00

Simulation of Scheduling Production System by Using Integrating Simulation Models with Artificial Neural Network Model

Dr. Z. I. AL-Daoud Assistant Professor College of Engineering University of Baghdad Ouf A. Shams M.Sc. Student College of Engineering University of Baghdad

ABSTRACT

Traditional methods of dealing with finding the relationship between the inputs data of simulation models and the outputs data fail or takes a long time to find this relationship. Artificial neural networks (ANNs) have the ability to learn complex relationships between inputs and outputs. Their use can greatly enhance simulation models and allow for more accurate representations of real life scenarios. This paper is concerned with the application of the mechanism of integrating simulation models with artificial neural network (ANN) model. This mechanism was tested by integrating simulation models of re-tubing heat exchangers line (RTHEL) with ANN model to schedule entering exchangers to inside re-tubing workshop. The result of applying this mechanism of integration in system (RTHEL) was in reducing completion time of re-tubing batches of heat exchangers by about (12.5%).

الخلاصة

النظريات التقليدية المستخدمة لأيجاد العلاقة بين البيانات الداخلة لنماذج المحاكاة والناتجة منها قد تغشل أو تأخذ وقت طويل لأيجاد هذه العلاقة. شبكات الخلايا العصبية الأصطناعية لها القابلية على التعلم لأيجاد أصعب العلاقات بين المدخلات والمخرجات (النواتج). أن أستخدام هذه الشبكات يحسن نماذج المحاكاة كثيراً وتسمح بتمثيل أدق لسيناريو هات العمل الحقيقية للأنظمة. يهتم هذا البحث بدراسة تطبيق آلية تكامل لنماذج المحاكاة بنموذج لشبكة خلايا عصبية أصطناعية. هذه الآلية أختبرت عن طريق تكامل نماذج المحاكاة أعادة تأهيل المبادلات الحرارية مع نموذج لشبكة خلايا عصبية أصطناعية. هذه الآلية أختبرت عن طريق تكامل نماذج المحاكاة لخط أعادة تأهيل المبادلات الحرارية مع نموذج لشبكة خلايا عصبية أصطناعية لجدولة دخول المبادلات الى داخل ورشة أعادة الت دربيق آلية التكامل هذه على خط أعادة تأهيل المبادلات سوف يقال من الوقت الكلي لأعادة تأهيل دفعات من المبادلات الحرارية بمقدار (١٠٢٠ %).

KEYWORDS Integration; Simulation Models; Artificial Neural Network; Scheduling

INTRODUCTION

The risk of failing to complete activities and entire industrial projects on time is critical element of project management. Therefore, the decision making of scheduling is important to complete manufacturing the products on desired time. The importance of decision making in scheduling

Z. I. AL-Daoud	Simulation of Scheduling Production System by
Ouf A. Shams	Using Integrating Simulation Models with Artificial
	Neural Network Model

production lines for complete all activities on time needs for an estimation tool for both engineers and managers.

Simulation offers a powerful tool to study, planning and improving simple and complex systems. In some cases of decision making by using simulation models, there is a difficulty to find the relationship between inputs data and outputs data. Therefore, intensive interest to use (ANNs) with simulation because; ANNs are effective tools capable of learning complex relationships between inputs data and outputs data and outputs data (**G. Roberts 2004**).

One method of integrating neural networks with simulation models is to simply use a separate program such as NeuralWorks (**NeuralWare 2006**) to develop a neural network, provide it with the desired inputs values, obtain the outputs and use outputs as parameters to the simulation program.

A generic approach for integrating simulation models with external systems such as neural networks is required. This approach should be able to encapsulate these external processes and provide standard access methods for exchanging information with the simulation models.

The objective of this paper is to develop a mechanism of integration discrete-event simulation (DES) models of RTHEL with ANN model to scheduling enters of heat exchangers to inside re-tubing workshop (find best array) with smallest completion time of re-tubing it.

SIMULATION MODELS

Building a simulation model can be a difficult and time-consuming task, it will be useful if decision maker could reuse a simulation model if possible and change it to solve a different problem or evaluate another option. Thus, it is desirable to have adoptable simulation models that are easy to change with little or no programming effort.

