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ABSTRACT 

One way to synthesis texture in a fast and easy way is image quilting proposed by Efros and Freeman in 

2001. This research brings the adaptive search power of genetic algorithm and combines it with the 

concept of image quilting to propose new texture  synthesis algorithm. The proposed GA is ran on many 

different images from standard texture sets. Visual comparison of our proposed GA with image quilting 

algorithm is considered. The texture results generated by the proposed GA are roughly comparable in 

quality to those generated from Efros and Freeman algorithm. 
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INTRODUCTION 

Texture is a common seen scenario in the real world and it usually characterizes certain types of surfaces 

of objects (e.g. walls, clouds, and piles of food cans). Therefore, reproducing the textures for these objects 

is usually required when rendering their synthetic images. One way to reproduce textures is from scanned 

photographs. However, this method is often suffered from inadequate size or visible repetition and seams 

if a simple tiling is directly used. Texture synthesis is an alternative way to create textures. Given a 

texture sample that contains adequate stochastic and structural information, the goal of texture synthesis 

is to grow a new texture that visually appears to be generated by the same underlying pattern as in the 

input texture sample. This method has a variety of applications in computer vision, graphics, and image 

processing. For example, textures have long been used to decorate object surfaces in computer rendered 

images. However, natural textures are often difficult to generate manually; therefore an algorithm to 

synthesize a large texture from a small scanned patch will be desirable.   

 Until 2001, most texture synthesis algorithms compute the value of each pixel in the synthesized 

texture individually.  However, in 2001, Efros and Freeman published their paper “Image Quilting for 

Texture Synthesis and Transfer”.  In this paper, they note that most pixels in a synthesized texture do not 

have a choice about their final pixel value.  Using this observation, Efros and Freeman present a method 
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to synthesis texture based on blocks of texture rather than individual pixels. This process –image quilting- 

is a simple and fast patch-based method: the block substitution is here optimized by stitching together 

small blocks of existing images and minimizes the error on the boundary cut where the blocks join. By 

using blocks, the texture synthesis process becomes easier and faster whiles still producing excellent 

results for both stochastic and structured textures.  

 In this paper, we bring the adaptive search power of the genetic algorithm and combines it with 

the concept of image quilting to propose a new texture  synthesis algorithm.  Because our method is based 

on the patch-based approach, particully image quilting, we provide a brief overview of this approach. An 

overview of genetic algorithms also is given. Then we present the proposed genetic algorithm and how 

we utilize it for synthesizing texture. We show the results obtained and conclude by outlining some 

possible extensions of this work. 

 

IMAGE QUILTING TEXTURE SYNTHESIS  
The basic idea of image quilting texture synthesis procedure is as follows (Efros and Freeman, 2001). 

Assume that the unit of synthesis B i
 is a square block of user specified size from the set S B

of all such 

overlapping blocks in the input texture image is defined. To synthesize a new texture image, as a first step 

tile it with blocks taken random from S B
. Before placing a chosen block into the texture looking at the 

error in the overlap region between it and the other blocks. A minimum cost path throw that error surface 

is computed and declare that to be the boundary of the new block. Figure 1 shows the result of this 

process. 

 

  

Minimum error 

boundary cut 

 

Input texture Output texture 

                                                         Fig.(1): Quilting Texture 

 

   The minimal cost path throw the error surface is computed in the following manner. If B1and 

B 2 are two blocks that overlap along their vertical edge (Figure 1) with the regions of overlap Bov
1 and 

Bov
2 , respectively, then the error surface is defined as e = ( Bov

1 - Bov
2 )

2 
. To find the minimal vertical cut 

through this surface traverse e ( Ni ..2= ) and compute comulative minimum error E for all paths (Efros 

and Freeman, 2001): 

  )min( 1,1,,1,1,1,, +−−−−+= jijijijiji EEEeE  ……………………. (1) 

 In the end, the minimum value of the last row in E will indicate the end of minimum vertical path 

through the surface and one can trace back and find the path of the best cut. Similar procedure can be 

B1 B2 

Block  
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applied to horizontal overlaps. When there is both a vertical and a horizontal overlap, the minimal paths 

meet in the middle and the overall minimum is chosen for the cut. 

