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ABSTRACT

A numerical method has been introduced to predict the flow through a complex geometry
bounded by the fuselage, airfoil supports and rotating dish of the AWACS. The finite volume
computational approach is used to carry out all computations with staggered grid arrangement. The
(k-€) turbulence model is utilized to describe the turbulent flow. The solution algorithm is based on the
technique of automatic numerical grid generation of curvilinear coordinate system having coordinate
lines coincident with the boundary counters regardless of its shape. A general coordinate
transformation is used to represent complex geometries accurately and the grid is generated using a
system of elliptic partial differential equations technique. The extension of the SIMPLE algorithm for
compressible flow is used to obtain the required solution.. The results obtained in the present work
show that the moving boundary (the rotating dish) has small effects on the free stream and the effects
vanish after short distance away from the lower surface of the rotating dish along the span distance.
The results of the proposed numerical method show good agreement with available results obtained in
literatures.
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INTRODUCTION

Most fluid flow problems in engineering practice have complex boundaries and are subjected to
strong variations in the region near solid walls due to the viscous effects. There is an increasing need
for powerful methods to calculate the flow processes in such region.

Flow in the region bounded by the rotating dish and its supports and the fuselage of the
AWACS, Fig. (1), is extremely complex and is dominated by three dimensional viscous effects that
contains viscous, compressible, vortex at the junction of the leading edge and the end walls effects.
Therefore it is necessary to investigate the nature of the complex flow running through such a complex
passage and get a good understanding of such flow details. Although such information can be obtained
by performing experimental measurements, but such obtained results could be very limited, and the
range of the running conditions will be relatively narrow. In addition to the fact that the running cost is
usually very high. However, the developments in computer technology and advancement achieved in
numerical methods have made the computational fluid dynamics (CFD) a very attracting alternative.

Following the recent advances in CFD, the great challenge has been the valuable effort devoted
to solve the time averaged dependant Navier-Stokes equations. With further development of computer
technology, it has become possible to solve the time dependant Navier-Stokes equations directly with
the aid of direct numerical solution (DNS) or large eddy simulation (LES), Wang & Komori (1998),
however due to the limitation in both computer storage and memory, at least for present days, both
(DNS) and (LES) are practical in solving relatively low Reynolds number flows, otherwise parallel
computation methods are required. Nevertheless, the other most popular alternative has always been to
solve the time/mass averaged Navier-Stokes (TMANS) equations instead, Wang & Komori (1998).
The finite volume discrimination, Patankar (1980), (based on SIMPLE like algorithm) has been one of
the most frequently used methods to solve those (TMANS) equations.

However, important numerical oscillations in pressure field may result due to the introduction
of the pressure variation in the continuity equation. In order to avoid such oscillations, the
implementation of the extended pressure based method has been carried out in two different ways
depending on grid arrangement. For example, Rieh & Chow (1983), Al-Abbassy (2003), adopted
non-staggered grid (collocated grid arrangement). On the other hand, Al-Deroubi (2001), Atta (2000),
Karki (1989), Patankar (2000), Gogazeh (2002) adopted staggered grid arrangement, in this
adoption, all primitive variables with exception of velocities are stored at center of control volume
while velocity components are stored at the faces of scalar control volume. In both staggered and non
staggered implementations, some researchers used grid oriented velocity components (covariant
velocity components), while others used Cartesian velocity components as the main dependant
variables in the momentum equations. Such a selection depends on the type of the particular problem,
and on the way of implementing the proposed solution.

The physical domain related to the present work is the zone bounded by solid boundaries (passage

between the elliptical dish, its supports and the fuselage) of the AWACS and the free stream surface as
shown in Fig. (1), where it can be seen that this domain consists of four main parts, these are:
1- The frontal zone deliberated in the direction of inlet flow field.
2- The actual space between solid boundaries, where the flow can impact the surface of the
rotating dish, airfoil supports and fuselage and divert around them.
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3- The rear zone that is far away from the previous zones, where disturbances are decayed
and vanished with free stream.
4- The outside zone that represents the free stream envelop surface.
The physical domain considered in the present work is the complex region bounded by the rotating
elliptical dish, the supports and the fuselage, which can be summarized by part (2) described above.

