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ABSTRACT 
 
The present study deals with the optimum design of self supporting steel communication towers. A 
special technique is used to represent the tower as an equivalent hollow tapered beam with variable 
cross section. Then this method is employed to find the best layout of the tower among pre-
specified configurations. The formulation of the problem is applied to four types of tower layout 
with K and X brace, with equal and unequal panels. The objective function is the total weight of the 
tower. The variables are the base and the top dimensions, the number of panels for the tower and 
member's cross section areas. The formulations of design constraints are based on the requirements 
of EIA and ANSI codes for allowable stresses in the members and the allowable displacement at 
antenna position. The Sequential Unconstrained Minimization Technique (SUMT) is used to 
perform the process.  
Direct stiffness method is used for the analysis of the structure, with beam elements. The strain 
energy is used to derive the stiffness matrix for members of unsymmetrical cross section. A 
computer program in FORTRAN is developed to represent the tower as an equivalent beam, and 
generate the tower nodes and members, analysis, design and to find the optimum design.  
Four types of tower are studied with different load cases. The effects of earthquake and wind 
loadings are taken in two directions and two positions of antenna are considered in the process to 
seek the optimum design. The tower type of X-brace with unequal panels has the minimum weight 
compared with other types of tower and the optimum design is satisfied when the angle of main leg 
is equal to (87O). 
 
KEYWORDS: Angle, Beam, Brace, Communication, Design, Optimum, Self supporting, 
Steel, SUMT, Tower, Wind. 
 

 لابراج الاتصالات الحديدية المسندة تلقائياالتحليل والتصميم الامثل 
 أ.م.د. عبد المطلب عيسى سعيد

 حسام اخلاص هاتوم.
 

 الخلاصة
 

تم تمثيل البرج بعتب مكافئ وناتئ يتعلق البحث بدراسة التحليل والتصميم الامثل لابراج الاتصالات الحديدية المسندة تلقائيا. 
ومجوف ومتغير المقطع. تم ايجاد التصميم الامثل لهذا العتب واستغلال هذا التصميم لايجاد الابعاد الخارجية للبرج وعدد الخانات. 

ساوية. بارتفاع خانات متساوية واخرى غير مت (K and X brace)اختيرت اربعة انواع من التشكيل والربط لاعضاء البرج هي 
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دالة الهدف هي الوزن الكلي للبرج ومتغيرات التصميم هي ابعاد القاعدة السفلى والعليا للبرج وعدد الخانات وابعاد مقاطع الاعضاء 
الانشائية. محددات التصميم معتمدة على مقدار الازاحات المسموح بها عند مواقع المرسلات والمستقبلات وحدود الاجهادات 

ومواصفة   (ANSI CODE)ء البرج وفقا للمعادلات التصميمية الخاصة بالمعهد الامريكي للابراج الحديدية المسموح بها لاعضا
 لايجاد التصميم الامثل. (SUMT). استخدمت طريقة البرمجة غير المتعاقبة وغير المقيدة (EIA)جمعية الصناعات الالكترونية 

 
واستعمال طاقة الاجهاد لاشتقاق مصفوفة الصلادة لاعضاء انشائية ذات  استخدمت طريقة الصلادة في التحليل الانشائي للبرج

مقطع غير متناظر حول المحاور الرئيسية. تم كتابة برنامج بلغة فورتران ليقوم بتمثيل البرج بعتب ثم ايجاد التصميم الامثل للابعاد 
 رنامج بايجاد المقاطع اللازمة للاعضاء الانشائية.الخارجية واستحداث ملف يحتوي البيانات اللازمة للتحليل واخيرا يقوم الب

تمت دراسة الانواع الاربعة من الابراج لحالات تحميل مختلفة وهي تأثير الهزة الارضية وتأثير الرياح بزاويتين مختلفتين ولمواقع 
ولارتفاع خانات غير متساوية.  (X brace)مرسلات ومستقبلات مختلفة. لقد وجد ان اقل وزن للبرج يتحقق بتشكيل ربط من نوع 

 ) درجة.87كما وجد ايضا ان التصميم الامثل يتحقق عندما تكون زاوية ميل البرج مساوية الى (
 

 .البرمجة غير المتعاقبة وغير المقيدة ربط، اتصالات، تصميم، امثل، مسند تلقائيا، حديد،، عتب، زاويةبرج، الكلمات الرئيسية: 
 

 
1.  STRUCTURAL ANALYSIS 
 
The structure of a communication tower consists 
of a large number of straight steel bars with 
constant cross section. Here the cross sections of 
the bars are equal leg angles. The self supporting 
communication tower is a large latticed steel 
structure and it should be analyzed as an 
indeterminate space structure.  
 