The RTHEL is one of primitive production lines; where it depends largely on performance, skills and experience mankind; and also for separation this line from automation. Therefore, there are two main reasons which cause a big varying in times of activities. The first reason is human factors and the second reason is the ancientness of machines and tools which they are using in this line. This leads to separate from recording times of all activities.

According to that, there is no history data for all activities times of this re-tubing line. For this situation (no history data exist), the suitable form to estimate the times of activities is (minimum, most likely and maximum values) (**Richard B. 2004**). Therefore, in this work a use of PERT/CPM technique to estimate the times of activities from eq. (1), concurs the critical path (C.P) and calculate the probability to meet the desired date from eq. (2) and **Table 1**.

$$ET = \frac{(T_a + 4T_m + T_b)}{6}$$
(1)

$$Z = \frac{(D - T_E)}{S_{cr}}$$
(2)

$$\boldsymbol{S}_{cp} = \sum_{i=1}^{n} \boldsymbol{S}$$
(3)

$$S = \frac{(T_b - T_a)}{6} \tag{4}$$

Number 4

Where: ET = Expected Activity Time.

 \bigcirc

- $T_a = Optimistic Duration.$
- $T_m = Most Likely Duration.$
- $T_{\rm b}$ = Pessimistic Duration.
- σ = Standard Deviation of Activity Duration.
- σ_{cp} = Standard Deviation of the Critical Path.
- n = Activities Number of the Critical Path.
- Z = Number of Standard Deviations (of a Standard Normal Distribution) that the Project, Due Date is from the Expected Completion Time.
- D = Desired Completion Data for the Project.
- T_E = Expected Completion Date for the Project.

Table 1: Standard Normal Cumulative Distribution (Mario F. Triola 2005)

Ζ	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5519	0.5359
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.4										
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.0915	0.0930	0.0985	0.7019	0.7054	0.7422	0.7123	0.7486	0.7517	0.7549
0.7	0.7237	0.7291	0.7642	0.7673	0.7704	0.7422	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
0.9										
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8413	0.8458	0.8686	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8830
1.2	0.8849	0.8869	0.8888	0.8708	0.8729	0.8944	0.8962	0.8980	0.8997	0.8830
1.2	0.9032	0.9049	0.9066	0.9082	0.9099	0.0944	0.9131	0.9147	0.9162	0.9177
	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.4										
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	.09394	0.9406	0.9418	0.9429	0.9441
1.6	0.9332	0.9345	0.9357	0.9370	0.9382	.09394 0.9505	0.9400	0.9418	0.9429	0.9441
1.7	0.9452	0.9403	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
1.9	0197120	007.27	019.120	019.02	0.5700		0197100	0.9.20	009.101	
2.0	0.0550	0.0550	0.0502	0.0500	0.0502	0.0500	0.0003	0.0000	0.0013	0.0017
2.1	0.9772 0.9821	0.9778 0.9826	0.9783 0.9830	0.9788 0.9834	0.9793 0.9838	0.9798 0.9842	0.9803 0.9846	0.9808 0.9850	0.9812 0.9854	0.9817 0.9857
2.2	0.9821	0.9820	0.9850	0.9834	0.9838	0.9842	0.9840	0.9850	0.9854	0.9857
2.2	0.9893	0.9896	0.9898	0.9901	0.9873	0.9906	0.9909	0.9911	0.9913	0.9916
	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9913	0.9932	0.9934	0.9936
2.4										
2.5	0.0020	0.0040	0.0041	0.0042	0.0045	0.0047	0.0040	0.0040	0.0051	0.0052
2.6	0.9938 0.9953	0.9940 0.9955	0.9941 0.9956	0.9943 0.9957	0.9945 0.9959	0.9946 0.9960	0.9948 0.9961	0.9949 0.9962	0.9951 0.9963	0.9952 0.9964
2.7	0.9953	0.9955	0.9956 0.9967	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964 0.9974
	0.9903	0.9900	0.9907	0.9908	0.9909	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
2.9	3,2201		5,770	3,7700	0.2201	3,2201	3,7700	3,7700	3,5500	3.7700
3.0	0.0007	0.0007	0.0007	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
3.1	0.9987	0.9987 0.9991	0.9987	0.9988	0.9988 0.9992	0.9989	0.9989	0.9989	0.9990	0.9990 0.9993
3.2	0.9990 0.9993	0.9991	0.9991 0.9994	0.9991 0.9994	0.9992	0.9992 0.9994	0.9992 0.9994	0.9992 0.9995	0.9993 0.9995	0.9993
	0.9995	0.9995	0.9994	0.9994	0.9994	0.9994	0.9994	0.9995	0.9995	0.9993
3.3	0.9995	0.9995	0.9995	0.9990	0.9990	0.9990	0.9990	0.9990	0.9990	0.9998
3.4	5.7771	5.7771	5.7771	5,,,,,,	0,,,,,1	5,7771	5.2221	5,7771	5,7771	5.7770