As a contribution to the numerical methods of predicting three dimensional flow, the present
work is aimed to develop a mathematical model to investigate the flow field passing through the
complex region bounded by the fuselage of the airplane, the dish and the two supports of the dish,
derive the governing partial differential equation in terms of suitable coordinate system and solve the
derived mathematical model by using FDM. A computer code is to be developed and validated to
simulate the three dimensional turbulent flow inside the complex zone shown in Fig. (1), (flow
bounded by the fuselage and lower dish surface, from one side, and the supports from the other side).

GEOMETRY AND COORDINATE SYSTEMS

The geometry under consideration is shown in Fig. (2) consists of interaction of three parts, the
first part is two airfoil supports with tapered angle of (87°) and span distance from fuselage center to
dish center of (232 cm). The transverse distance between the two airfoil supports, where they meet the
fuselage surface is (83 cm), while it decreases linearly to be (62 cm) at the location where the two
supports meet the dish surface. The chord length of the supports is (52.5 cm). The second part is the
fuselage, represented by cylindrical surface with a radius of (74 cm) and a length of (1136 cm) from the
nose of the airplane to the leading edge of the supports. Finally, the third part is an ellipsoidal rotating
dish with a major axis of (222.5 cm) and a minor axis distance of (97 cm). The reference frame of
coordinate system is the origin point (0,0,0) located at mid span distance along the center line of the
dish. Difficulties associated with the use of Cartesian coordinate systems motivate the introduction of a
transformation from physical space (X, y, z) to a generalized curvilinear coordinate space (€, M, £). The
generalized coordinate domain is constructed so that computational boundary in physical space co-
insides with coordinate lines in a generalized coordinate space.

GOVERNING PARTIAL DIFFERENTIAL EQUATIONS
The governing equations for the mean velocity and pressure are the mass and momentum

equations, these are analyzed utilizing the time/mass averaged Navier-Stokes equations. A calorifically
perfect gas is assumed when deriving the energy equation. Finally, a two-equation turbulence model
(k-¢) 1s used for the closure of the system of the momentum equations. In the present work, the working
fluid is air and the flow characteristics are assumed to be as follows,

e Steady state flow.

¢ Fully turbulent flow.

e Compressible effects are significant.

¢ Newtonian fluid.

¢ Isentropic with constant specific heat (i.e. perfect gas).
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The three dimensional instantaneous governing equations of mass, momentum and energy equation for
steady compressible flow can be rewritten in tensor conservation form expressed in Cartesian
coordinate system as follows:

e Mass conservative (continuity) equation

a o~ —_
P )=0 (1)

e Momentum conservative equations

9 (o g)=-2L + 2 (4T, )-2p(0xV), - Plox(oxv)] @)
ox, ' ox, ox; "’

e Energy equation

%[ﬁ%ﬁka%[ﬁi(&f,)h%(_ G —ay + 7 _W]

~

where H = CPT + %(uiui ) + K (3)

(Tl-j ) is the mass averaged viscous stress tensor represented as,

Jii. ou.| 2o
T. = == =0, || -2, ok 4
SPEIENEC B -

Here, (q7;) is the turbulent heat flux vector, usually estimated using simple gradient type-model
(Wang and Komori, 1998). That is assuming it is proportional to the mean temperature gradient type.