In this work, the analysis of the tower is made by 
using the linear elastic and standard stiffness 
method. For each member the equilibrium 
equations can be represented by the form: 
 
{P}= [K] {U}     (1) 
Where  
{P} is the applied nodal load vector, which is for 
the space beam element 
{P}T={Fxl Fy1 Fz1 Mx1 My1 Mz1 Fx2 Fy2 Fz2 Mx2 My2 
Mz2}  
[K] is the stiffness matrix of the member.  
{U} is the displacement vector, which is for beam 
element  
{U}T= [u1 v1 w1 θx1 θy1 θz1 u2 v2 w2 θx2 θy2 θz2] 
 
By assembling these equations for all members, 
the whole structure equilibrium equations are 
obtained. The equations can be solved for the 
unknown displacements, from which the internal 
forces can be obtained. A computer program is 
used to solve these equations. 

 
1.1 Three-Dimensional Straight Beam 
Element  
 
A three dimensional prismatic beam element is 
considered, the beam is subjected to a general 
system of transverse loads and it is assumed to be 
linearly elastic. The element orientation with 
respect to local coordinate system and the 
nomenclature are illustrated in Fig.(1).  
 
The local x-y-z axes coincide with the centroidal 
axis of the element. Positive signs are in the 
directions indicated. The element has 12 degrees 
of freedom, six at each node. The forces and 
displacements at the two nodes are taken to be 
positive if their vectors points are in the directions 
of coordinates. The right-hand rule is used for 
moments and rotational displacements. Since the 
cross section of equal leg angles is not 
bisymmetrical the shear center dose not coincide 
with the centroid and consequently the stiffness 
matrix is somewhat different. 
 
1.2 Effect of Axial, Torsion and Bending  
 
The total strain energy for axial, torsion and 
bending about two centroidal axes is: 
 
𝑈 = ∫  {[ 1

2𝐸
�𝐹𝑥
𝐴

+ 𝑀𝑦𝑍
𝐼𝑦

+ 𝑀𝑧𝑌
𝐼𝑧
�
2

+ 𝑀𝑥2

2𝐺𝑗
𝐿
0 ]}𝑑𝑥  (2) 
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The relationships between internal forces and the 
displacements of a point on the centroid of an 
unsymmetrical cross section of a straight member 
as given by Oden [1] are: 
 
Fx= EA u'     (3)  
My= -EIyz v" –EIy w"     (4) 
Mz=EIz v"+EIyz w"    (5) 
Mx= GJ θx / L     (6) 
 
From the above equations and by neglecting the 
small terms, the total bending strain energy Ub can 
be obtained as: 
 
𝑈𝑏 = 𝐸

2 ∫  (𝐼𝑧. 𝑣" + 𝐼𝑦.𝑤"2 + 2𝐼𝑦𝑧.𝑤". 𝑣")𝐿
0 𝑑𝑥   

(7) 
where: Fx is the axial force, u is the axial 
deformation in the direction of x, My and Mz are 
the bending moments about y and z axes, v and w 
are the displacements in the directions of the 
principal axes y and z respectively, Mx is the 
torque, θx is the angle of rotation about x-axes, A 
is the cross sectional area, Iy and Iz are the 
moments of inertia, Iyz, is the product of inertia G 
is the modulus of rigidity and E is the modulus of 
elasticity, and Ix or J is the torsional constant 
which can be obtained as follow: 
For thin-walled open sections 𝐽 = 1

3
∑𝑏. 𝑡3 and for 

equal leg angle with cross section as shown in 
Fig.(2), where  𝐽 = 2𝑏𝑡3

3
 (approximately). The 

effect of each of these forces, which are axial, 
bending and torsion, is each separated from the 
others (i.e. uncoupled) when the stiffness 
coefficients are derived. 
 
1.3 Shear Deformations 
 
The transverse shearing stress makes the cross 
section to warp in the longitudinal direction. The 
shear deformation is neglected because it is 
usually very small compared with those 
deformations due to bending. The convential 
beam theory is employed which assumes that 
plane sections remain plane in flexure, except in 
deep beams that have a usually large depth to span 
ratio (greater than 0.2) [1]. Due to the fact that all 

members in the steel tower are not deep beams so 
the shear deformation is neglected 
 
1.4 Warp Effect 
 
Torsional moments may cause longitudinal 
displacements resulting from the out of plane 
warping of the cross section. Torsional moments 
may cause longitudinal displacements resulting 
from the out of plane warping of the cross section.  
 