 
 AN OVERVIEW OF GENETIC ALGORITHM 

Genetic Algorithms (GAs) are a class of stochastic search algorithms for solving many difficult 

optimization problems (Goldberg, 1989). They are motivated by the computational process in natural 

evolution that enable organisms to adapt more to their environment over many generations. GAs operate 

on a set of possible individuals, which is called the population. In biological terms, the individual’s bit 

string (i.e., gene) is the genotype and the solution represents the phenotype of a particular individual or 

chromosome
1
. The most basic operations used by GAs are selection, crossover, and mutation. The 

selection operator identifies (according to fitness value) the individuals of the current population, which 

will serve as parents for the next generation. Crossover randomly chooses pairs of individuals to combine 

properties of them by creating offspring. Crossover occurs with probability pc
, which is typically near 

one. Mutation is usually considered as a secondary operator, which makes small changes on single 

individuals to restore diversity of the population that may be lost from the repeated application of 

selection and crossover (Badros, 1995). Mutation occurs with some small probability pm
.   

 
 DESIGN OF GENETIC ALGORITH FOR TEXTURE SYNTHESIS 

In this paper we bring the adaptive search power of GA and combines it with the concept of image 

quilting to propose a new texture synthesis algorithm, as we coined conventional genetic texture synthesis 

(CGTS). 

The general steps of CGTS are: 

1. Generate a random population of synthesized texture chromosomes with a pre-selected size. 

2. Evaluate fitness and determine the best synthesized texture chromosome and carry it to the new 

population (elitist strategy). In this way there is a guarantee that the  good synthesized texture 

chromosome is not lost. 

3. Repeating  the following steps until new population is complete.  

 3.1 Select two parent chromosomes from the population according to their fitness (the better 

synthesized texture chromosome, the bigger chance to be selected). 

3.2 With a crossover probability, pc , cross over the selected parents to form a new offspring. If no 

crossover was performed, offspring is an exact copy of parents. 

3.3 With a mutation probability, pm , mutate new offspring at each gene. 

3.4 Place new offspring in a new population. 

4. Use new generated population instead of old one for a further run of algorithm. 

5. If the termination criterion is satisfied, stop, and return the best solution in current population. 

6. Go to step 2. 

  
 The following subsections  clarify the CGTS chromosome representation.. Depending on the 

chromosome representation, crossover and mutation are put in plain words.  

 

 

Chromosome Representation and Population Initialization  
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The genetic algorithm used in this research process populations (old population and new population) of 

synthesized image textures. A synthesized image texture is a chromosome in the population. In the 

proposed GA, the chromosome representation is based on the idea of blocks arrangement, where the 

texture blocks are pasted from top to bottom, left to right. Each chromosome is represented using an array 

of MN × genes decimal variables inclusively. Gene variables represent block number i  of the block Bi  

generated randomly from the set S B of all such overlapping blocks in the input texture image sample
I

. 

While MN × represent the encoding (genotype) of the output texture image outI
. Figure 2 gives an 

illustration of the chromosome representation used.  
 

 

 

 

 

 

 

  

 

 

 Consider that an output texture image of size OO 2*1  is to be synthesized from an input texture 

image of size II 2*1  with block size ww BB *  and overlap region size we , of course wI B>1 and 

wI B>2 . Then, the dimension MN * of an array of genes which define the GA chromosome is 

calculated as follows.  

   )/(1 wewON B −=           (2) 

  )/(2 wewOM B −=           (3) 

Each gene can hold a block number ranges from 1 to the maximum number of such overlapping blocks in 

the input texture image.  

 For research purposes, random initializing of population is the best. Moving from a randomly 

created population to a well-adopted population is a good test of the algorithm, since resulted synthesized 

texture will have been produced by the search of algorithm rather than initialization procedures. 

Therefore, random initialization for population is used here for CGTS. It is a simple matter to create new 

offspring from the members of old population using genetic operators, place those new texture 

chromosomes in new population. The choice of population size psize
 ranges from 30 to 200 in 

conventional GA (Grefenstette 1986) .  
 