— 7 C,oT
= U = Gy 5
where, (/'cv ) is the mass averaged turbulent kinetic energy, defined as;
p I/l//bl//
k=—2—— 6)
P
The turbulent eddy viscosity (ur) is expressed to the (k-€) turbulence model as,
C, pk>
My = ﬂg (7)

where ( € ) is the mass-averaged dissipation rate of turbulence kinetic energy, defined as,

1334



( Numberl Volume 13 march 2007 Journal of Engineering

F=
P
e Equation of state
P=pRT )

¢ Transport equation of turbulence
The standard form of (k-g¢) model can be formulated as follows (Launder and Spalding, 1972),

d (= ~\ 0 1 | ok —
—\pou k |=— +~L |— |+G, — pg 10
ox, ' ) ox; l:(,u aJax_,] P (10
0 (~~~) O W, \0E | & o
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u
where G, =Tl-ja— is the turbulence production term, which is modeled through the following
X .
J
formula (Wang and Komori, 1998),
oii, i, \dii, 20, ou ~
G, =, | —+—* | — =L . —*+ pk 12
¢ 'u{axk ox, }axk 3 o, ('UT ox, p ] (12)

In the above equations (C, C;i, Cy, Ok and ©;) are constants at high Reynolds number and their
values are (C,=0..09, Cg; =147, C,=1.92, 6, = 1.0 and 6.=1.3) (Launder and Spalding, 1973).

BOUNDARY CONDITIONS
I. Inlet Boundary:
At inlet, the velocity components (u, v and w), the static pressure, the turbulent kinetic energy (k)
and its dissipation rate (g) are specified. The values of (k and €) are approximated based on
assumed turbulence intensity (Ti) typically between (I % and 6 %) and length scale
approximation. Approximate values of (k and ¢) for internal flows can be obtained by means of
the following simple assumed forms, Verstage & Malalasekera (1995);
3

k== 1) (13)
k3/2
£, = cj/4T, [1=0.07L (14)

where; u;: inlet velocity
T;: turbulence intensity.
L: equivalent length
C,: universal constant, 0.09
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I: length scale of turbulence.

Moult, 1977, assumed that (k and €) are specified with (k) taken arbitrary as (3%) of the
incoming specific kinetic energy and (¢) evaluated with assumed length scale (I) equals (3%) of the
domain dimension. It should be noted that the exact proper distribution of flow field can not be
specified exactly at inlet because of the irregular shape of inlet boundary, region bounded by lower
surface of dish, upper surface of fuselage and leading edge of supports, therefore, it could be
determined theoretically by satisfying mass conservation equation.

Let (u.) represents free stream velocity, then

Min = pu_A,, (15)
To obtain the distribution of inlet boundary condition, it will be assumed that velocity profile of
(90 %) of span distance can be obtained by applying the turbulent boundary layer velocity profile,

1/7
= um(lj (16a)

_0.37x
- Rel/S

where () is the boundary layer thickness.

o (16b)

This assumption is quite considerable as the disturbance induced from dish is no longer high as
it’s compared with free stream velocity, i.e., the angular velocity of dish is so small relative to the free
stream velocity. Also, in order to obtain the velocity distribution on the remaining (10 %) of span
distance, it will be ensured that the overall continuity equation satisfies the total mass flux on the
domain, in other word,

min = mout 17)
(poouooAin): Z(piuiAi) (18)
CV.,

where, u' = inlet velocity at node (i).
A' = area at node (i).

I1. Outlet Boundary

Usually the velocity is known only where the fluid enters the physical domain. At outlet the
velocity distribution is decided by what happens within the domain Moult, 1977, Verstage, 1995.
The gradients normal to the outlet surface are assumed to be zero.

II1. Wall Boundary

Wall functions are special formula for evaluating effective exchange coefficient at the wall
(I'wan), Verstage & Malalasetera (1995), have summarized the expressions for wall function for
different dependent variables based on a dimensionless quantities;
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1/2 ~1/4
_pK luC o (19)
1
v =11 (Ey") (20)
K

Where (9) is the distance to the wall from the nearby grid node. The constants (K and E) come
from the law of the wall. Usually (K = 0.4107) and (E = 9.793) for smooth wall, Moult, 1977. In a
region very close to the wall, kinetic energy of turbulence is set equal to zero. The value of (g) is
fixed at the near wall point with;

3/4 3.3/2
o Cu K 1)
K.0
IV. Moving Boundary

For viscous flow, velocity components normal to the moving boundary (rotating dish) are set to
zero while velocity components parallel to the moving boundary are specified.

