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ABSTRACT

The present study deals with the optimum design of self supporting steel communication towers. A
special technique is used to represent the tower as an equivalent hollow tapered beam with variable
cross section. Then this method is employed to find the best layout of the tower among pre-
specified configurations. The formulation of the problem is applied to four types of tower layout
with K and X brace, with equal and unequal panels. The objective function is the total weight of the
tower. The variables are the base and the top dimensions, the number of panels for the tower and
member’s cross section areas. The formulations of design constraints are based on the requirements
of EIA and ANSI codes for allowable stresses in the members and the allowable displacement at
antenna position. The Sequential Unconstrained Minimization Technique (SUMT) is used to
perform the process.

Direct stiffness method is used for the analysis of the structure, with beam elements. The strain
energy is used to derive the stiffness matrix for members of unsymmetrical cross section. A
computer program in FORTRAN is developed to represent the tower as an equivalent beam, and
generate the tower nodes and members, analysis, design and to find the optimum design.

Four types of tower are studied with different load cases. The effects of earthquake and wind
loadings are taken in two directions and two positions of antenna are considered in the process to
seek the optimum design. The tower type of X-brace with unequal panels has the minimum weight
compared with other types of tower and the optimum design is satisfied when the angle of main leg
is equal to (87°).

KEYWORDS: Angle, Beam, Brace, Communication, Design, Optimum, Self supporting,
Steel, SUMT, Tower, Wind.
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1. STRUCTURAL ANALYSIS 1.1 Three-Dimensional Straight Beam
Element
The structure of a communication tower consists
of a large number of straight steel bars with A three dimensional prismatic beam element is
constant cross section. Here the cross sections of considered, the beam is subjected to a general
the bars are equal leg angles. The self supporting system of transverse loads and it is assumed to be
communication tower is a large latticed steel linearly elastic. The element orientation with
structure and it should be analyzed as an respect to local coordinate system and the
indeterminate space structure. nomenclature are illustrated in Fig.(1).
In this work, the analysis of the tower is made by The local x-y-z axes coincide with the centroidal
using the linear elastic and standard stiffness axis of the element. Positive signs are in the
method. For each member the equilibrium directions indicated. The element has 12 degrees
equations can be represented by the form: of freedom, six at each node. The forces and
displacements at the two nodes are taken to be
{P}=[K] {U} (8] positive if their vectors points are in the directions
Where of coordinates. The right-hand rule is used for
{P} is the applied nodal load vector, which is for moments and rotational displacements. Since the
the space beam element cross section of equal leg angles is not
{P}T={FX. Fy1 Fi1 M M1 M1 By Fyp Fro Myo My, bisymmetrical the shear center dose not coincide
M.} with the centroid and consequently the stiffness
[K] is the stiffness matrix of the member. matrix is somewhat different.
{U} is the displacement vector, which is for beam
element 1.2 Effect of Axial, Torsion and Bending

{U}TZ [ur vi Wi Bq B G Uz Vo W, B B 657]
The total strain energy for axial, torsion and
By assembling these equations for all members, bending about two centroidal axes is:
the whole structure equilibrium equations are
obtained. The equations can be solved for the 2
unknown displacements, from which the internal U=J; {[i(ifx+l%z+%) +I;%]}dx )
forces can be obtained. A computer program is
used to solve these equations.
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The relationships between internal forces and the
displacements of a point on the centroid of an
unsymmetrical cross section of a straight member
as given by Oden [1] are:

F=EAU @)
M,= -El,, v —El, w" (4)
M,=El, v"+El,, w" (5)
M= GJ 6/ L (6)

From the above equations and by neglecting the
small terms, the total bending strain energy U, can
be obtained as:

Ub — gfoL (IZ 17" + Iy WnZ + ZIyZ W".v") d.x

()
where: Fx is the axial force, u is the axial
deformation in the direction of x, My and Mz are
the bending moments about y and z axes, v and w
are the displacements in the directions of the
principal axes y and z respectively, Mx is the
torque, X is the angle of rotation about x-axes, A
is the cross sectional area, ly and Iz are the
moments of inertia, lyz, is the product of inertia G
is the modulus of rigidity and E is the modulus of
elasticity, and Ix or J is the torsional constant
which can be obtained as follow:

For thin-walled open sections | = %Z b.t3 and for
equal leg angle with cross section as shown in
Fig.(2), where J =¥ (approximately). The
effect of each of these forces, which are axial,
bending and torsion, is each separated from the

others (i.e. uncoupled) when the stiffness
coefficients are derived.