The equal leg angles twist without warping 
[1,2,3]. The shear center of the angle lays at the 
intersection of the centerlines of the thin 
rectangular strips. Because of this, the resultant of 
shear flows produced by any type of loading must 
pass through this point, hence no warping torque 
can be developed and no longitudinal stresses are 
produced by torsional loads.  
 
But, when the wall thickness t, is not extremely 
small compared with the other dimensions, a 
secondary stress system can be developed 
perpendicular to the contour line of the section. 
Normal stresses then vary linearly over (t) and 
secondary-warping torque is developed.  
 
However the largest value of thickness/width ratio 
for cross section of a commercial angle is close to 
(0.2), and this makes all effects from warping 
removed [2,3]. 
 
1.5 Complete Element Stiffness Matrix 
 
The element stiffness matrix is found by using the 
approach of strain energy in terms of the nodal 
displacement of the element. By using Eq.7, the 
complete beam element stiffness matrix [K] in 
local coordinate system with 12 degrees of 
freedom, is derived as presented in Eq.8. 
 
To obtain the stiffness matrix for the entire 
structure, the usual transformation of each 
individual member stiffness matrix from the local 
to the global coordinates is needed. 
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1.6 Loading Cases 
 
In general there are two types of loading on the 
tower, dead load and live load. The live load 
consists of wind load and earthquake load. The 
dead load and wind load are calculated according 
to (EIA) standards [4], the wind load can be 
divided into two groups: 
  
(A): The wind load on the steel tower structure. 
 (B): The wind load on the antennas.  
 
The full description of wind load calculation can 
be found in (EIA) Standard. While the earthquake 
loads are calculated according to Iraqi seismic 
code requirements for building (ISD) [5].  
It is being noted that wind load is not considered 
in combination with seismic actions. 
 
 
 
 
 
 
 
 
 
 
 
 
     (8) 
 
2 Formulation of optimum design 
 
The purpose of this study is to develop an 
optimum design of a steel communication tower 
which is defined as the structure of least weight, 
subject to a prescribed set of constraints on the 
design and behavior variables. The problem is to 
design both the shape and the member sizes and 
locations. The problem can lead to mixed design 
variables, which, in turn, can have a wide range of 
sensitivities.  
The optimum design of a tower consists of shape 
and layout of tower, and the areas of the cross 
sections of the members. The optimum shape of 
the tower includes the horizontal dimensions 
along the height of the tower and the number of 

panels and their height, where the configuration of 
the members is same at each panel.  
The optimum layout of a tower can be obtained by 
removing some members and not allowing re-
entering the design problem. The member's 
having areas reduced to zero are removed during 
the process of optimization, while joints are 
moved until an optimum geometry for the given 
structure of the tower is found.  
In the case of removed members, there is no 
mathematical justification for the removal of these 
members and no proof exists that they would not 
subsequently help to reduce the weight of the 
structure. Furthermore, if the buckling stress 
constraint is critical for a particular member then 
its area would not reduce to zero in the design 
process and the member is not deleted.  
While in the case of moving the joints, some 
reasonable initial geometry is specified and it is 
difficult to estimate the best number of panels in a 
tower, since the joint move is simple, always in 
horizontal dimension.  
Most latticed towers may be built-up with angles 
at the corners and lacing in the faces as shown in 
Fig.(3). One alternative is to model the tower from 
three-dimensional truss or beam system to one or 
several equivalent beams is possible.  
The equivalent beam to a latticed tower is a beam 
having properties which give the same deflected 
shape to the tower and same axial stress in leg 
members under the same load conditions.  
The equivalent beam has the same base and top 
dimensions x2 and x1 respectively for the tower 
and the length of beam L represent the height of 
the tower. The equivalent beam and the tower 
have the same material properties. 
 
2.1 Properties of Equivalent Beam 
 
In this study approximation concepts are made for 
the design of the tower to find the optimum 
layout, by modeling the tower as a tapering thin 
hollow square cantilever, whose section varies 
continuously from one end to the other. The beam 
has constant ratio of width/thickness, as shown in 
Fig. (4).The Y-axis coincides with the centroidal 
axis of the beam. 
  
The concept of constant CB ratio along the beam 
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is due to the fact that the size of the member is 
reduced towards the top of the tower, also the 
dimension of the cross section of the tower. 
 