EQUATIONS IN GENERAL CURVILINEAR COORDINATE SYSTEM

The flow equations in general Cartesian form (X, y, z) are set then transformed into a general
curvilinear coordinate system (&1, )
¢ General conservative form of flow equations
Equations (26, 27, 29 and 13) are all elliptic in nature and can be conveniently presented in general
conservative form (parameter).

(oug), +(pv9), +(owg). =([T¢,), +(g,) +Tq.) +S,,. (22)

The argument (¢) identifies the dependent variable, (I') is the exchange coefficient for variable (¢) and
(S «,y, z) 18 the source term, which can not find a place in equation (30).

DISCRETIZATION OF PARTIAL DIFFERENTIAL EQUATIONS

The governing equations are integrated over each discrete control volume in the computational
domain (&, 1, {). A typical control volume with its surrounding neighbor nodes is shown in Fig. (3).
The grid arrangement on the physical plane (x-y) and computational plane (§-1) are plotted in the
corresponding computational plane (§-1), which are similar to those shown in Fig. (3).

Let’s define a new working variable named [(I(b)j] such that superscript (j) can be any of the
computational directions (j = &, 1, {). This is called the total flux in the (j) direction. It can be shown
that;

a§<) 3100+ ag() =SS, ; 3)
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By integrating equation (23) over the typical control volume node (P) as shown in Fig. (3b), the
following result is obtained as follows,

tne

ifj[ag (1¢) §(1¢)}dédndé’ {jjssfngdgund; (24)

For convenience, the above notation can be further simplified as follows,

- (10| 5)
Using equation (25) and equation (24), it can shown that,
Ie—IW+In—IS+It—Ib=SS§J7’§AV (26)
The mass flux at face (e) can be defined as follows,

=(pG1), A7 27
Therefore,
1, = F.9, ~(Ti¢;) AnAL (28)

At this point, it would be useful to define a quantity (D.), it is the diffusion term coefficient at face (e).
Hence, this coefficient can be expressed as,

o _(JalAnsL 09)
e Aé

Finally, it can be shown that,

1,=F,$,-D,(¢,-9,) (30)

Equation (30) contains the quantity (¢.), which needs to be expressed in terms of neighbor
nodal values. This is usually achieved by using an appropriate interpolation scheme. This scheme must
be, unconditionally, transportive, conservative and bounded so that the resulting numerical solution is
stable and finally converged. Many schemes satisfy the first two criterions, but only the upwinding
scheme satisfies all three criterions unconditionally. The implementation of the upwinding scheme is

carried out as follows,
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F9. =¢,[[F..0]-9.[- F..0] (31)
Hence, the following expression can be obtained,

1.~ F.p = A0, ~ ¢) (32)
Now, recalling the transformed mass conservation equation, which is,

(pG1); +(pG2), +(pG3), =0 (33)

The general discretized form of the conservative general transport equation for property (¢) can be
written as follows,

Appp = Z AP+ EAV (34)

anb
Then, by introducing an under relaxation factor (o), the final form of the discretized conservative
general transport equation is obtained as follows,

OALPp = Z AP+ SAV + (1 - a)AP¢}*’ (35)
anb

where (0 <o < 1) and (¢P) is the value obtained from previous stage calculation.

CORRECTION OF FLOW FIELD

The momentum equations can be solved only when the pressure field is given or somehow
established (Patankar, 1980) unless the correct pressure field is employed, the resulting velocity field
will not satisfy continuity equation. Our aim in this section is to find a way to improve the guessed
pressure such that the resulting velocity field will progressively get closer to satisfy the continuity
equation.