Objective and Fitness Functions 

The objective function is used to provide a measure of how chromosomes have performed in the problem 

domain. As the objective of texture synthesis problem is to minimize the error on the boundary where the 

patches join, GA deals with image texture synthesis problem as a minimization problem, i.e., the fit 

chromosomes will have the lowest numerical value of the associated objective function. This raw 

measure of fitness is usually only used as an intermediate stage in determining the relative performance of 

1 5 12 11 4 5 8 10 

9 10 2 9 2 5 7 11 

1 11 7 5 1 6 10 12 

12 3 11 3 10 2 6 8 

6 4 5 2 8 4 7 2 

2 6 4 12 5 6 5 7 

7 4 7 8 9 3 1 2 

11 8 3 5 6 1 8 3 

Block number 

2 in input 

texture image, 

sample
I 

Fig.( 2). GA Texture Chromosome Representation, where maximum number of overlapping 

blocks , here, is 12. 
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chromosomes in a GA. Another function, fitness function, is normally used to transform the objective 

function value into measure of relative fitness, thus: 

 ( )objectivegfitness =         ……………………. (4) 

Where g  transforms the value of the objective function objective to a non-negative number, and fitness is 

the resulting relative fitness. This mapping is always necessary when the objective function is to be 

minimized as the lower objective function values correspond to fitter chromosomes.  

The objective function of any synthesized texture chromosome can be calculated by summing all 

vertical and horizontal Euclidean distance measured in RGB space at overlapping location. 

    ( )∑
=

+=
MN

i

ii heveobjective
*

1

                                                             ……………………. (5)                               

Where ive is the sum-of-squared difference-SSD of the vertical overlap region  between block i  and its 

left block, and ihe is the SSD of the horizontal overlap region between block i and its upper block in 

I out . Then the fitness function can be computed as follows: 

   
objective

fitness
1

=                                                              ……………………. (6) 

For every synthesized texture chromosome, the fitness value is calculated. Better synthesized 

texture (i.e., chromosomes with larger fitness values) will get higher score. Evolution function directs 

population towards progress because good fitness will be selected during selection process and poor one 

will be rejected. 

   

Selection 

In this paper tournament selection is used, where two individuals are taken at random from initial 

generation, and the better individual is selected from them. The winner of the tournament is the individual 

with higher fitness of the tournament competitors, and the winner is inserted into mating pool, the mating 

pool, being filled with tournament winners. In addition, the elitist strategy is used so that the best 

individual will be automatically survived to the next generation. Elitism makes the GAs retain the best 

individual at each generation. The best individual can be lost if it is not selected to produce or if it 

destroyed by recombination or mutation (Mitchell 1998). 

 

Crossover 

There are numerous ways to implement crossover. Some forms of crossover are more appropriate for 

certain problems than others are (Spears 1997). Two point crossover is used for the proposed GAs. After 

choosing two parents from the mating pool, two crossover points are selected randomly. Each cut point 

represents a row and column coordinates of the parent chromosome array. Then the blocks of textures 

between these twopoints from the selected individuals are swapped to form two new offspring. Crossover 

occurs with probability 0.6 for CGTS. Figure 3 clarifies the crossover operation.  

                                             

 

 

 

 

 

 

 

 

Parent1 Parent2 
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Mutation 
In CGTS, mutation is applied to each offspring chromosome after crossover. Each gene in the offspring is changed to include 

any source block number taken randomly from BS . Mutation is performed with low probability, 1.0=pm . Figre 4 clarifies 

this operation.           

 

 

 

 

 

 

 

 

 

 

Fig(3). Crossover operation where the cut points (1, 1) and (4, 5) are chosen randomly. 