1.3 Shear Deformations

The transverse shearing stress makes the cross
section to warp in the longitudinal direction. The
shear deformation is neglected because it is
usually very small compared with those
deformations due to bending. The convential
beam theory is employed which assumes that
plane sections remain plane in flexure, except in
deep beams that have a usually large depth to span
ratio (greater than 0.2) [1]. Due to the fact that all
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members in the steel tower are not deep beams so
the shear deformation is neglected

1.4 Warp Effect

Torsional moments may cause longitudinal
displacements resulting from the out of plane
warping of the cross section. Torsional moments
may cause longitudinal displacements resulting
from the out of plane warping of the cross section.

The equal leg angles twist without warping
[1,2,3]. The shear center of the angle lays at the
intersection of the centerlines of the thin
rectangular strips. Because of this, the resultant of
shear flows produced by any type of loading must
pass through this point, hence no warping torque
can be developed and no longitudinal stresses are
produced by torsional loads.

But, when the wall thickness t, is not extremely
small compared with the other dimensions, a
secondary stress system can be developed
perpendicular to the contour line of the section.
Normal stresses then vary linearly over (t) and
secondary-warping torque is developed.

However the largest value of thickness/width ratio
for cross section of a commercial angle is close to
(0.2), and this makes all effects from warping
removed [2,3].

1.5 Complete Element Stiffness Matrix

The element stiffness matrix is found by using the
approach of strain energy in terms of the nodal
displacement of the element. By using Eq.7, the
complete beam element stiffness matrix [K] in
local coordinate system with 12 degrees of
freedom, is derived as presented in Eq.8.

To obtain the stiffness matrix for the entire
structure, the wusual transformation of each
individual member stiffness matrix from the local
to the global coordinates is needed.
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1.6 Loading Cases

In general there are two types of loading on the
tower, dead load and live load. The live load
consists of wind load and earthquake load. The
dead load and wind load are calculated according
to (EIA) standards [4], the wind load can be
divided into two groups:

(A): The wind load on the steel tower structure.
(B): The wind load on the antennas.

The full description of wind load calculation can
be found in (EIA) Standard. While the earthquake
loads are calculated according to lragi seismic
code requirements for building (ISD) [5].

It is being noted that wind load is not considered
in combination with seismic actions.

AE
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2 Formulation of optimum design

The purpose of this study is to develop an
optimum design of a steel communication tower
which is defined as the structure of least weight,
subject to a prescribed set of constraints on the
design and behavior variables. The problem is to
design both the shape and the member sizes and
locations. The problem can lead to mixed design
variables, which, in turn, can have a wide range of
sensitivities.

The optimum design of a tower consists of shape
and layout of tower, and the areas of the cross
sections of the members. The optimum shape of
the tower includes the horizontal dimensions
along the height of the tower and the number of
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panels and their height, where the configuration of
the members is same at each panel.

The optimum layout of a tower can be obtained by
removing some members and not allowing re-
entering the design problem. The member's
having areas reduced to zero are removed during
the process of optimization, while joints are
moved until an optimum geometry for the given
structure of the tower is found.

In the case of removed members, there is no
mathematical justification for the removal of these
members and no proof exists that they would not
subsequently help to reduce the weight of the
structure. Furthermore, if the buckling stress
constraint is critical for a particular member then
its area would not reduce to zero in the design
process and the member is not deleted.

While in the case of moving the joints, some
reasonable initial geometry is specified and it is
difficult to estimate the best number of panels in a
tower, since the joint move is simple, always in
horizontal dimension.

Most latticed towers may be built-up with angles
at the corners and lacing in the faces as shown in
Fig.(3). One alternative is to model the tower from
three-dimensional truss or beam system to one or
several equivalent beams is possible.

The equivalent beam to a latticed tower is a beam
having properties which give the same deflected
shape to the tower and same axial stress in leg
members under the same load conditions.

The equivalent beam has the same base and top
dimensions x, and x; respectively for the tower
and the length of beam L represent the height of
the tower. The equivalent beam and the tower
have the same material properties.

2.1 Properties of Equivalent Beam

In this study approximation concepts are made for
the design of the tower to find the optimum
layout, by modeling the tower as a tapering thin
hollow square cantilever, whose section varies
continuously from one end to the other. The beam
has constant ratio of width/thickness, as shown in
Fig. (4).The Y-axis coincides with the centroidal
axis of the beam.