VELOCITY CORRECTION
The correction of velocity components are done in two stages,

a) correction of covariant velocity:
Following the SIMPLE algorithm (Patankar, 1980), the correction can be done as shown below:

The velocity field obtained from the guessed pressure field will be denoted by (u;), (u;) and (u;i), this

“stared” velocity field will result from the solution of the following discretized equations,
Aty =3 Aty — PiCo+ SuAV : Ce = JAV [z hy = x; + Yz +2; (36)

/

,7) and (ué) can be introduced in similar

. . . . /
The corresponding covariant velocity correction (ué) (u

manner,

U = ué + ué (37)

With reference to the general discritized transport equation (4.31), the descritized momentum equations
can be written as follows,
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APM&, = ZAnbuf,,b - Pész + SLthV
Apty, =Y A, , = P,C, + Su, AV (38)
Apitgy =D A us = P.Cp +Su AV

The final discretized covariant velocity correction equation becomes,

up=—P/C. /A, = Pldé (39a)
u,, =—P/C, /A, =P)dn (39b)
uyp =—P/C, [A, =Pld{ (39¢)

b) Correction of contra-variant velocity

In order to obtain the flow rates that would ensure the conservation of mass, it is preferable to
correct the flow rates themselves rather than obtain them from the corrected velocity and density fields
(Karki and Patankar, 1989). The major goal is to correct the contra-variant velocity components that
are used to calculate the mass flux. The contra-variant velocity components obtained from the guessed

pressure field will be denoted by (G1',G2"and G3').

Similarly, the contra-variant velocity correction (Gl',GZ'and G3') can be expressed as,

Gl=G1" + Gl (40a)
G2=G2 +G?2 (40b)
G3=G3 +G3 (40c)

By introducing new metrics coefficients (aa, bb, cc, dd, ee, ff, gg, hh and ii) the correction of covariant
velocity components becomes,

G’ = J|Pld&aa + Pldnbb + PldLec] (41a)
where,

aa=(&+&+&)n,

bb=(n.¢ +n& +n.E ),

cc= (;xégx +¢. 6, +¢.8 )Jhs

Similarly for G2" and G3’,
G2 = J|Pld&dd + Pdnee+ PLd{f | (42b)

dd =(n.& +n,&, +n.8) Ih
ce =&+ & +E) I,
F=¢n+en +En) an,

G3 = J|Pldégg + Pldnhh + Pld(iil (43c)
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ge 6L AEL HEL) In,
nh=(C o + &+ ) Ik,
i =2+ 24 ¢2)

DENSITY CORRECTION

For compressible flow, the density change becomes significant and it has to be taken into
account in the derivation of the mass correction. The corresponding effects will be introduced into the
solution of the SIMPLE algorithm. The correction of density is calculated from the following equations

(Karki and Patankar, 1989),

p=p +p (44)
o =KP (45)

where (p") is the density obtained from the guessed pressure field and (p') is the density correction.

PRESSURE CORRECTION

Solution of the Navier-Stokes equations is complicated by the lack of an independent equation
for the pressure, whose gradient contributes to each of the three momentum equations. Furthermore,
when the Mach number is low and the flow is incompressible, the continuity equation has no dominant
variable (Ferzigeret et. al., 1999). Mass conservation is a kinematic constraint on the velocity field
rather than a dynamic equation. One way out of this difficulty is to correct the pressure field to
guarantee satisfaction of the continuity equation. Nevertheless, in the case of compressible flow, the
continuity equation may be used to determine the density, while the pressure is calculated from the
equation of state. However, there are practical mixed types of flows where both zones of compressible
and incompressible are usually treated. The (SIMPLE-like algorithm) have been employed by many
researchers, and are found to be very applicable in mixed flow problems. The final discritized pressure
correction equation can be written in compact form as follows;

ApPr=A P+ Ay By + A Py + AP, + Ap Py + Ag Py + Ay P + Ag P +
ANWPI:/W + ASWP.S{W + ANBPJ:’B + ANTPJ:’T + ASBP§B + ASTP.S{T + ABEPéE +
Agw Pow + App P + Ay Py + m (46)

