestressed concrete box-girders, by developing a system to include the effect of prestressing in the 

element formulation. 
 

FORMULATION OF FINITE ELEMENT 

 Concrete Idealization 
 

The 20-noded hexahedral brick element is used in the current study to model the concrete
[3][5]

. Each 

node of this element has three translation degrees of freedom u, v and w in the x, y and z directions 

respectively as shown in Fig. 1
[3]

. The element employs the standard shape functions to define the 

displacement field
[68]

. The displacements of the brick element are given by: 
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Fig. 1 20-Noded isoparametric brick element
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Reinforcing Bar Idealization 
 

The reinforcing bars are idealized as axial members embedded within the brick elements
[21]

. 

Reinforcing bars are assumed to be capable of transmitting axial force only. The stiffness matrix of 

steel bars is added to that of the concrete to obtain the global stiffness matrix of the brick element. 

The shape functions of the brick element can be used to represent the displacements of the bar
[3]

. 

For example, 

                                                                                                                                                            

(2) 

 

 

where a bar is considered lying parallel to the local coordinate axis ξ  with 
c

η=η  and 
c

ζ=ζ  

(constant), Fig. 2. 

 

 

 

 

 

 

 

 

 

 Bond and Bond-Slip Representation 
 

For the embedded bar, either perfect a bond or a specified bond-slip relation is assumed. The 

present bond-slip formulation is based on the experimental results of Nilson
[48]

. The bond-slip curve 

with C=152 mm (6 in.) is used (C, is distance from loaded face or face of crack), Fig. 3. Two 

polynomials are used to describe this curve, one for ascending portion, and the other for the 

descending part
[2]

: 
 

)5.27255.7(083.0
f

u 23

c

α+α−α=
′

 for 10 <α≤                                                                             (3) 

)5.22155.2(083.0
f

u 23

c

α+α−α=
′

 for 1≥α                                                                                  (4) 

where u is the bond stress, MPa, 
c

f ′ , the cylinder compressive strength of concrete, 
p

∆

∆
=α , 

normalized slip, ∆ = slip, mm, and 
p

∆ = slip at peak bond stress, mm. 
 

To obtain the bond stiffness Kb, Eq. (3) and Eq. (4) are differentiated with respect to the slip ∆ : 

 

                                                             for 10 <α≤                                                                    (5) 
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To account for bond slip, the steel axial stiffness is reduced by the bond slip stiffness
[12]

. 
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Fig. 2 Representation of reinforcement. 
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 General Nonlinear Solution Procedure 
 

The incremental-iterative method is the most common technique used for solving nonlinear 

structural equations, due to their precise result
[8]

. The modified Newton–Raphson method in which 

the stiffness matrix is updated at specified iterations of each increment of loading has been adopted. 

The convergence of the solution is controlled by a force convergence criterion. The numerical 

integration has been conducted by using 3x3x3= 27-point Gaussian rule. 
 

MODELING OF MATERIAL PROPERTIES 

Modeling of Concrete 

Behavior of Concrete in Compression 
 

The behavior of concrete in compression is simulated by an elastic-plastic work hardening model 

followed by a perfect plastic response, which is terminated at the onset of crushing, Fig. 4. The 

plasticity model is illustrated in terms of the following constructions: the yield criterion, the 

hardening rule, the flow rule and the crushing condition. 
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The state of stress must be scaled by an appropriate yield criterion to convert it to an 

equivalent stress that could be obtained from a simple experimental test. The yield criterion adopted 

in this work has been extensively used by many researchers
[3]

 and can be expressed as: 
 

{ }( ) ( )
o2121

J3IJ,IfF σ=β+α==σ                                                                                    (7) 
 

where α, and β are material parameters to be determined by fitting biaxial test results, using the 

uniaxial compression test and the biaxial test under equal compressive stresses. I1, and J2 are the 

first stress and second deviatoric stress invariants, and σo is the equivalent effective stress taken 

from uniaxial tests. The hardening rule defines the motion of the subsequent loading surface 

during plastic deformation. In the current study an isotropic hardening rule is adopted. The rule 

assumes that the yield surface expands uniformly without distortion as plastic flow occurs
[6][7]

. 