Writing the ratio of   𝑥1

𝑡1
= 𝑥2

𝑡2
= 𝑥(𝑦)

𝑡
= 𝐶𝐵, then  

 
x(y) = x1(1+ R.y)    (9) 
Where: 
 
𝑅 = 1

𝐿
�𝑥2
𝑥1
− 1�    (10) 

 
Then the area at any section  𝐴 = 4𝑥(𝑦)2

𝐶𝐵
, and the 

moment of inertia can be given as: 
𝐼𝑥(𝑦) = 𝐼𝑧(𝑦) = 𝐼𝑜(1 + 𝐵.𝑦)  (11) 
Where  
I0= moment of inertia at y= 0  (top of tower). 
𝐵 = 1

𝐿
�𝑥2

4

𝑥14
− 1�   (12) 

Every tower structure has a point of optimum 
economy, which depends primarily upon the 
dimensions at the base and top, and number of 
panels and number of members.  
 
The ratio CB is an indicator to the total volume of 
material of members used in the tower. In addition 
to that, the number of panels affects on the value 
of CB, and this effect is different when the panels 
are equal or not equal (having an algorithm 
relationship for height of panel as shown in 
Fig.(5). 
 
Writing TV be equal to the total volume of 
material in the actual tower (∑𝐴𝑖𝑙𝑖) and the CT to 
represent the material volume ratio, thus 
 

𝐶𝑇 = 2𝐿(𝑥22+𝑥12)
𝑇𝑉

   (13) 

Equation 13 is the same for any configuration 
system, for any number of panels of tower

 
with 

square bases. Then CT for the equivalent beam 
can be represented in terms of CB: 
 
CT = f (CB, n)    (14) 
 
Where n is the number of Panels. 

Equation 14 is different for equal or unequal 
panels and configuration system. It can be 
obtained by analyzing a number of examples for 
each type. Then, 
TV =  f (CT ,x2, x1)  
TV = f (CB x2, x1, n) 
 
Also there is a relation between the axial force FT 
in leg members in the actual tower and the force 
calculated due to allowable stress at the bottom of 
the equivalent beam FB. 
 
2.2 Displacements in an Equivalent Beam 
 
The most important displacements in the tower 
are the axial (vertical) and transverse (horizontal) 
displacements at the top of the tower. The 
following sections explain the derivation of the 
displacements of the tapering hollow square 
beam: 
 
2.2.1 Axial Displacement 
 
Mainly the axial (vertical) displacement (v) is 
caused by the se1f-weight of the structure. The 
vertical displacement at any distance (y) is due to 
the weight of the segment from origin (top of the 
tower) to distance (y) and it can be given as 
follows: 
 
𝑓𝑦 =  2𝛾𝑠

𝐶𝐵
 (𝑥12 +  𝑥𝑦2)𝑦  (15) 

 
Where:  
γs: the weight density of steel.  
fy: is the vertical force in y-direction which is 
equal to the weight from the top to distance y.  
 
The differential equation of axial displacement of 
a straight bar is: 
𝑑𝑣
𝑑𝑦

=  𝑓𝑦
𝐴.𝐸

     (16) 
Where E: modulus of elasticity 
 
𝑣(𝑦) = ∫ 𝑓𝑦

𝐴.𝐸
 𝑑𝑦   (17) 

 
The boundary condition is v=0 at y= L. By 
integrating Eq.16, the axial displacement can 
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represented as follows: 
 

𝑣(𝑦) =
𝛾𝑠
2𝐸

 

⎣
⎢
⎢
⎢
⎢
⎢
⎡

1
𝑅2

⎩
⎪⎪
⎨

⎪⎪
⎧

ln(1 + 𝑅.𝑦) +
ln(1 + 𝑅. 𝐿) +

1
(1 + 𝑅.𝑦) +

1
(1 + 𝑅. 𝐿) ⎭

⎪⎪
⎬

⎪⎪
⎫

+
𝑦2

2
+
𝐿2

2

⎦
⎥
⎥
⎥
⎥
⎥
⎤

 

(18) 
 
 
2.2.2 Transverse Displacement 
 
The transverse (horizontal) displacement in beam 
is u in x direction and w in z direction, which are 
the same for a symmetrical square tower. The 
differential equation of transverse displacement 
(u) or (w) is: 
 
𝑑2 𝑢
𝑑𝑦2

=  −𝑀𝑧
𝐸𝐼𝑧(𝑦)

     (19) 
 
𝑀𝑧 = −𝐸𝐼𝑧(𝑦) 𝑑

2 𝑢
𝑑𝑦2

   (20) 
 
The horizontal loads on the tower are 
concentrated loads (load on antenna) or uniform 
loads (wind loads), thus the derivation of 
displacement for concentrated and uniform loads 
are separately obtained. 
 