Z. I. AL-Daoud Ouf A. Shams Simulation of Scheduling Production System by Using Integrating Simulation Models with Artificial Neural Network Model

3.50 and	0.9999					
up						

Therefore, the use of the most familiar technique for building the DES models of RTHEL which is Network Technique; because this technique shows the interdependencies and relationships between events and activities. There are other reasons of using network technique for building model. First, the decision to use PERT/CPM technique is to estimate time of each activity and which activities are critical, where PERT is one of network's techniques. Second, network is easy to change with little or no programming effort and change it to solve a different problem. Third, network is a suitable model to DES, because network model can be make changes in it; when changing occur at discrete periods of time in system which network represents it.

Simulation models of RTHEL to re-tubing several types of heat exchangers are building and run by using *simulation software* which develops by using Visual Basic 6.0 language. **Fig. 1** show the main window of software, using this window the data is entered to *Master Database* of software or doing any change on this data. **Fig. 2** show the window of simulation models, using this window a simulation model of re-tubing one heat exchanger is built and run it to estimate completion time, concurs (C.P) and calculate the probability to meet the desired time. **Fig. 3** show the window which contain the draw of network (simulation model).

						1	Vetwork	System	Copy Exchanger	
						New	. Line	ata Remove		
xchan		• E3	15	-		ZT	able	Scheduling		
		and a second								
Тура		O.D		MWT/BW	and the second second	bes no.	Muteria			
U-TUE	E	3/4"		14		451	C.S.	22		
Activi	hr l	Ta		Tm	Tt					
н		1.5		2	3	_				
		-	De		-	_	100.0			
	-			cription	E O EL O A			writy.		
		UNDLE ST	RUC	TURE CONN	ECTION					
e Acti				6	Te	ŝ	V		escription	Priority
STA			0		0		0		ART STATE	0
A		0.165	0.25	0.5	0.278	0.056	0.003		TUBES BUNDLE	1
B		2.5	- 4	5	3.917	0.417	0.174		NLE CUTTING	2
0	_	14	16	20	16.333	1	1		HEET DRILLING	3
0	_	7	8	10	8.167	0.5	0.25		BUTTS OF TUBES	4
E	_	6	6.5	8	6.667	0.333	0.111		6 TUBES SHEET	5
6		10	22	25	21.833	0.167	1.362		LLING OF BUNDLE VFFLES AND TIE RODS	7
H	_	1.5	2	3	2.063	0.25	0.062		ICTURE CONNECTION	8
	_	7	7.5	8	7.5	0.25	0.062		INTO BUNDLE STRUCTURE	9
K	_	1	2	25	1 917	0.762	0.020		TURES PROJECTION	11
2 1		12	18	29	17.333	1.333	1.777		S EXPANDING	12
		4	5	8	5.333	0.667	0.445		UTTING FACES	13
3 M		1	1.5	2	1.5	0.167	0.028		SPECTION	14
3 M		5	6	8.5	6.25	0.583	0.34	CUTTING SHEE	T PLATES OF BAFFLES	15
1 N		0.5	0.75	1	0.75	0.083	0.007	WELDING SHEE	T PLATES OF BAFFLES	16
N N					4.583	0.417	0.174	DRILLING HOLES ON	SHEET PLATESOF BAFFLES	17
4 N 5 O 6 P 7 Q		3.5	4.5	6						
4 N 5 O 6 P 7 Q 8 R		35	9	11.5	9.25	0.583	0.34		VELDING LOCALES	18
5 0 5 P		3.5					0.34 0.25 0	CUTTING FINA	A STATE	19 20