Therefore, the subsequent loading functions may be expressed as: 
 

{ }( ) ( ) σ=β++=σ
2

2

11
J3I.CI.CF                                                                                                             (8) 

 

where c=α/2σo and σ  represents the stress level at which further plastic deformation will occur and 

it is termed as the effective stress or the equivalent uniaxial stress at that level. 

The equivalent stress-strain relationships at various stages are: 

1- Elastic stage: 
 

c
.E ε=σ  for 

cp
f.C ′≤σ  ( Cp is the initial plasticity coefficient )                    

(9) 
 

2- Work-hardening stage: 
2
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−







 ′
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ccp
ff.C ′≤σ≤′                                                                 (10) 

 

3- Perfect plastic stage: 
 

c
f ′=σ  for 

0c
ε>ε  or 

E

f
)C2( c

pc

′
−>ε                     

(11) 
 

where, c
ε  is the effective total strain and 

0
ε′  is the total strain corresponding to the parabolic part of 

the  curve given by: 
 

E

f
.C c

poo

′
−ε=ε′  or 

E

f
)C1(2 c

p0

′
−=ε′                                                                  

(12) 
 

To construct the stress-strain relationship in the plastic range, an associated flow rule is 

considered. This means that the plastic strain increment rate vector will be assumed to be normal to 

the yield surface, the plastic strain increment can be determined as
[7][17]

: 
 

{ }
σ∂

σ∂
λ=ε

)(f
dd

p
                                                                                                                                  (13) 

 

where dλ is a parameter which determines the size of the plastic strain increment, and ∂f 

({σ})/∂{σ} defines the direction of the plastic strain increment vector (d{εp}) as normal to the 

current loading surface. The plastic multiplier, dλ can be found as: 
 

{ } [ ]
{ } [ ] { }

{ }ε
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=λ d.

a.D.aH
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where {a}, the flow vector, is the yield function derivatives with respect to the stress components 

and [D] is the elastic constitutive matrix. The elasto-plastic increment of total strain can be 

calculated as: 
 

{ } { } { }
pe

ddd ε+ε=ε                                                                                                                                (15) 
 

where d{εe}, and d{εp} are the elastic and plastic strain components. The elastic strain increment is 

related to the stress increment by the elastic constitutive relationship, which is given by: 
 

{ } [ ] { }
e

dDd ε=σ                                                                                                                                    (16) 
 

Substitution of Eqs. (13), and (16) into Eq. (15) yields: 

{ } [ ] { }addDd
1

λ+σ=ε
−                                                                                                                           (17) 

 

{ } [ ] { } { }{ } [ ]
{ } [ ]{ }aDaH

Daa
dDd

T

T

1

+′
+σ=ε

−                                                                                                             (18) 

 

The crushing failure is a strain-controlled phenomenon. A failure surface in the strain space 

must be defined in order to take this type of failure into account. The crushing criterion can be 

obtained by simply converting the yield criterion, which is defined in Eq. (7) directly into strains 

instead of stress components
[7]

: 
 

cu21
J3I ε=′β+′α                                                                                                                                  (19) 

 

where, ,J,I
21
′′ are the first strain and second deviatoric strain invariants, and εcu is the ultimate total 

strain extrapolated from the uniaxial compressive test results. 
 

Behavior of Concrete in Tension 
 

The behavior of concrete in tension is modeled as a linear elastic brittle material and the maximum 

tensile stress criterion is employed. A smeared crack model with fixed orthogonal cracks is adopted 

to represent the tensile fracture of concrete. The model is described in terms of a cracking criterion, 

post-cracking formulation and shear retention model. In order to describe this model, the following 

constituents must be defined. For a cracking criterion, cracking occurs if the principal tensile 

stress exceeds the limiting tensile strength of concrete
[3]

. After cracking, the normal and shear 

stresses across the plane of failure and the corresponding normal and shear stiffnesses are reduced. 

However, the behavior of concrete between two adjacent failure planes remains linearly elastic, i.e., 

concrete is assumed to be transversely isotropic with planes of isotropy being perpendicular to the 

major principal stress direction which violates the cracking criterion. Thus, the elastic modulus in 

the direction of maximum tensile stress, σ1, is reduced. Because of the lack of interaction between 

the orthogonal planes caused by cracking, Poisson’s ratio, ν, is set to zero and a reduced shear 

modulus G
1

β  is employed to model the shear strength deterioration. Therefore, the incremental 

stress-strain relationship in the local material axes may be expressed as: 
 

{ } [ ] { }ε∆=σ∆
cr

D                                                                                                                                    

(20) 
 

where [ ]
cr

D  is the material stiffness in local material axes. 