ALGORITHM SEQUENCE
The algorithm sequence used in the present work can be summarized as follows,
1. Generating computational grid that is suitable for the discretized solution of the three
dimensional Navier-Stokes equations.
2. Giving (guessing) the initial values of all variables, while density is calculated from
present pressure and temperature fields utilizing the equation of state.
3. The proper boundary conditions are specified for all dependent variables.
4. Solve the discritized momentum equations to obtain the field of covariant velocity
components.
5. The pressure correction equation is solved to obtain pressure correction field.
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6. Use the obtained pressure corrections to correct the present velocity and pressure fields
and correct mass fluxes at the control volume faces. The density fields are corrected
using density correction equation.

7. Solve the other dependent scalar variables (i.e. temperature, x and €).

8. The whole procedure is repeated from step three until a convergent solution is obtained.

GRID GENERATION

The generation of computational grid that is suitable for the discretized solution of the three
dimensional Navier-Stokes equations has always been the subject of intensive researches. This kind of
problem covers a wide range of engineering application. This makes it impractical to find a single
general gird generation technique that fits the whole range of problems. Therefore, it is rather preferred
to employ a suitable technique that is best adapted to the considered type of engineering application.
It 1s of great importance to implement the surrounding boundaries of arbitrary curvature into PDE and
to become apart of the solution itself. The proper choice of the used technique to transform connected
region, for example the region surrounding an isolated airfoil, or multiple connected regions, for
example the same airfoil with flaps and/or slots is important. The simple connected region can be sub-
divided into many simple connected sub-regions to form a multiple connected region. These artificial
boundaries between sub-regions are used to smooth and cluster interior grids as desired or even allow
to employ grids having different topological structure in different sub-regions.

ELLIPTICAL SURFACE GRID GENERATION

The grid is generated by solving an elliptic system of the form, Thompson, J. F., et. Al.. 1974.
In analogy with the method of Thompson, Thames and Mestin (1976), adopted an equation to obtain
the surface grid generation system,

N N N N N -
8pp T EPE"+ 8o T EPEP =28 pp T 2P + GV(P rec+Qret j =n' R’ (47)
where P and Q are controlling parameters, o, 3 and v are cyclic. We can expand equation (47) to get,
8oXer + 811Xy —2812%z, + G (Pxé +0x, ) =n*R* (48a)
82 Ver + 811 Vpy — 2812V ey + G [Py + 0y, )= nE RS (48b)

THREE DIMENSIONAL GRID GENERATION

Following the method of Mastin and Thompson (1974), an elliptic system that can be used to
map a three dimensional bounded region out the unit cube in a transformed computational space
(€, M, Q) is introduced. The corresponding three dimensional elliptic system can be written as;

a1z + 0r: )+ a1y, +ym, )+ o (v + @ )+ 20 B, + Boty + By )=0 (49)
- Face { = constant

To obtain the controlling parameter (¢ and ) on the face { = constant, two constraints are
imposed;
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(1) The slope of the transverse grid lines on ({) surface is introduced;
reary =4
rer, =4,
(2) The boundary values come from (&, 1) surface grid is introduced,;
Fedy = A (50)

(49)

Upon taking the scalar product with (rz and ry,), one obtained pair of linear equations that can be
solved easily to obtain unique expressions for evaluating (¢ and ) in terms of the given boundary
values at (=1, =N).

al(réf.rf + ¢‘r§‘2) +a, (r,m Te Y, 1 )+ o, (r;;.rg +ary.r; )+

2(117'577.";{: +ﬂzrng.r§ +2«3r§§.r§):0 (Sla)

o, (rfg.rﬂ + ¢r§.r,7 )+ a'z(r,m I+ l//‘rﬂ‘zj +a (r;;.rn +ar.r, )+

2(/?1@7.1;7 + A1ty +/?3r§§.r”)=0 (51b)

RESULTS

To obtain good predictions for such complex flow field, turbulent models have been introduced.
The computations were done for the following conditions;

1. The working fluid is air with constant gas constant (R) and specific pressure (Cp).

2. The velocity and pressure are specified at the inlet of computational domain.

3. The pressure is specified at the exist, while the velocity field is extrapolated at the exist

plane.