Cut points 
Point (1, 1) 

Point (4, 5) 

1 2 12 11 4 5 8 10 

9 10 2 9 2 5 9 11 

1 11 7 3 1 6 10 12 

12 3 11 3 10 2 6 8 

6 12 5 2 8 4 7 2 

2 6 4 12 5 6 5 7 

7 4 7 8 9 11 1 2 

11 8 7 5 6 1 8 3 

 

1 5 12 11 4 5 8 10 

9 10 2 9 2 5 7 11 

1 11 7 5 1 6 10 12 

12 3 11 3 10 2 6 8 

6 4 5 2 8 4 7 2 

2 6 4 12 5 6 5 7 

7 4 7 8 9 3 1 2 

11 8 3 5 6 1 8 3 

 

Offspring new Offspring  

Before mutation After mutation 

Gene block 

number is to  

be perturbed 

 by mutation 

Fig(4). Mutation operation 

Offspring1 Offspring2 
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Termination Criteria 

A common practice to terminate the GA is after a pre-specified number of generations. Then the quality 

of the best members of the population against the problem definition is tested. If no acceptable solution is 

found, the GA may be restarted or a fresh search is initiated (pohleheim 1998). Henceforth, the 

application of this termination criterion is used. 

 

Genotype Decoding (Phenotype) 

The genotype of the best resulted synthesized texture chromosome from the last generation must be 

decoded into the corresponding phenotype, i.e., output texture image outI . This operation is accomplished 

as follows. The best synthesized texture chromosome from the last generation is an array of blocks with 

minimum overlap error. The first block number at coordinate 1,1 is replaced by its corresponding pixel 

values in the upper left corner of the outI . The remaining blocks are replaced with its corresponding pixel 

values in raster scan order, i.e., from top to bottom and from left to right. The overlapping process is done 

before pasting the block onto the output image. The minimum cost path in the upper and left overlap 

regions of block is calculated. Finally the path as the boundary between the adjacent blocks is marked. 

One purpose of finding the minimum cost path is to level off the abrupt intensity transitions in the overlap 

regions.  Figure 5 depicts an example of the genotype decoding process.  
  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Genotype decoding process. The gray area is already synthesized. (a) The best synthesized texture 

chromosome, (b) the output texture image outI after replacing the first block. (c) The minimum cost path in the upper 

and left overlap regions of block (d) the chromosome phenotype. 
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EXPERIMENTAL RESULTS 

The parameter settings used in all experiments are shown in table 1. 
  Table1:  parameters setting 

Parameter  Value  

Population size 50 

Termination criteria  After 50 generation 

Crossover rate 0.6 

Mutation rate 0.1 

Block size 32*32 

we  5-pixel 

sample
I

 
64*64 

outI  128*128 

 

 A visual comparison of our approach with image quilting algorithm is shown in figure 6. As 

depicted from the figures, the texture results generated by CGTS is roughly comparable in quality to 

those generated from Efros and Freeman algorithm (2001). More results from applying CGTS on 

different texture samples shown in figure 7. Although our algorithm is able to synthesize a wide variety of 

textures including stochastic and semi-structured textures, they still have several limitations as shown in 

figure 8. Because we use fixed shape and size of blocks, our algorithm cannot reproduce perfect results 

for structured textures and with perceptivity, lighting and shadow features.  
 

 

 
    

 

 
    

 

 
    

Fig.( 6). Texture synthesis results. 1
st
 column: sample texture. 2

nd
 and 4

th
 columns: synthesis result generated by CGTS. 

3
rd

 and 5
th

 columns: synthesis result generated by image quilting algorithm (Efros and Freeman, 2001). 
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Fig.( 7). Texture synthesis results. 1

st
 and 3

rd
 columns: sample texture. 2

nd
 and 4

th
 columns: synthesis result generated 

by CGTS.  
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Fig.( 8). Limitations of our texture synthesis algorithm. The smaller patches are the input textures, and to the right is 

the synthesized results by CGTS. 

 

 CONCLUSIONS AND FUTURE WORK 

In this paper, we have presented a new texture synthesis algorithm- as we coined conventional genetic 

texture synthesis algorithm. The proposed genetic texture synthesis algorithm combines the idea of image 

quilting and the power of the conventional genetic algorithm for texture synthesis problem. The results 

demonstrate that the texture results generated by CGTS are roughly comparable in quality to those 

generated from image quilting algorithm. 

 There are several possible directions for future work. Although our algorithm is fast enough for 

software applications, it needs further improvements. For example, to reduce computational efforts and 

provide a smooth transition between adjacent texture blocks a simple blending method called feathering 

can be used. this method may reduce the limitations of our method. Further, one can test the GA with 

smaller population size, and/or with different GA operators to see whether they produce progress in the 

GA results.  
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