2.2.2.1 Transverse Displacement under 
Uniform Load 
 
The differential equation of transverse 
displacement under uniform load is: 
𝑑2 𝑀𝑧

𝑑𝑦2
=  
𝑑𝑉𝑥
𝑑𝑦

= −𝑃𝑥 

 
𝑑2 
𝑑𝑦2

�−𝐸𝐼𝑧(𝑦) 𝑑
2 𝑢
𝑑𝑦2

� = −𝑃𝑥  (21) 
 
Where Vx shear force, & Px load intensity per unit 
length  
 
Px= Wx. x(y)    (22) 
Where Wx load intensity per area in x direction. 
 

𝑑2 
𝑑𝑦2

�−𝐸𝐼𝑧(𝑦) 𝑑
2 𝑢
𝑑𝑦2

� = −𝑊𝑥.𝑥(𝑦) (23) 
The boundary conditions are: 
 

𝑑3 𝑢
𝑑𝑦3

=
𝑑2 𝑢
𝑑𝑦2

= 0 𝑎𝑡 𝑦 = 0 

(zero shear and moment), and 
 

𝑑𝑢
𝑑𝑦

= 𝑢 = 0 𝑎𝑡 𝑦 = 𝐿 

(zero slope and displacement) 
 
By integrating Eq.21, the transverse displacement 
is represented as follows: 
 
 

𝑢(𝑦) =
𝑊𝑥 . 𝑥1
𝐸𝐼

 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ 𝑅.𝑦4

72𝐵
+ 𝑦3 �

−𝑅
36𝐵2

−
1

12𝐵
� +

𝑦2 �
−1
4𝐵2

+
𝑅

12𝐵3
� +

𝑦

⎩
⎨

⎧−1
2𝐵3

+
𝑅

6𝐵2
−
𝐿2

4𝐵
+

𝐿
2𝐵2

−

𝑅. 𝐿3

18𝐵
+
𝑅. 𝐿2

12𝐵2
−
𝑅. 𝐿
6𝐵3

 ⎭
⎬

⎫
+

{𝑙𝑛(1 + 𝐵𝐿) − 𝑙𝑛(1 + 𝐵.𝑦)}.

�
𝑅.𝑦
6𝐵4

−
𝑦

2𝐵3
−

1
2𝐵4

−
𝑅

6𝐵5
� +

𝐿3

6𝐵
−

𝐿2

4𝐵2
+

𝐿
2𝐵3

+
𝑅. 𝐿4

24𝐵
−

𝑅. 𝐿3

18𝐵2
+
𝑅. 𝐿2

12𝐵3
+  
𝑅. 𝐿
6𝐵4 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

 
     (24) 
 
2.2.2.2 Transverse Displacement under 
Concentrated Load 
 
The differential equation of transverse 
displacement under a concentrated load is: 
 
𝑑2 𝑢
𝑑𝑦2

=  𝑓𝑥(𝑦−𝑎)
𝐸𝐼𝑧(𝑦)

   (25) 
 
Where 
 fx is the concentrated load at distance (a) from the 
origin, and  
(y-a) is Macaulay's brackets: (y-a) =(y-a) for y 
>a, and (y-a)= zero for y < a. 
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The boundary conditions are:  

𝑑𝑢
𝑑𝑦

= 𝑢 = 0 𝑎𝑡 𝑦 = 𝐿 

(zero slope and displacement) 
 
By integrating Eq.25 the transverse displacement 
can be represented as follows: 
 

𝑢(𝑦) =
𝑓𝑥
𝐸𝐼𝑧

 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

𝑦2

2𝐵
− �

1
𝐵2

+
𝑎
𝐵
�

⎩
⎪
⎨

⎪
⎧

𝑦. 𝑙𝑛(1 + 𝐵𝑦) −

𝑦 +
𝑙𝑛(1 + 𝐵.𝑦)

𝐵
−

𝑦. 𝑙𝑛(1 + 𝐵𝐿) +

𝐿 +
𝑙𝑛(1 + 𝐵. 𝐿)

𝐵
 
 
⎭
⎪
⎬

⎪
⎫

−
𝐿.𝑦
𝐵

+
𝐿2

2𝐵 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

     (26) 
 
The final equation for displacement in other 
direction (w) has the same statements for 
displacement (u) in uniform and concentrated load 
by replacing w, and fx by wx and fx respectively, 
since Ix= Iz for the square box section. 
 