Fig. 1: The main window of simulation software

Fig. 2: The window of simulation models

Fig. 3: The window drawing of simulation models

ARTIFICIAL NEURAL NETWORKS (ANNs)

The inspiration for artificial neural networks originated from the study of processes in the human brain. Neural networks are comprised of multiple simple element called artificial neurons **Fig. 4**, the network acquires knowledge through a learning process. The inter-neuron connection strengths known as synaptic weight are used to store the knowledge (**Haykin S. 1994**). This learning ability of neural networks gives an advantage in solving complex problems whose analytic or numerical solutions are hard to obtain (**Rafiq MY. 2001**). The scheduling production line is one of those problems.

Fig. 4: Artificial neuron

The Design of Artificial Neural Network Model

The problem presented in this paper is based on optimum design and prediction utilizing a multi-layer feed-forward neural network (MLFFNN) architecture and new supervised learning algorithm.

The model has been developed in three phases; the modeling phase, the training phase and the testing phase. The modeling phase involves the analysis of data, the identification of time estimation parameters and the selection of the network architecture and of the internal rules. The training phase requires the preparation of the data and the adoption of the learning law for the training. The testing phase evaluates the prediction accuracy of the model.

The Modeling Phase

The modeling phase includes the design of the neural network architecture. It is a complex and dynamic process that requires the determination of the internal structure and rules (i.e., the number of hidden layers and the type of activation function). The model is designed according to the type of the data and the response required by the application.

The current model has been designed to include an input layer of (p) processing elements (neurons) corresponding to the (p) input parameters and an output layer of one processing element (neuron) as the target. One hidden layer of (h) processing elements was selected according the nature of problem (**D. T. Pham 2003**) as shown in **Fig. 5**.

Fig. 5: The architecture of MLFFNN of problem in this work

Therefore, an effective number of processing elements is usually determined by trials for the hidden layers, since there is no rule to determine it (Albino V. 1998), (Setyawati BR 2002). In this work, the author finds equation can be determine the number of processing elements for the hidden layer of neural network of this work as shown in eq. 5.

(5)

h = p!

Where: h = Number of nodes in hidden layer. p = Number of nodes in input layer.

A neuron basically computes the sum of their weighted inputs, subtracts its threshold from the sum, and transfers these results by a function. This can be explained mathematically as (Eq. (6)):

$$Y=f(net) \tag{6}$$

$$Net = \sum_{h=1}^{H} w_h x_p \tag{7}$$

Where: Y =Output of a neuron.

 w_h =Weight associated with the input *p*.

- h = Number of nodes in hidden layer = $\{1, 2 \dots H\}$.
- x_p = Input units.
- f =Transformation function.

The neurons are interdependent on each other via weighted connections. These weights form the power of the influence between the neurons. All neurons are connected to the other neurons in the next layer.

The function of the hidden layer is to extract and remember the useful features and the sub features from the input patterns to predict the outcome of the network (values of the output layer) (**Rafiq MY. 2001**). The characteristics of the activation function are important since it defines the behavior of the network model. An activation function is used because several impacts, if applied

Z. I. AL-Daoud	Simulation of Scheduling Production System by
Ouf A. Shams	Using Integrating Simulation Models with Artificial
	Neural Network Model

additively, might cause these quantities (i.e., target values) to fall below the lower or rise above the upper bound.

The function adopted for the current completion time estimation problem was a linear function, given by eq. 8.

Linear function = $c \times net$

(8)

Where: c = neuron gain.

To learn this neural network, author decides to use supervised learning to learn MLFFNN of this work because; the inputs and the output of ANN are known. In general, there is a useful correspondence between the type of training that is appropriate and the type of problem. Additionally, there is a relationship between the number of learning epochs and the desired characteristics of the output (**D. T. Pham 2003**).