4. The no slip boundary condition on the solid wall surfaces was imposed.
The main geometry and flow parameters are listed below;
Inlet velocity = 360 Km/hr
Angular velocity of the dish = 3 rpm
Span distance between center of fuselage and center of dish =232 cm
Chord length of airfoil support = 52.5 cm
Tapered angle of airfoil = 87°
Distance between airfoil supports measured on fuselage side = 83 cm
Distance between airfoil supports measured on dish side = 62 cm

The velocity vectors and velocity field in passage for (a) 50 %, (b) 75 % (c) 90 % and (d) 95 %

of span length are shown in Fig. (4 and 5). It can be shown from this figure that the velocity increases
downstream due to the convergence of airfoil supports although it is obviously noted that the velocity
field increases with span length, whereas the velocity field at 90 % span distance is greater than that at
50 % and 75 % of span distance, this attributes to the tapering shape of the airfoil supports, where the
transverse span distance decreases as the distance increases from the fuselage to the dish surface in the

1343



1.Y. Hussien FLOW COMPUTATION THROUGH THE PASSAGE BOUNDED
S.F. Mahmood BY THE DISH AND SUPPORTS OF THE AWACS

spanwise direction. However, the velocity field at 95 % of span length is of lower value, where effect
of the rotating dish is clearly dominant at high span length.

The velocity component normal to the flow direction is shown in Fig. (6) for (a) 50 %, (b) 75 %
(¢) 90 % and (d) 95 % of span length. It can be shown from these figures that a normal velocity to the
flow exists no mater how small it is. It is important to mention that the velocity component normal to
the flow decreases as moved from the leading edge towards the trailing edge. This is noticed clearly
near lower surface of the dish and it can be attributed to elliptical configuration of the dish, where the
growth of the boundary layer begins at the leading edge of the dish and increases gradually until it
passes over the center of the dish. This zone acts as convergent passage, while the region from the
center of the dish towards the trailing edge acts as a divergent passage with possibility of separation at
this region, therefore, a negative value of velocity component normal to the flow is located at this zone.

The velocity contours between the dish and the fuselage at the leading edge, mid-chord length
and trailing edge is shown in Fig. (7). It can be shown that the velocity increases as moved towards the
dish in the span distance due to the taper shape of the airfoil supports and then the velocity decreases at
high span distance (90 % and 95 %) because of the effect of wall surface of the rotating dish.

The velocity profile at the leading edge, mid-chord length and trailing edge for 50 %, 75 % and
90 % of span distance are shown in Fig. (8, 9 and 10). It can be shown from these figures that the
velocity increasers as distance in axial direction increases until it reaches its maximum value at the mid
of the chord length, region of minimum width, then decreases again due to the divergence of airfoil
support trailing edge. Also, it can be shown from these figures that the velocity decreases as moved
towards the core until it reaches its minimum value at the center of the core. That is because the
velocity decreases in the direction of curvature.

The coefficient of pressure (Cp) in (a) 50 %, (b) 75 % (c) 90 % and (d) 95 % of span length is
shown in Fig. (11). It can be shown from these figures that the maximum pressure occurs at the
beginning of leading edge, where the velocity is stagnant at that point, then decreases until it reaches
the tailing edge, where the velocity accelerates again due to the curvature of the airfoil supports and
sequentially the pressure increases up again.

The coefficient of pressure (Cp) between the lower surface of the dish and the fuselage is shown
in Fig. (12). From these figures, it can be shown that at leading edge, pressure decreases as moved
inside through the core, where the velocity increases from zero at the wall boundary towards the core,
while at the mid chord distance, the pressure increases as moved towards the core, that is because the
velocity decreases as moved towards the core.