2.3 Representation of a Tower by an 
Equivalent Beam 
 
To find the properties of the equivalent beam 
which represents the tower, the relationship 
between CT with CB and FT with FB must be 
known for each type of configuration. These 
relations can be known by analyzing the tower 
with specific heights, x2, x1 layout, n, and cross 
section of the members. Then analyzing the 
hollow tapered beam with the same height of this 
tower, and same x2, and x1, to find the value CB, 
which gives the same deflected shape of the tower 
under the same load conditions. Here the tolerance 
for displacement should not exceed (0.5 %). This 
procedure is repeated for the number of panels 
and x2, and x1 for each type of configuration.  
 
The analysis of the actual tower is done by the use 
of beam elements. The analysis includes the leg 
members and main brace members (excluding the 
redundant members). The same things are used in 
the calculation of the value of TV.  

 
Because of the large number of analysis procedure 
and the number of input data files needed, four 
programs in FORTRAN-77 language using 
Fortran Power Station 4.0 [7] are built to generate 
these data files.  
 
These programs just need dimensions of base and 
top and number of panels to generate the node 
numbers, the coordinates, the number of 
members, and the connectivity nodes. Also these 
programs can distribute the load on the tower 
according to the equations provided. 
  
Considering the number of examples with 
different dimensions at base and top and different 
number of panels with specific height, the relation 
between CT and CB and the relation between FT 
and FB for X-brace (Fig (6-a)) with equal panels 
are obtained, and they are shown in Fig.(7) and  
Fig.(8) respectively. These relations can be 
represented by the following equations: 
 
CT=136.5 -20.484 n +1.68 n2 -0.044 n3 + (0.153 
+ 0.03 n -0.0025 n2) CB 
 
 FT=39.6 -9.24 n+ 0.7n2 -0.017n3+ (0.0106 -
0.00262 n + 0.0002 n2) FB-0.0006 FB2 
     (27) 
The relation between CT and CB and the relation 
between FT and FB for X-brace with unequal 
panels, are shown in Fig.(9) and Fig.(l0) 
respectively. CT and FT can be represented by the 
following equations: 
CT=133 -13.56 n +1.123 n2 -0.03 n3 + (0.451 + 
0.04 n -0.003 n2) CB  
 
FT=9.34-2.306n+0.2006n2-0.00573n3 +0.81 
FB+(-0.0405 +0.01n-0.00085 n2)FB2  

     (28)  
For the tower of type K-brace (Fig. (6-b)) with 
equal panels, Fig. (11) and Fig. (12), explain the 
relation between CT and CB and the relation 
between FT and FB. The following equations 
represent the graph relationship: 
CT= 112.93 -12.83 n +1.09 n2 -0.031 n3 + (0.3 -
0.014 n -0.00033 n2) CB 
 
FT= -8 +1.808n-0.15n2+0.004n3+ (1.245+ 
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0.073n- 0.006n2 -0.00015n3 ) FB + (-0.0016 + 
0.00024n) FB2     (29) 
For the tower of type K-brace and unequal panels 
configuration, Fig. (13) and Fig. (14) explain the 
relation between CT and CB and the relation 
between FT and FB, which can be represented by 
the following equations: 
 
CT=104 -11.67 n + 0.976 n2 -0.027 n3 + (0.064 + 
0.06n2 -0.0054 n3 ) CB  
 
FT= -3.65 -0.98 n+ 0.08 n2 -0.0022 n3 + 0.9 FB + 
1-0.0068 + 0.0015 n -O.000l2 n2) FB2 
     (30) 
2.3.1 Verification Problems  
A tower of type X-brace with four equal panels 
which shown in Fig. (15 b) is subject to a number 
of load cases. The tower has dimensions (L=20m), 
(XB=6m), (XT=2m), and cross section area for 
leg members equal to (A=51.5 cm2) and, (A=23.5 
cm2) for redundant members. The TV for this 
tower is (1.15m3), according to Eq.13 and (1396.) 
for CT. The equivalent tapering hollow square 
beam shown in Fig. (15 a) has CB equal to (5647). 
The results of analysis and load cases for the 
tower and the equivalent beam are shown in 
Table(1).  
The displacements at top and forces (at base) for 
the equivalent beam are calculated for the same 
CB so the tower can be represented by the 
equivalent beam.  
 