In the present work, a tension-stiffening model is adopted, since the cracked concrete can 

still initially carry some tensile stresses in the direction normal to the crack. The gradual release of 

tensile stresses normal to the cracked plane is represented by an average stress-strain curve, Fig. 5, 

and expressed as
[3]

: 
 

1) [ ] [ ]0.1/
1crn1cr2n

−αεε−ασα=σ  for 
cr1ncr

εα≤ε≤ε                                                               …(15) 
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2) 0.0
n

=σ  for cr1n
εα>ε                                                                                                            …(16) 

 

where 
n

σ  and 
n

ε  are the stress and strain normal to the crack plane, 
cr

ε  is the cracking strain 

associated with the cracking stress 
cr

σ , 
1

α  and 
2

α are the tension-stiffening parameters, (
1

α is the 

rate of post-cracking stress decay as the strain increases, and 
2

α is the sudden loss in stress at instant 

of cracking ). 

 

 

 

 

 

 

 
 

 In the finite element analysis of reinforced concrete members, a shear retention model is 

usually used. The shear stiffness at a cracked sampling point becomes progressively smaller as the 

crack widens. So the shear modulus of elasticity is reduced to Gβ . Before cracking the factorβ  is set 

equal to 1.0. When the cracks propagate, the shear reduction factor β  is assumed to decrease 

linearly, Fig. 6
[21]

. When the crack is sufficiently opened, a constant value is assigned toβ , to 

account for the dowel action. The following relations are used to account for the shear retention 

effect. 

1) 0.1=β  for 
crn

ε≤ε                                                                                     

(23) 
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3) 
3

γ=β   for  
crn
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(25) 

where, 
21

, γγ and 
3

γ are the shear retention parameters., 
1

γ , represents the rate of decay of shear 

stiffness as the crack widens, 
2

γ , represents the sudden loss in the shear stiffness at the onset of 

cracking, and 
3

γ , represents the residual shear stiffness due to the dowel action. 
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Modeling of Reinforcement 

 

Modeling of reinforcing and prestressing steel in connection with the finite element analysis of 

reinforced and prestressed concrete members is much simpler than the modeling of concrete. 

The reinforced and prestressed steel bars are long and relatively slender, and therefore, they can be 

assumed to transmit axial force only. 

 In the current work, an elastic-linear work hardening model is adopted to simulate the 

uniaxial stress-strain behavior of reinforcing and prestressing steel bars, Fig. 7. 

 

 

 

 

 

 

 

 

 

 
 

 FORMULATION OF PRESTRESSING 

 Equivalent Nodal Forces Method 
 

Basic Assumptions 

Few assumptions have to be made in order to obtain a workable mathematical model
[11]

. 

1. The weakening of the concrete section by the holes provided for the prestressing tendons 

may be neglected. 

2. The tension in the prestressing tendons is not affected by the elastic deformation of the 

structure. 

Geometry of the Tendon and Variation of the Prestressing Forces 

A particular brick element is considered where it is traversed by a prestressing tendon as shown in 

Fig. 8. The geometric definition of the tendon segment corresponding to a particular brick element 

is supposed to be of the following form
[11]

: 
 

         ∑
= 
















χ=
















=
m

1i

ci

ci

ci

i

c

c

c

c

z

y

x

)(M

z

y

x

X                                                                                                           (26) 

 

 In this equation, 
c

X  stands for the vector of global Cartesian coordinates associated with a 

general point C  situated on the axis of the tendon, χ  is a non- dimensional parameter varying from  

–1 to +1 between the points of the segment, and 
cicici

z,y,x (i=1,2…m) represent given Cartesian 

coordinates of m  particular points 
m21

C,...C,C  distributed as uniformly as possible on the axis of the 

tendon. The base function )(M
i

χ  associated with a particular node 
i

C , by taking a value of unity in 

i
C  and zero at all other nodes 

ik
C

≠
, is represented by Lagrange polynomial

[11]
: 
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χ−χχ−χχ−χχ−χ

χ−χχ−χχ−χχ−χ
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(27) 
 