According the nature of problem of this work and the desired characteristics of the output, the ANN use to scheduling the entering of heat exchangers to inside workshop and find the best array from multi arrays, it is the same process to find minimum value from multi values. For this purpose, ANN need to one learning epoch to find the best array. Also, weights between input-hidden layers (W^{α}) are fixed; and learning rate (η) and error goal (eg) are equal to zero because; there is no need to iterative training.

Therefore, author applies a new supervised learning algorithm to train the neural network. New supervised learning algorithms represent one of attempts to improving the learning speed of these learning algorithms for example; BP algorithm, which are still too slow to be applied in real-world applications even for a very simple problem.

The Training Phase

An important issue to be resolved when applying ANNs to a problem is to determine which training procedure to adopt. In this work a new supervised learning algorithm is applied to learn neural network. The steps which use to training the neural network in this work to find the best array with minimum value of completion time are explained as follows:

<u>Step 1</u>: Input units (x_p) (p = 1, 2 P); receive input signal U_p .

$$x_p(k) = U_p(k) \tag{9}$$

<u>Step 2</u>: The interconnection weight (W_p^{xu}) of input-hidden layer have to be assumed (1) for each connection.

<u>Step 3:</u> Compute the outputs of hidden layer (X_h) by use the following equation:

$$X_{h} = \sum_{p=1}^{P} W_{p}^{xu} x_{p}$$
(10)

Where: X_h = outputs of nodes of hidden layer.

 $x_p = nodes of input layer.$

p = Number of nodes in input layer = {1, 2 P}

Number 4 Volume 14 December 2008 Journal of Engineering

 W_p^{xu} = interconnection weight of input-hidden layer.

<u>Step 4</u>: The interconnection weight (W_h^{yx}) of hidden-output layer will be assumed as below:

- For the smallest value (W_h^{yx}) equal (1)
- For the other values (W_h^{yx}) equal (0)

Step 5: Compute the output of output layer (Y) by use the following equation:

$$Y = \sum_{h=1}^{H} W_h^{yx} X_h \tag{11}$$

Where: Y = output of output layer (output of network).

 $X_h =$ outputs of hidden layer.

h = Number of nodes in hidden layer = $\{1, 2 \dots H\}$.

 W_h^{yx} = interconnection weight of hidden-output layer.

THE INTEGRATION MECHANISM

The situation of analysis and decision making in fast paced, rapidly changing venues; such as job shop scheduling. In this situation, there is simply no time to perform multiple replications for the selected values of the decision variables. Also, some times it is difficult to solve some problems with traditional technique.

The problem of this work; which is scheduling the entrees of heat exchangers to inside retubing workshop, so as to finding the best array of entrance of the batch of heat exchangers to re-tubes it with smallest completion time of re-tubing. It is difficult to solve it through simulation models just and also it takes long time to get right decision. Therefore, it is necessary to integrate simulation models with other tool to solve this problem. Simulation models are integrated with ANN model because; ANN provides an effective tool for evaluating relationships between input data and result output.

Integrating simulation with other systems involves a careful analysis of the nature of the information that needs to be exchanged. Ideally, the integration mechanism should be generic enough to be used to link simulation models to ANN models as well as many other elements such as databases as shown in **Fig. 6**.

Fig. 6: Integrating Simulation with ANN and Databases

The mechanism of integrating simulation models with ANN model which is used in this work; is explain as follows:

1. The start begins with insertion of the order of manager RTHEL; which represent the batch of heat exchangers that wants to re-tubes it. This order takes as the inputs to ANN model.

Z. I. AL-Daoud	Simulation of Scheduling Production System by
Ouf A. Shams	Using Integrating Simulation Models with Artificial
	Neural Network Model

- 2. The interconnections between nodes of input-hidden layers and hidden-output layers are fully connected.
- 3. There are two connections (one way) between hidden layer master database of software and master database simulation models.
- 4. There is a connection (two ways) between hidden layer and simulation models to transfer models for each node in hidden layer.
- 5. The nodes in hidden layer represent the probabilities of array. In each node, the simulation models are merging and then, compute the forward time (completion time).
- 6. There is a connection (one way) between output NN and simulation models to transfer the best array. Then, compute the backward time of this array to detect the critical path.