Table (1) Analysis results and load cases for the 
tower and the equivalent beam. 
Number of loading case in X-Dir. (kN) 
1 2 3 
Equiv. 
beam 

at point 

Tower 
at 

node 

Equiv. 
beam 

at point 

Tower 
at 

node 

Equiv. 
beam 

at 
point 

Tower 
at 

node 

a 0 1 0 a 6 1 0 a 0 1 0 
2 0 2 0 2 0 

b 0 3 0 b 6 3 3 b 4 3 2 
4 0 4 3 4 2 

c 0 5 0 c 6 5 3 c 6 5 2 
6 0 6 3 6 2 

d 10 7 5 d 6 7 3 d 8 7 2 
8 5 8 3 8 2 

 
No. 
of 
load 
case 

Structure 
Type 

Horizontal 
displacement 
at top (mm) 

Axial 
force (kN) 

1 Equivalent 
beam 

1.2930235 18.75664 

Tower 1.2929880 12.68638 
2 Equivalent 

beam 
1.1786454 25.32147 

Tower 1.1192827 13.070202 
3 Equivalent 

beam 
1.4513451 27.19713 

Tower 1.3785101 15.40162 
 
 
2.4 Optimum Layout of Tower by 
Equivalent Beam   
 
The approach presented in the formulation of 
optimum layout of the tower is based on finding 
the optimum design of the equivalent beam and 
using its layout dimension for the layout 
dimension of the tower. There are many available 
methods of optimization, here the Sequential 
Unconstrained Minimization Technique SUMT 
method, [8, 9], is used. 
 
2.4.1 The Objective Function 
 
The objective function to be minimized is the total 
weight of the equivalent beam W that is:  
 
W = γ TV    (31) 
 
Where γ is the density of member material, which 
used in the tower. Since γ  is constant for all the 
tower elements, hence the objective function to be 
minimized is TV, (TV=2L(x2

2 + x1
2)/CD. There 

are three variables, direct variables (x2, x1) and 
indirect variable (n). CT is a function of CB and n.  
 
2.4.2 Behavior Constraints  
2.4.2.1 Displacement at Top 
  
Since the variation of the allowable horizontal 
displacements along the height of the tower is 
linear, the displacement at top is considered as the 
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maximum i.e. the displacement at y=0. Therefore 
the displacement constraint will be as follow: 
 
𝛾𝑠
2𝐸

 �
1
𝑅2

�ln(1 + 𝑅. 𝐿) + 1 +
ln(1 + 𝑅. 𝐿) � +

𝐿2

2
� ≤ 

Allowable vertical displacement at top. 
 
 

𝑓𝑥
𝐸𝐼𝑧

 

⎣
⎢
⎢
⎢
⎡−�

1
𝐵2

+
𝑎
𝐵
� �𝐿 −

𝑙𝑛(1 + 𝐵. 𝐿)
𝐵 �

+
𝐿2

2𝐵 ⎦
⎥
⎥
⎥
⎤
≤ 

Allowable horizontal displacement at top due to 
concentrated load. 

𝑊𝑥 .𝑥1
𝐸𝐼
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⎢
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⎢
⎢
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⎡𝑙𝑛(1 + 𝐵𝐿) �−

1
2𝐵4

−
𝑅

6𝐵5�
+

𝐿3

6𝐵
−

𝐿2

4𝐵2
+

𝐿
2𝐵3

+
𝑅. 𝐿4

24𝐵
−

𝑅. 𝐿3

18𝐵2
+
𝑅. 𝐿2

12𝐵3
+  
𝑅. 𝐿
6𝐵4 ⎦

⎥
⎥
⎥
⎥
⎥
⎤

≤ 

Allowable horizontal displacement at top due to 
uniform load. 
 
 
2.4.2.2 Axial Force at Bottom Leg 
 
Here the optimum design satisfies the maximum 
allowable force at the bottom of the equivalent 
beam FB that is equal to the computed force for 
the bottom leg member FT, because the maximum 
stresses occur in this member. The allowable 
compressive stress in a leg member is Fa on the 
gross sectional area of axially loaded compression 
member shall be calculated as follows [10, 11]: 

𝐹𝑎 = �1 − 1
2
�𝑘𝐿𝑢/𝑟

𝐶𝑐
�
2
� 𝐹𝑦  𝑓𝑜𝑟 𝑘𝐿𝑢

𝑟
≤ 𝐶𝑐    (32) 

And 
 

𝐹𝑎 = 𝜋2𝐸

�𝑘𝐿𝑢𝑟 �
2        𝑓𝑜𝑟 𝑘𝐿𝑢

𝑟
≥ 𝐶𝑐         (33) 

𝐶𝑐 = 𝜋�2𝐸
𝐹𝑦

          (34) 

 
Where 
Fy: minimum yield stress 
E: modulus of elasticity 

L: un-braced length 
r: radius of gyration 
k: effective length coefficient  
 
For a leg member bolted in both faces at 
connections: 

𝑘𝐿𝑢
𝑟

=   
𝐿𝑢
𝑟

 𝑎𝑛𝑑 
𝐿𝑢
𝑟
≤ 150 

 
The compressive stress Fa to be calculated for 
maximum available size of cross section area and 
Lu can be calculated from the height of the bottom 
panel. 
 