The concept of constant CB ratio along the beam
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is due to the fact that the size of the member is
reduced towards the top of the tower, also the
dimension of the cross section of the tower.

Writing the ratio of ’;—i =2 CB, then

t2 t
x(y) = xi(1+ R.y) (9)
Where:

—1(x2_

R= L (xl 1) (10)
Then the area at any section 4 = 4’2(; )° and the
moment of inertia can be given as:
Ix(y) =1z(y) = I,(1 + B.y) (11)

Where
l,= moment of inertia at y= 0 (top of tower).

R m

Every tower structure has a point of optimum
economy, which depends primarily upon the
dimensions at the base and top, and number of
panels and number of members.

The ratio CB is an indicator to the total volume of
material of members used in the tower. In addition
to that, the number of panels affects on the value
of CB, and this effect is different when the panels
are equal or not equal (having an algorithm
relationship for height of panel as shown in

Fig.(5).

Writing TV be equal to the total volume of
material in the actual tower (3 4;!;) and the CT to
represent the material volume ratio, thus

_ 2L(x3+x7)
v

CT (13)
Equation 13 is the same for any configuration
system, for any number of panels of tower with
square bases. Then CT for the equivalent beam
can be represented in terms of CB:

CT=f(CB,n) (14)

Where n is the number of Panels.
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Equation 14 is different for equal or unequal
panels and configuration system. It can be
obtained by analyzing a number of examples for
each type. Then,

TV="f (CT X2, Xl)

TV =1 (CB Xy, X1, )

Also there is a relation between the axial force FT
in leg members in the actual tower and the force
calculated due to allowable stress at the bottom of
the equivalent beam FB.

2.2 Displacements in an Equivalent Beam

The most important displacements in the tower
are the axial (vertical) and transverse (horizontal)
displacements at the top of the tower. The
following sections explain the derivation of the
displacements of the tapering hollow square
beam:

2.2.1 Axial Displacement

Mainly the axial (vertical) displacement (v) is
caused by the self-weight of the structure. The
vertical displacement at any distance (y) is due to
the weight of the segment from origin (top of the
tower) to distance (y) and it can be given as
follows:

fy =2 2+ xy?)y (15)

Where:

ys: the weight density of steel.

fy: is the vertical force in y-direction which is
equal to the weight from the top to distance y.

The differential equation of axial displacement of
a straight bar is:
w _ 1y

(16)
dy AE
Where E: modulus of elasticity
v(y) = [ 2 dy (17)

The boundary condition is v=0 at y= L. By
integrating Eq.16, the axial displacement can
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represented as follows:

(In(1+ R.y) +
In(1+R.L) +
ROPERAN L [N S R
VOIES5E1R2Y W +R.y) 2 772
1
(1+R.L)
(18)

2.2.2 Transverse Displacement

The transverse (horizontal) displacement in beam
is u in x direction and w in z direction, which are
the same for a symmetrical square tower. The
differential equation of transverse displacement
(u) or (w) is:

d?u -M,
ayz  EL() (19)
d%?u
Mz = _Elz(y) d_yz (20)
The horizontal loads on the tower are

concentrated loads (load on antenna) or uniform
loads (wind loads), thus the derivation of
displacement for concentrated and uniform loads
are separately obtained.

2.2.2.1 Transverse Displacement under
Uniform Load

The differential equation of transverse
displacement under uniform load is:

d*M, dV,

dy? ~ dy x

d

(L) TF) = Py (21)

Where Vx shear force, & Px load intensity per unit
length

Px=Wx. x(y) (22)
Where Wx load intensity per area in x direction.
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(P £ = -wx)  (@3)
The boundary condltions are:
d3u_d2u_0 =0
dy3 dy? awy=
(zero shear and moment), and
- Qaty=1L
i u=0aty=

(zero slope and displacement)
By integrating Eq.21, the transverse displacement
is represented as follows:

R.y* o —R 1
728+ 7 {3632 _ﬁ}Jr

{ }
l

-1 4 R L2 + L
!233 6B2 2B?