The variation of tension )(TT χ=  in the tendon is most adequately defined in the form 

consistent with the deflection of the tendon geometry, namely
[11]

: 

Fig. 7 Stress-strain relationship of reinforcing and prestressing steel bars. 
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i

m

1i

i
T.)(MT ∑

=

χ=                                                                                                                        

(28) 

where 
i

T  (i=1,2,…m) are given magnitudes of the tension at nodal points. They will be specified on 

the basis of the customary prediction of loses of the prestressing. 
 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

Element Local Loads Due to Prestressing 

The local action of a prestressing tendon on a particular brick element may be represented by a 

distributed line load acting on the element along the corresponding segment 
m1

CC  of the tendon 

axis and, if revelant, by a concentrated anchoring force applied to the element at the points )C,C(
m1

 

where the extremity of the tendon has been anchored in the concrete, as shown in Fig. 8. 

The distributed line load has two components, the tangential component: 
 

                    ds

dT
P

t
−=                                                                                                                        (29) 

 

and the normal component: 
 

                    
R

T
P

n
=                                                                                                                            

(30) 
 

It is possible to combine the global components of the tangential and normal loads into a 

unique global Cartesian local vector: 
             

                    nPtP

P

P

P

p
nt
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x

+=












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

=                                                                                                           

(31) 
 

If one of the points 
1

C  or 
m

C  of the tendon segment coincides with the end of the tendon, the 

end anchoring force 
11

TP =  or 
mm

TP =  (Fig. 8) must be applied to the element as a concentrated local 

load. This load, tangential to the tendon axis, will most conveniently be specified by giving the 

vector its Cartesian global components: 
 

Fig.8 Typical segment of prestressing tendon traversing a brick element
[11]

. 
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Vector of Primary Nodal Forces of the Element 

The displacement definition of the brick element can be written as: 
 

{ } [ ] { }
ee

a.Nu =                                                                                                                                       

(34) 
 

and it is assumed that the element is traversed by only one prestressing tendon. Then, using the 

principle of virtual work, it can be shown that the local loads in Eqs. (31), (32) and (33) are 

balanced by the primary nodal forces of the element loads to
[17]

: 
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Lin's Method 
 

Another method is used in the present study. This method is used to analyze the parabolic tendon in 

prestressed concrete box-girder bridges. The tendon is assumed to be frictionless and acts in the 

neutral plane of the brick element. The parabolic tendon may be replaced by two types of in-plane 

force: two end anchorage forces and a uniform pressure along the span of the bridge structure.    

Fig. 9 illustrates a curved post-tensioned tendon in a brick element.  

 

 

 

 

 

 

 

 

 

 

 

 

 

  
 

This treatment of curved tendon follows the procedure used by Lin and applied by Loo and 

Cusens
[14]

. 

 The span of the cable is assumed to be parabolic and the total change of the slope is 

calculated as: 
 

  )zC2B(tan)zC2B(tan
1

1

3

1 +−+=ϑ −−                                                                                                   (36) 

where: 

Fig. 9 Analysis of curved cable
[1]
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in which (y1,z1), (y2,z2) and (y3,z3) are the coordinates for any three points in the parabolic curve 

spanning a brick element. The uniform pressure along the tendon duct may be replaced by a 

uniformly distributed in-plane load P along a line parallel to the z-axis, as shown in Fig. 9, and: 
 

  
)zz(

T
P

13
−

ϑ
=                                                                                                                                      

(39) 
 

where T is the prestressing force in the tendon. The load is assumed to act as line y , where: 
 

3/)yyy(y
321

++=                                                                                                                              (40) 

In the present study, the uniform pressure is distributed equally upon the nodes for the 

elements spanning with parabolic tendon. 
 

Short Term Prestress Losses 

Frictional Losses 
 

For post-tensioned members, the tendons are usually anchored at one end and stretched by jacks at 

the other end. As the steel slides through the duct, frictional resistance is developed, with the result 

that the tension at the anchored end is less than the tension at the jack. The total friction loss is the 

sum of the wobble friction due to unintentional misalignment, and the curvature friction due to the 

intentional curvature of the tendon. The following well-known equation is used to calculate the 

prestress loss at any point in the tendon at distance x from the anchorage end
[13]

: 
 

     )x(

o
e.PP ω+αµ−=                                                                                                                                 (41) 

 

where,  :p
o

 force in jack end (x=0). 