Fig. 7 shows the integration mechanism between simulation models and ANN model in simulation software and how the data of exchangers transfer between models.

Fig. 7: The integration mechanism between simulation models and ANN model

The simulation software is designed to scheduling the entrees of heat exchangers, so as to find the best array to enter exchangers inside re-tubing workshop by using integrating simulation models

Number	4 Volume	14 December	2008	Journal of Engineering
--------	----------	-------------	------	------------------------

with ANN model. Then, compute the completion time of this array and detects the critical path of this production process. Also, evaluate the probability to meet the desired completion time. **Fig. 8** show the window of scheduling, from this window it can find the best array of entering batch of heat exchangers by merging simulation models of these exchangers and run it to estimate completion time, concurs (C.P) and calculate the probability to meet the desired time. **Fig. 9** show the window which contains the table of ANN results. **Fig. 10** show the window which contain the draw of merging networks (merging simulation models).

New Chang	Up D Ign		Delet	-	erual Run	Exc					Order Order Neural	Net 🗖			nalyses ack
Exchang	er		1	D	estred 1	time		Z		Simul	ation				
No schoroge	14	No	Exchanger	Father	Sen		No	Activity	E.S.T	L.S.T	Eachanger	LET	E.F.T	Slack	
0563A	3	1	056.2A	END	M	_	1	START	0	D	E 205-8	0	0	0	100
E315	2	2		N	M	1	2	0	0	5.583	E205-8	67.195	72.778	67.195	100
E 205-B	1	3		н	L	11	3	P	5.583	6.333	E205-8	72.778	73.528	67.195	
		4	-	٤.	ĸ	- E	4	Q	6.333	15.583	E205-8	73.528	82.778	67.195	
		5		×.	1	4	5	R	15.583	23.833	E206-8	82,778	91.028	67.195	
		6		1	H	3	6	A	0	0.278	E205-8	0	0.278		
		7		н	6		7	8	0.278	10.778	E205-8	0.278	10.778		
		8		6	F	16	8	C	10.778	55.778	E205-8	10.778	55.77B		
		9		н	E		9	81	10.778	21.111	E205-8	34.529		23.751	
		10		E	D	4	10	A	21.111	21.389	E315	143.333		122.222	
		11		D	C	- 4	11	C1	55.778	100.778	E205-8	55,778	100.778	0.	
		12		r .	B	2	12		21.363	25.305	E315	143.611		122.222	
		13		C	B	2	13	F	21.111	71.444	E205-8	44.862		23.751	
		14			A .	0	14		25.306	25.584	OSE3A	185.5		160.194	
		15	121202020	A	STAR		15	D	55.778	73.945	E205-8	64,528	82.695	8.75	
		16	E315	END	N	1000	16	.8	25.584	27.667	05E3A	185.778		160.194	
		17		N	м	5	17	C	100.779	117.111	E315	147.529	162.061	46.75	
		18		н	L	17	18	01	100.778	118.945		100.778	118.945	0	
		19		L	K	1	19	F.	71.444	93.277	E315	155.362	177.195	83.918	
		20		К.	1		20	E	73.945	87.945	E205-8	82,695	96.695	3.75	
		21		1	н	2	21	D	118,945	127.112		163,861	172.028	44.916	
		22		H	G	100	22	C	117.111	121,278		185.028	193,195	71.317	
		23		6	F	21	23	E1	118.945	132.945		118.945	132.945		
		24		H	E	6	24	E	132.945	139.612		172.028	178.695	33.083	
		25		E	D	8	25	F	93.277	103.444	05E3A	187.861		94.584	
		25		D	c	11-	26	D S	127.112 23.833	131,445	05E3A E205-8	193.195 91.028	197.528 95.195	65.083	
.P.	.8	121	C C	1	D1	EI	1	K	L	1	4 H	N	N	END	Seep. To
	10.5		45 4	5 1	8.167	14	11.83	3 4.16	7 40.3	33 24	5 533	3 1.5	1.5	0	222.11
	1.167	1	667 1.6	67	0.5	0.667	0.5	0.5	1.3	33 2.1	67 0.65			U	11.225
ng E	205-8	E2	05-B E20	5-8 E	205-8	E205-8	E205-0	B E205	8 E201	5-B E20	15-B E310	E 311	5 05E 3A	05E3A	