R.L3 R.L2 R.L
Wi x4 S O —
u(y) = I 18B ' 12B2 6B3
{iln(1 + BL) — In(1 + B.y)}.
{R.y y 1 R }+
6B* 2B3 2B* 6BS
3 12 L R.L*
6B 4B2  2B3 ' 24B
R.L3 R L2 L RL R.L
1882 T 128° T 6B*
(24)

2.2.2.2 Transverse Displacement under
Concentrated Load

The differential equation of transverse
displacement under a concentrated load is:

dz_u _ fxy-a)

ay?  EL(®) (25)

Where

fx is the concentrated load at distance (a) from the
origin, and

(y-a) is Macaulay's brackets: (y-a) =(y-a) for y
>a, and (y-a)=zero fory < a.
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The boundary conditions are:
du

dy
(zero slope and displacement)

=u=0aty=1L

By integrating Eq.25 the transverse displacement
can be represented as follows:

y.In(1 + By) —
l In(1+B.y)
v (L, T‘¥
u()_f_x ﬁ_<ﬁ+§) y.in(1+ BL) +
Y=L In(1+ B.L)
+ B
Ly [L?
"B 2B
(26)

The final equation for displacement in other
direction (w) has the same statements for
displacement (u) in uniform and concentrated load
by replacing w, and fx by wx and fx respectively,
since Ix= Iz for the square box section.

2.3 Representation of a Tower by an
Equivalent Beam

To find the properties of the equivalent beam
which represents the tower, the relationship
between CT with CB and FT with FB must be
known for each type of configuration. These
relations can be known by analyzing the tower
with specific heights, x,, x; layout, n, and cross
section of the members. Then analyzing the
hollow tapered beam with the same height of this
tower, and same X,, and X;, to find the value CB,
which gives the same deflected shape of the tower
under the same load conditions. Here the tolerance
for displacement should not exceed (0.5 %). This
procedure is repeated for the number of panels
and xp, and x, for each type of configuration.

The analysis of the actual tower is done by the use
of beam elements. The analysis includes the leg
members and main brace members (excluding the
redundant members). The same things are used in
the calculation of the value of TV.
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Because of the large number of analysis procedure
and the number of input data files needed, four
programs in FORTRAN-77 language using
Fortran Power Station 4.0 [7] are built to generate
these data files.

These programs just need dimensions of base and
top and number of panels to generate the node
numbers, the coordinates, the number of
members, and the connectivity nodes. Also these
programs can distribute the load on the tower
according to the equations provided.

Considering the number of examples with
different dimensions at base and top and different
number of panels with specific height, the relation
between CT and CB and the relation between FT
and FB for X-brace (Fig (6-a)) with equal panels
are obtained, and they are shown in Fig.(7) and
Fig.(8) respectively. These relations can be
represented by the following equations:

CT=136.5-20.484 n +1.68 n*-0.044 n* + (0.153
+0.03 n-0.0025 n2) CB

FT=39.6 -9.24 n+ 0.7n* -0.017n+ (0.0106 -
0.00262 n + 0.0002 n?) FB-0.0006 FB?

(27)
The relation between CT and CB and the relation
between FT and FB for X-brace with unequal
panels, are shown in Fig.(9) and Fig.(l0)
respectively. CT and FT can be represented by the
following equations:
CT=133-13.56 n +1.123 n*-0.03 n® + (0.451 +
0.04 n -0.003 n?) CB

FT=9.34-2.306n+0.2006n°-0.00573n° +0.81
FB+(-0.0405 +0.01n-0.00085 n®)FB?
(28)

For the tower of type K-brace (Fig. (6-b)) with
equal panels, Fig. (11) and Fig. (12), explain the
relation between CT and CB and the relation
between FT and FB. The following equations
represent the graph relationship:
CT=112.93-12.83n +1.09 n?-0.031 n® + (0.3 -
0.014 n -0.00033 n?) CB

FT= -8 +1.808n-0.15n*+0.004n%+ (1.245+
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0.073n- 0.006n” -0.00015n% ) FB + (-0.0016 +
0.00024n) FB? (29)

For the tower of type K-brace and unequal panels
configuration, Fig. (13) and Fig. (14) explain the
relation between CT and CB and the relation
between FT and FB, which can be represented by
the following equations:

CT=104 -11.67 n + 0.976 n? -0.027 n® + (0.064 +
0.06n° -0.0054 n*) CB

FT=-3.65-0.98 n+ 0.08 n”-0.0022 n° + 0.9 FB +
1-0.0068 + 0.0015 n -0.00012 n?) FB?