            :p  force in tendon at distance x. 

            :µ  curvature friction coefficient. 

            :α  angle change in prestressing tendon over distance x. 

            :ω  wobble friction coefficient. 

For parabolic profiles of constant curvature, Eq. (41) can be written as follows: 
 

             qx

o
e.pp −=                                                                                                                               

(42) 

where    ω+µ= aq , q  constant profile curvature ( ax=α ). 
 

Anchoring Losses 
 

Prestress loss due to slip-in of the tendon when the prestress jack end is released is present in post-

tensioned as well as pretensioned construction. Although it has a negligible effect on long tendons, 

it may become very significant for short tendons. However, anchor slip loss is mostly confined to a 

region close to the jacking anchorage. Distribution along the tendon is prevented by reverse friction 

as the tendon slips inward, and the steel stress throughout much of the tendon length may be 

unaffected by anchorage slip, Fig. 10. 

 Haung
[10]

 proposed a method for solving this problem. The force 
2

p  and length 
a

l  over 

which anchor slip takes place are unknown. Considering the fact that the area under the curve 
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represents the elongation of the tendon, the following equation containing the unknown length 
a

l  

can be obtained: 
 

   
)e1(p

EA2
l

aql2

o

sss

a −−

∆
=                                                                                                                                

(43) 
 

where, 
s

∆ , is prestressing tendon anchor slip, 
s

A , is prestressing tendon area, 
s

E , is prestressing 

tendon modulus of elasticity. 

 Using Eq. (43), length 
a

l  can be evaluated by using ordinary nonlinear solvers such as the 

iterative Newton-Raphson algorithm. 

 As shown in Fig. 10 the force in the tendon is then calculated as follows: 
 

      )xl2(q

o

ae.pp
−−=     

a
lx ≤                    

(44) 

      qx

o
e.pp −=             

a
lx >                                                                                                                 (45) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

Computer Program 
 

In the present study, the computer program P3DNFEA (Three-Dimensional Non-linear Finite 

Element Analysis), has been adopted. The program was originally developed by A-Shaarbaf
[3]

. The 

main objective of the program is to analysis prestressed concrete box-girder bridges. Modifications 

and newly added subroutines were necessary to incorporate the effect of prestressing forces. The 

program is coded in FORTRAN 77 language. 
 

APPLICATIONS AND RESULTS 
 

The present nonlinear finite element model is used to investigate the behavior and ultimate load 

capacity of prestressed concrete box girders subjected to nonproportional loads and initial 

prestressing forces. Several examples are considered. 
 

Simply Supported Single-Cell Prestressed Concrete Box-Girder Bridge 
 

One-seventh scale model of a single-cell prestressed box-girder bridge
[19]

, simply supported at its 

ends is analyzed by using the present nonlinear finite element technique. 

 The geometry and finite element mesh are shown in Figs. 11 and 12. The applied loading for 

the bridge was considered to be of a scaled modeled of the Ontario Highway Bridge Design truck 

Po 

(a) Prestressing tendon layout 

(b) Prestress force variation along the tendon 

both before and after anchor release 

Po 

P2 

P1 

La 

Distance (x) 

P
re

st
re

ss
in

g
 f

o
rc

e 
(P

) 

Fig.10 Prestress forces losses due to anchor slip
[9]

.       
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(OHBDC) as shown in Fig. 13. The positioning of the trucks on the bridge model is shown in      

Fig. 12. The material properties of the concrete, reinforcing and prestressing steel are listed            

in Table 1. 

Since the one-cell box-girder was symmetrically loaded with respect to its longitudinal axis, 

only one-half of the box-girder is modeled. The one-half structure has been modeled by 252 brick 

elements with a total number of 1815 nodal points, as shown in Fig. 12. 
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Table 1 Material properties of the one-cell box-girder bridge. 