2.4.3 Side Constraints 
 
The design variables must be positive in order to 
be realizable. In structural design, the design 
variables are normally bounded and depend on 
either availability or the handling restrictions. In 
this work, the variables should be greater than 
zero since some or all of the behavior constraints 
would be violated even if one variable is zero. The 
non-negativity restrictions on the design variables 
are 
 
Xi > 0      (35) 
  
2.5 Optimum Design of Member Cross 
Sectional  
 
Area After finding the optimum layout and 
configuration system of the tower, the second 
stage for the optimum design, is the optimum 
cross sectional area of the members. The 
constraints are limited to be the maximum stress 
due to the combination of bending moment and 
axial force, taking the slenderness ratio of the 
members and buckling of flange into account, 
which are based on ANSI [10], EIA[4] and ISD 
[5] specifications and also the allowable 
displacement at antenna position according to the 
recommendation. 
 
From the analysis of the tower the forces for the 
leg members and main brace are calculated. The 
magnitude of the load in a redundant member can 
vary from (0.5 -2.5%) of the load in the supported 
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members [10]. 
The objective goal to be reached is to minimize 
the total weight of the structure W consisting of a 
number of members m, the length of a member i 
is Li and cross sectional area is Ai.  
 
This may be obtained by optimizing each member 
separately and then summing the results. 
 
𝑊 = ∑ 𝛾𝑖𝐿𝑖𝐴𝑖𝑚

𝑖=1    (36) 
 
Where γi is the density of the member i and γi and 
Li are specified for the members. Minimizing the 
steel cross section area leads to minimum weight, 
so the objective function will be Ai. Members are 
selected with minimum cross section area from 
the list of multi-standard steel sections [AISC 
sections], which satisfy the allowable stress 
according to ANSI specification.  
 
3. Applications 
  
In order to find the optimum slope of the tower 
i.e. the angle of the main leg (α) as shown in 
Fig.(16), a tower with (7 and 10) number of 
panels and (1m) as the dimension of the top and 
base dimension changing with height (50m) is 
considered. The minimum weight of tower can be 
obtained when the angle of the main leg i.e. the 
angle of the outline of the tower is equal to (87o) 
as shown in Fig.(17). 
  
4. Conclusions 
 
 According to the present formulation the 
following conclusions can be given: 
  
1. It is found that the SUMT is a proper method 

used for optimum design of large self 
supporting steel communication towers. 

 
2. The present formulation of the problem has 

proved to be effective in solving the problem 
of optimum design of communication towers 
compared with the conventional case which 
involves a large number of design variables 
and constraints. Formulation of the optimum 
design problem by the present method has 

yielded good results with overall convergence 
behavior in relatively short time. 

  
3. The tower of type X-brace with unequal panels 

has the minimum weight compared with other 
types of tower and the optimum design is 
satisfied when the angle of main leg is equal to 
(87o). 

  
4. The leg members of the lower panel generally 

control the design of other similar members 
due to the high stresses carried by these 
members. 
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List of Symbols 
 
A Cross-sectional area. 
B Width of steel angle 
CB width /thickness ratio 
E Modulus of elasticity 
Fx, Fy, Fz Axial and shear forces 
G Shear modulus 
Ix, or J Torsional constant 
Iy, Iz Moments of inertia 
Iyz Product of inertia 
[K] Stiffness matrix of the member 
L Element length, height of the tower 
My, Mz Bending moments 
Mx Torque 
n Number of panels 
{P} Applied nodal load vector 
TV Total volume of the material in the 

actual tower 
t Thickness of steel angle 
U Strain energy 
{U} displacement vector 
W Wight of tower 
x ,y, z Local coordinates 
x1,x2 Width of base and top of tower 
γi Density of the member 
u,v,w Displacements in direction of x, y, z 
θx, θy, θz Angle of rotation in direction of x, 

y, z 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure (1): Three-dimensional beam under 
general loading. 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
Figure (2): Cross section of member with shear 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
                 
 
 
 
 

Figure (3): Segment of latticed tower. 
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Figure (4): Communication tower idealized as 

an equivalent beam. 
 
 
 

 
 

Figure (5): Unequal panels, which have 
algorithm relation for height of panel 

Ref.[6] 
 
 
 

 
 
 
 
 
 
 
 
 
 

 
 

a 

  
b 
 

Figure (6): X-Y Plane of structure. 
(a): Structure of type X-brace. 
(b): Structure of type K-brace. 
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