(30)
2.3.1 Verification Problems
A tower of type X-brace with four equal panels
which shown in Fig. (15 b) is subject to a number
of load cases. The tower has dimensions (L=20m),
(XB=6m), (XT=2m), and cross section area for
leg members equal to (A=51.5 cm?) and, (A=23.5
cm?®) for redundant members. The TV for this
tower is (1.15m°), according to Eq.13 and (1396.)
for CT. The equivalent tapering hollow square
beam shown in Fig. (15 a) has CB equal to (5647).
The results of analysis and load cases for the
tower and the equivalent beam are shown in
Table(1).
The displacements at top and forces (at base) for
the equivalent beam are calculated for the same
CB so the tower can be represented by the
equivalent beam.

Table (1) Analysis results and load cases for the
tower and the equivalent beam.

Number of loading case in X-Dir. (KN)

1 2 3
Equiv. | Tower | Equiv. | Tower | Equiv. | Tower
beam at beam at beam at
at point | node | atpoint | node at node
point
alo 1/0fja |6 |1]0]ja|0|1]0
210 210 210
b |0 3|0 (|b |6 |3|3|b|4]3]2
410 413 412
c |0 5{0|c |6 |[5|3|c|6]|5]|2
6 |0 6 |3 6 |2
d|10 |7 |5|d |6 |7 |3 |d |8 |7 ]2
8 |5 8 |3 8 |2
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No. | Structure | Horizontal Axial
of | Type displacement | force (kN)
load at top (mm)
case
1 Equivalent | 1.2930235 18.75664
beam
Tower 1.2929880 12.68638
2 Equivalent | 1.1786454 25.32147
beam
Tower 1.1192827 13.070202
3 Equivalent | 1.4513451 27.19713
beam
Tower 1.3785101 15.40162
2.4 Optimum Layout of Tower by

Equivalent Beam

The approach presented in the formulation of
optimum layout of the tower is based on finding
the optimum design of the equivalent beam and
using its layout dimension for the layout
dimension of the tower. There are many available
methods of optimization, here the Sequential
Unconstrained Minimization Technique SUMT
method, [8, 9], is used.

2.4.1 The Objective Function

The objective function to be minimized is the total
weight of the equivalent beam W that is:
W_yTV (31)

Where vy is the density of member material, which
used in the tower. Since y is constant for all the
tower elements, hence the objective function to be
minimized is TV, (TV=2L(x,> + x%)/CD. There
are three variables, direct variables (x,, x;) and
indirect variable (n). CT is a function of CB and n.

2.4.2 Behavior Constraints
2.4.2.1 Displacement at Top

Since the variation of the allowable horizontal
displacements along the height of the tower is
linear, the displacement at top is considered as the



Number 12

maximum i.e. the displacement at y=0. Therefore
the displacement constraint will be as follow:

s {1n(1+RL)+1+}+ﬁ<
2E |R? In(1+R.L) 21
Allowable vertical displacement at top.

G-

L 35 |
Allowable horizontal displacement at top due to
concentrated load.

fx

In(1 + B. L)}]
| <
I, [~

I (1+BL){ 1 _R }+
n 2B*  6BS
Wexy | 13 12 L R.IL*
—— + + - |<
EI 6B 4B2 2B3  24B
R.L3 N R.L? N R.L
18B%2  12B3 = 6B*

Allowable horizontal displacement at top due to
uniform load.

2.4.2.2 Axial Force at Bottom Leg

Here the optimum design satisfies the maximum
allowable force at the bottom of the equivalent
beam FB that is equal to the computed force for
the bottom leg member FT, because the maximum
stresses occur in this member. The allowable
compressive stress in a leg member is Fa on the
gross sectional area of axially loaded compression
member shall be calculated as follows [10, 11].

F, _[1— ""L“/r ]F for 2t <cec (32
And
2
E, = (:L ’;2 for £t > Cc (33)
2E
Cc=m F_ (34)
Where

Fy: minimum yield stress
E: modulus of elasticity
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L: un-braced length
r: radius of gyration
k: effective length coefficient

For a leg member bolted in both faces at
connections:
kL L L
Y= Zand =<150
r r r

The compressive stress Fa to be calculated for
maximum available size of cross section area and
Lu can be calculated from the height of the bottom
panel.