Concrete 
Steel 

 prestressing reinforcing 
Elastic modulus, Ec (MPa) 22552 Elastic modulus, Es (MPa) 180000 200000 

Compressive strength, fc` (MPa) 30 Yield stress, fy (MPa) 1050.0 480.0 

Tensile strength, ft (MPa) 1.75* Diameter (mm) 5.00 1.59 

Poisson’s ratio, υ 0.15* Bar area, (mm2) 19.6 2.00 

Compressive strain at fc` 0.0018 Ultimate strain   0.035 0.018 

Ultimate compressive strain 0.0045 Yield strain 0.0035 0.0018 

Cracking tensile strain 0.0002* Poisson’s ratio 0.3* 0.3* 

  Initial prestressing force, Po (kN) 14.406*  
*assumed 

Po= 0.7 Aps fy 
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Fig. 11 Structural details of the one-cell box-girder bridge 
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Fig. 12 Finite element idealization for half bridge model of one-cell box-girder  
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Fig. 14 gives the load-midspan deflection curve of the prestressed box-girder bridge. The 

obtained results show close agreement in comparison with the experimental results. Fig. 15 shows 

the deflected shape of the bridge at various load levels. The level of the load is indicated by the 

ratio P/Pu, where P is the load at which the deflection is evaluated and Pu is the ultimate load for 

the bridge. The concrete longitudinal normal stresses at various locations in the bridge are 

illustrated in Figs. 16, 17 and 18. Fig. 16 and Fig. 17 show the longitudinal normal stress in the 

centerline of the top slab at midspan and quarterspan versus the level of load. Generally, the 

obtained results were nearly close to the experimental results. The variation of concrete longitudinal 

normal stresses along the centerline of the top slab is shown in Fig. 18. Figs 19 and 20 show the 

variation of longitudinal normal stress at the cross-sections at midspan and quarterspan for the 

bridge at load ratio P/Pu equal to 0.250 and 0.875. 
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Fig. 16 Longitudinal normal stress on the top 

slab at midspan for one-cell box-girder bridge Fig. 17 Longitudinal normal stress on the top 

slab at quarterspan for one-cell box-girder 

bridge 
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Simply Supported Two-Cell Prestressed Concrete Box-Girder Bridge 
 

The same authors
[53]

 of the previous example tested and analyzed another example. It was a two-

cell box-girder, simply supported at its two ends.  

 The geometry and the finite element mesh are shown in Figs. 21 and 22. The applied 

loading for the bridge is shown in Fig. 23. The positioning of the trucks on the bridge model is 

shown in Fig. 22. The material properties of concrete, and reinforcing and prestressing steel are 

listed in Table 2. 

One- half of the bridge is modeled due to the symmetry of loading with respect to the 

longitudinal axis. The two-cell box-girder was modeled with 308 brick elements with a total 

number of 2266 nodal points, as shown in Fig. 22. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2 Material properties of the two-cell box-girder bridge. 

Concrete 
Steel 

 prestressing reinforcing 
Elastic modulus, Ec (MPa) 28663 Elastic modulus, Es (MPa) 175000 200000 

Compressive strength, fc` (MPa) 37 Yield stress, fy (MPa) 1550.0 298.0 

Tensile strength, ft (MPa) 2.25* Diameter (mm) 5.00 4 

Poisson’s ratio, υ 0.18* Bar area, (mm2) 19.6 12.90 

Compressive strain at fc` 0.0018 Ultimate strain   0.035 0.018 

Ultimate compressive strain 0.0045 Yield strain 0.0035 0.0018 

Cracking tensile strain 0.0002* Poisson’s ratio 0.3* 0.3* 

  
Initial prestressing force, 

Po (kN) 
21.266*  

*assumed 

Po=0.7 Aps fy 
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Fig. 21 Structural details of the two-cell box-girder bridge 
 

Fig. 22 Finite element idealization of half bridge model of two-cell box-girder 



Journal of Engineering Volume 13 march 2007        Number1  
 

 

 1203

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In Fig. 24, the load-deflection curve of the bridge is shown. Good agreement with experimental and 