CONCLUSIONS
Important conclusions can be drawn from this study. These conclusions are:

1- The maximum energy is transformed near the wall between the airfoil supports and the
effect of angular velocity of the rotating dish is clearly noticed at 95% of span distance.

2- The kinetic energy and the energy dissipation between the fuselage and the rotating dish
are of greater values near wall boundaries and the effect of angular velocity of the
rotating dish is noticed on trailing edges.

3- The velocity increases downstream between airfoil supports and in span distance away
from the fuselage and it is of lower values at 95% of span distance.
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A normal velocity component to the flow exists no matter how small it is and it
decreases as moved from the leading edge towards the trailing edge. This is clearly
noticed near the lower surface of the rotating dish.

5- The maximum pressure occurs at the beginning of leading edge, where the velocity is
stagnate at that point, then decreases until it reaches the tailing edge, where the velocity
accelerates again.

6- At leading edge, pressure decreases as moved inside through the core, where the
velocity increases from zero at the wall boundary towards the core, while at the mid
chord distance, the pressure increases as moved towards the core.

7- The wakes and secondary flow occur at the region behind the trailing edge at 95 % span
distance, where the velocity field is greater than that at mid span.

8- The moving boundary of the rotating dish has small effects on the axial flow and that
the disturbance caused by the rotating dish doesn’t propagate to the core region.

9-  The effect of angular velocity of dish can be noticed at high span distance near the

lower surface of dish.

4- Outside Zone

\ Dish

1- Frontal Zone
3- Rear Zone
_—
_ _
_— > _— >
_— > _— >
_—
Fuselage Airfoil

2-Inside Zone Supports

Fig (1): Physical Domains of the Investigated Problem
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Fig (4): Velocity Vectors between Airfoil Supports
a) 50% of span distance b) 75% of span distance ¢) 90% of span distance
d) 95% of span distance e) 100% of span distance
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NOMENCLATURE
al,a2,a3 Coordinate transformation coefficient 1/m?
b1,02,b3
aa,bb,cc,dd Coefficient in the pressure correction equation m’
c Speed of sound m/s
Cp Specific heat J/kg.k
C u>Celo C,, | Constants in the k- € model
D Diffusion term kg/m.s
F Convection term kg/m.s
i Metric tensor element
G, Production term of kinetic energy Pa/s
G, Gy, Gs Contra-variant velocity components m/s
h Enthalpy J/kg
hil,h, h3 Geometric quantities m”
J Jacobian of transformation m’
J Determinant of Jacobian of transformation
k Turbulent kinetic energy J
K 1/c” s*/m”
P Pressure Pa
P Peclet number
Pr,, Pr, laminar, turbulent Prandl number
q,+9, laminar, turbulent heat flux vector W
Re Reynolds number
S Source term
T Viscous stress tensor Pascal
T Temperature °K
U Mean velocity m/s
Ti Turbulent intensity
u,v,w Cartesian velocity components m/s
ug, Uy, Uz Covariant velocity components m/s
xX),2 Cartesian coordinate m
y+ Non-dimensional distance
a Under relaxation factor
2] Turbulent velocity scale
K Thermal conductivity W/m.oC
AV Volume of control unit m3
I Diffusion coefficient
£ Dissipation rate of turbulent kinetic energy J/s
K Von Karman constant
H Laminar viscosity Pa.s

1351



1.Y. Hussien FLOW COMPUTATION THROUGH THE PASSAGE BOUNDED

S.F. Mahmood BY THE DISH AND SUPPORTS OF THE AWACS
. Turbulent eddy viscosity Pa.s
U, Effective eddy viscosity Pa.s
En Curvilinear coordinates
P Density kg/m3
0.0, Effective Prandtl/Schmidt number

v, Eddy viscosity m?2/s
T; Reynolds stress tensor Pa
T, Wall shear stress Pa
¢ Dependent variable
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