2.4.3 Side Constraints

The design variables must be positive in order to
be realizable. In structural design, the design
variables are normally bounded and depend on
either availability or the handling restrictions. In
this work, the variables should be greater than
zero since some or all of the behavior constraints
would be violated even if one variable is zero. The
non-negativity restrictions on the design variables
are
Xi>0 (35)
2.5 Optimum Design of Member Cross
Sectional

Area After finding the optimum layout and
configuration system of the tower, the second
stage for the optimum design, is the optimum
cross sectional area of the members. The
constraints are limited to be the maximum stress
due to the combination of bending moment and
axial force, taking the slenderness ratio of the
members and buckling of flange into account,
which are based on ANSI [10], EIA[4] and ISD
[5] specifications and also the allowable
displacement at antenna position according to the
recommendation.

From the analysis of the tower the forces for the
leg members and main brace are calculated. The
magnitude of the load in a redundant member can
vary from (0.5 -2.5%) of the load in the supported
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members [10].

The objective goal to be reached is to minimize
the total weight of the structure W consisting of a
number of members m, the length of a member i
is Li and cross sectional area is Ai.

This may be obtained by optimizing each member
separately and then summing the results.
W =YL vili4 (36)

Where # is the density of the member i and 4 and
Li are specified for the members. Minimizing the
steel cross section area leads to minimum weight,
so the objective function will be Ai. Members are
selected with minimum cross section area from
the list of multi-standard steel sections [AISC

sections], which satisfy the allowable stress
according to ANSI specification.

3. Applications

In order to find the optimum slope of the tower
i.e. the angle of the main leg (o) as shown in
Fig.(16), a tower with (7 and 10) number of
panels and (1m) as the dimension of the top and
base dimension changing with height (50m) is
considered. The minimum weight of tower can be
obtained when the angle of the main leg i.e. the
angle of the outline of the tower is equal to (87°)
as shown in Fig.(17).

4. Conclusions
the

According to the present formulation
following conclusions can be given:

1. It is found that the SUMT is a proper method
used for optimum design of large self
supporting steel communication towers.

2. The present formulation of the problem has
proved to be effective in solving the problem
of optimum design of communication towers
compared with the conventional case which
involves a large number of design variables
and constraints. Formulation of the optimum
design problem by the present method has
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yielded good results with overall convergence
behavior in relatively short time.

3. The tower of type X-brace with unequal panels
has the minimum weight compared with other
types of tower and the optimum design is
satisfied when the angle of main leg is equal to
(87°).

4. The leg members of the lower panel generally
control the design of other similar members
due to the high stresses carried by these
members.
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List of Symbols

A Cross-sectional area.
B Width of steel angle
CB width /thickness ratio
E Modulus of elasticity
Fx, Fy, Fz | Axial and shear forces
G Shear modulus
Ix, or J Torsional constant
ly, Iz Moments of inertia
lyz Product of inertia
[K] Stiffness matrix of the member
L Element length, height of the tower
My, Mz Bending moments
Mx Torque
n Number of panels
{P} Applied nodal load vector
vV Total volume of the material in the
actual tower
t Thickness of steel angle
U Strain energy
{U} displacement vector
W Wight of tower
XY, Z Local coordinates
x1,x2 Width of base and top of tower
7 Density of the member
u,v,w Displacements in direction of X, y, z
X, &y, Oz Angle of rotation in direction of x,
Y, Z
¥ T L
My 0, My;,0,
Mg, 0, Fx Fy;,v; 5 Fzyvz
— ; — —> X
Fzi,wy Fow; Fouz M0,
M, 0., M. ,0.;

Figure (1): Three-dimensional beam under

general loading.
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Figure (2): Cross section of member with shear

Latticed tower.

Figure (3): Segment of latticed tower.
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1}@)

Layout of equivalent beam

Figure (4): Communication tower idealized as
an equivalent beam.

K=(log B —log T )/ No. of panels
loge=K+logT
logd=K+log ¢
a=TH/AT+c+d)

logb= K+loga

Figure (5): Unequal panels, which have
algorithm relation for height of panel
Ref.[6]
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High of one panel

a

i
b

Figure (6): X-Y Plane of structure.
(a): Structure of type X-brace.
(b): Structure of type K-brace.

High of one panel
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Figure (11): Relationship between CB and CT
for a tower of type K-brace configuration with
equal panels.
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Figure (12): Relationship between FB and FT
for a tower of type K-brace configuration with
equal panels.
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Figure (15): Communication tower idealized as a beam.

a: Equivalent beam
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b: Communication tower
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Pea ™S “
() (b)
Figure (16): Angle of the main leg of tower.

a: Tower of type X-brace  b: Tower of type K-brace
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Figure (17): Effect of the angle of main leg on tower volume.
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