Fig. 8: The window of scheduling

Exchange E315 E216 E205	H C		_	-		Draw					der N eural	let o	Backw	ord SI	ack
E315 E216				Des	ired Ti	ne	2	1	Si	mulation	1				
E315 E216		No Inst	£Layar	Weigh	Hitle	n Lapar	Impletion T	r Weigh	Output	1773		LET	E.F.T	Slack	2.0
			205	1	E	205	222.028	1	E20	5		0		0	
			216			216			E21			0	0.278	0	
and the second diversion of th	1		315			315			E31			0.278	10.778	0	
	6 C	4		1		205	222.111	D				0.778	55.778	0	
		5				315		1				34.529	44.862	23.751	
		5			E	216						43.722	144	122.611	
		T		1	E	216	226.972	0				75.778	100.778	0	
		8			E.	88				1		144	146	122.611	
		9		17.	E	315	54.022	1 12-				14.862	95.195	23.751	
		10		1	E	216	201.089	0				34.528	82.695	8.75	
		T1		121	E	316						00.778	118.945	0	
		12			E.	205						51.945	153.612	\$1.167	
		13		1	E	315	226.528	D				12.695	56.695	8.75	
		14		200	E	205	1000000	1 1 2				18.945	132.945	0	
		75			E	216						145	147.583	122.611	
		16		1		315	228.279	D				15.195	96.635	23,751	
		17				216	1000000	1.1				16.695	100.778	8.75	
		18				205						47.583	149	122.611	
		130 AL	-		- 250	(202)	1. Alexandre 1. Al					149	151	122.611	
												00.778	132,945	8.75	
												151	151.2/8	123.528	
												32.945	144.778	0	
												51,278	155.195	123.528	
												74,988	177.571	148,599	
												44.778	149.945	U	
												48.945	189.278	0	
												89.278	213.778	0	
P.	8	C	C1	D	1	E1	1	K	L	м	н	M	N	END	Seno. Th
. 1	U.5	45	45	18.1	67	14 1	1.833	4.167	40.333	24.5	1.417	5 33	1.5	- U -	222.028
	167	1.667	1.66	7 0.	5 0	667	0.5	0.5	1.333	2.167	0.25	0.66	7 0.16	7 0	11.308
Contract in succession of the second s	205	E205	E 201					E205	E205	E205	E216	E31			
9 6		2000	5.200	60	~ E				4699	C.C.O.P	22.00	2.51	e an	- L919	

Fig. 9: The window of scheduling which contains the table of ANN results

Fig. 10: The window drawing of merging simulation models

THE TESTING PHASE

After applying the integration mechanism, the output of this mechanism is tested by using validation technique called "*Validation Using Testing against Historical Data*". In this technique, author compared the results of simulation software with the actual data (historical data) of completion time for re-tubing some batches of heat exchangers as shown in **Table 2**.

 Table 2: Results of simulation software and actual data of completion time for re-tubing some batches of heat exchangers

No. of	Re-tubing Completion Time												
Batch		Probability of Array											
Dutter	1	2	3	4	5	6	Actual						
1 st	315.277	303.777	318.638	325.833	337.972	329.833	345.5						
2nd	216.111	225.277	228.528	242.195	230.972	227.389	247						
3rd	319.994	305.994	326.638	340.5	311.856	322.5	348						
4th	219.028	228.278	233.972	247.389	226.528	238.278	252.5						

Then, it can be recognized from **Table 2** that the results of integration mechanism are close from the historical data of real system. This result leads that mechanism of integrating simulation models with ANN model is acceptable and it can represent the real system for finding best array.

RESULTS

The run of integration mechanism takes the shortest time to find the best array to entering the batches of heat exchangers to inside re-tubing workshop with its completion time and also concurs the (C.P) without any error in runs. The results of simulation software (simulation data) of completion time for re-tubing some batches of heat exchangers are summarized in **Table 3**, and then convert to **Fig. 11**.