NONLACS results is satisfied throughout most loading levels. The deflected shape due to external 

loading is shown in Fig. 25, it is measured at various levels of loading. The deflected shapes were 

measured along the longitudinal centerline of the bridge. Good agreement exists with the 

experimental results at various ratios of P/Pu, except the curve at the ratio P/Pu=0.909. Fig. 26 

represents the development of longitudinal normal stress on the top slab at midspan versus the 

loading. It can be noted that the rate of development of stress is almost linear. The linear curve was 

due to the behavior of the structure. Generally, the obtained results are in good agreement with 

respect to the experimental and NONLACS results. A good agreement with respect to the 

experimental results at the top slab at quarter span of the bridge is also shown in Fig. 27. It can be 

noted that, the obtained results in the present study are more close to the experimental results than 

the NONLACS results. The variation of concrete longitudinal normal stresses along the centerline 

of the top slab is shown in Fig. 28. The comparison is fairly close with respect to the experimental 

results. Figs. 29 and 30 show the variation of longitudinal normal stress at the cross-section at 

midspan and quarter span for the bridge at a ratio P/Pu equal to 0.182 and 0.727. 
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Fig. 26 Longitudinal normal stress on 

the top slab at midspan for two-cell 

box-girder bridge 

Fig. 27 Longitudinal normal stress on 

the top slab at quarter span for two-

cell box-girder bridge 
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5.3 Simply Supported Single-Cell Prestressed Concrete Box-Girder with Inclined Web 
 

A longitudinally prestressed single-cell box-girder, simply supported at both ends was analyzed by 

Jirousek et al
[11]

. The box-girder is longitudinally prestressed by parabolic tendons located within 

the inclined webs. The profile of the tendons and geometry of the bridge model are shown in       

Fig. 31. The material properties of the bridge model are listed in Table 3. Each web of the bridge is 

provided with one-parabolic cable as shown in Fig. 31. The intensity of cable tension was assumed 

constant. 

 Due to symmetry of loading and geometry, one half of the bridge span was modeled with 

176 brick elements and 1312 nodal points as shown in Fig. 32. In this example, the procedure used 

by Lin
[13]

 and applied by Loo and Cusens
[14]

 is used to represent the prestressing forces at the nodes. 

 Fig. 33 shows the vertical deflections for the cross-section at midspan due to prestressing 

forces only. Good agreement is obtained by comparing with Jirousek et al
[11]

 and Al-Temimi
[4]

 

solutions. In Fig. 34, the distribution of longitudinal stresses at cross-section at midspan is shown. 

The obtained results are fairly close to Jirousek et al
[11]

 solution. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 30 Longitudinal normal stress variation across the section at quarter 

span for two-cell box-girder bridge 
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Table 3 Material properties for the prestressed box-girder bridge with inclined webs. 
 

Concrete  

Elastic 

modulus, Ec 

(MPa) 

Compressive 

strength, fc` 

(MPa) 

Tensile 

strength, ft 

(MPa) 

Poisson’s 

ratio, υ 

Compressive 

strain at fc` 

Ultimate 

compressive 

strain 

Cracking 

tensile strain 

Initial 

prestressing 

force, Po 

(kN) 

29000 33.64* 3.132* 0.15 0.0018* 0.0045* 0.0002* 28500 

*assumed 

 

 
                        

 

                         Jirousek Ref.(11)  

                   Al-Temimi Ref. (4) 
                   Present study 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CONCLUSIONS 
 

The nonlinear finite element method is used to analyze prestressed concrete box-girder bridges. 

Based on the numerical analyses carried out, the following conclusions can be drawn. 

1. The three-dimensional finite element model used in the present work is suitable to predict 

the behavior of prestressed concrete box-girder bridges under flexure. The numerical results 

Fig. 32 Finite element mesh for the bridge model (half span) 
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f5000E ′=

Fig. 33 Deflection of midspan cross-section  Fig. 34 Longitudinal stresses at cross-

section midspan  

ct
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showed the predicted load-deflection behavior, load-stress behavior and collapse load in 

good agreement with experimental results. 

2. The losses in prestressing forces used in the present work improved the obtained results 

when comparing with the experimental results. 

3. The concept of equivalent nodal forces used in the present study is capable to simulate the 

loads exerted by the prestressing tendon upon the structure with fair accuracy. Also, Lin's 

method is proved to be more suitable to simulate the forces by the parabolic tendons. 

4. The contribution of the prestressing tendon stiffness to the element stiffness is considered 

and found to have some effect. 
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