Number 4 Volume 14 December 2008 Journal of the second second

Journal of Engineering

 Table 3: Simulation Data and Actual Data of Completion Time for Re-tubing some Batches of Heat

 Exchangers

	Com	Completion Time of Re-Tubing Batch of Heat Exchangers								
Batch	First	Second	Third	Fourth						
Actual Data	345.5	247	348	252.5						
			• • •							

From **Fig. 11**, it can be seen that completion time of re-tubing batch of heat exchangers has decreased about (12.5%) after applying the mechanism of integration simulation models of re-tubing heat exchangers with ANN model

Fig. 11: Histogram of Completion Time for Re-tubing some Batches of Heat Exchangers

CONCLUSIONS

An approach has been presented to achieve the integration of simulation models with ANN model. The approach was designed to allow for future integration with other types of models as well. Integration of the ANN model with re-tubing simulation models allows for more accurate representation of the model life energy and the second to be accurate to a second to a second

representation of the real life operations as complex relationships between the heat exchangers needs to re-tubes it and the best array of entering these exchangers to inside re-tubing workshop.

REFERENCES

*Albino V, Garavelli AC. A neural network application to subcontractor rating in construction firms. J Project Manage 1998; 16 (1): 9-14.

*D. T. Pham and X. Liu. Neural Networks for Identification, Prediction and Control. Springer-Verlag: New York. 2003.

*G. Roberts. Intelligent Mechatronics. Computing and Control Engineering Journal, IEE Control Division, Vol.4, No.6, December 2004, PP. 257-264.

Z. I. AL-Daoud	Simulation of Scheduling Production System by
Ouf A. Shams	Using Integrating Simulation Models with Artificial
	Neural Network Model

*Haykin S. Neural Network: A Comprehensive Foundation. New York: Macmillan; 1994.

*Mario F. Triola. Essentials of Statistics. New York: Pearson. 2005. 2nd edition. NeuralWare, 2006. Neural works Professional. Detailed information available on <u>http://www.neuralware.com/</u>. Version: 2006.

*Rafiq MY, Bugmann G, Easterbrook DJ. Neural network design for engineering applications. Comput Struct 2001; 79: 1541-1552.

*Richard B. Chase, F. Robert Jacobs and Nicholas J. Aquilano. Operations Management for Competitive Advantage. New York: McGraw-Hill, 2004, 10th edition.

*Setyawati BR, Sahirman S, Creese RC. Neural networks for cost estimation. AACE International Transactions; 2002, ABI/IN-FORM Global: EST.13.1-EST.13.9.

NOMENCLATURE

Symbol	Description		
ANN	Artificial Neural Network		
ANNs	Artificial Neural Networks		
C.P	Critical Path		
CPM	Critical Path Method		
С	Neuron Gain		
D	Desired Completion Data for the Project		
DES	Discrete-Event Simulation		
ET	Expected Activity Time		
e.g	Error Goal		
f	Transformation Function		
h	Number of Nodes in Hidden Layer		
n	Activities Number of the Critical Path		
MLFFNN	Multi-Layer Feed-Forward Neural Network		
PERT	Program Evaluation and Review Technique		
р	Number of Nodes in Input Layer		
RTHEL	Re-Tubing Heat Exchanger Line		
Та	Optimistic Duration		
Tb	Pessimistic Duration		
Tm	Most Likely Duration		
$T_{\rm E}$	T _E Expected Completion Date for the Project		
U			
W	The weight of interconnection neuron		
W ^{xu}	Weighted Interconnection for Input-Hidden Layers		
W^{yx}	Weighted Interconnection for Hidden-Output		
x	Input units		
X	The Output of Hidden Units		

N	umber 4	Volume 14 December	2008	Journal of Engineering
	Y	The Output of Neural N	letwork	
		The Number of Stand	lard Deviations	(of a Standard
	Z	Normal Distribution) th	nat the Project Di	e Date is from
		the Expected Completion	on Time.	

	1 1
σ	Standard Deviation of Activity Duration
$oldsymbol{S}_{cp}$	Standard Deviation of the Critical Path
η	Learning Rate