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ABSTRACT 

A numerical method is developed for calculation of the wake geometry and 

aerodynamic forces on two-dimensional airfoil under going an arbitrary unsteady 

motion in an inviscid incompressible flow (panel method). The method is applied to 

sudden change in airfoil incidence angle and airfoil oscillations at high reduced 

frequency. The effect of non-linear wake on the unsteady aerodynamic properties and 

oscillatory amplitude on wake rollup and aerodynamic forces has been studied. The 

results of the present method shows good accuracy as compared with flat plate and for 

unsteady motion with heaving and pitching oscillation the present method also shows 

good trend with the experimental results taken from published data. The method 

shows good results for a wide range of unsteady motion of a two-dimensional airfoil. 

 

:الخلاصة  

خلو  ططةواس ائوايلا الاد واد كاحو  تحو   الاعقوابتم تطويش طشيقة عذدية لحساب القوو  الووايةوة كلو   

. طاقوو  الطشيقووة علوو  )طشيقووة الاوادووا   جشيوواغ مةووش لووض  كمةووش حادوو  ل   وو اطلتووااةش كش ووة مةووش ط واص ووة 

 يووةرك حةمووة اك ضاصي حووشب د زدووزب  الووزب مطةوواسالالمطةواس الووزب ياووذا دحش ووة وجايةووة كدضاكيووة كجووو  ط ةئووة  ووزل  

كتااةشاتوا علو   عل  الخواص الووايةة كحةم ال لةا للحش ة الاك ضاصية ل عقابعالةة. اغ تااةش ال صشف ال خطلا 

تموو  دساهوو وا. اكاووح  الطشيقووة كةوو  خلوو  المطةوواس كالقووو  الووايةووة الم ولووذ   دالاعقووابالال فوواف الحا وو  

 شو ةوة كالا حئايةوةالالحش ة الاك ضاصيوة  زل  واغ را طا حوس   ط  الاهطح المس وية كالةا   ايج جةذ  ا المس خذطة

تطادق جةذ طن كة  ال صشف ط  الئ ايج ال ملةة الم حصلة طن دحوو  هوادقة. اغ الطشيقوة الحالةوة ت ووش اظوش  

 كلمذيا  كاه ة ولا الحش ة ال ةش طس قش  لمطةاس ائايلا الا ذ.  ايج جةذ  

KEYWORDS 

 Airfoil Oscillations, Panel Method, Unsteady Aerodynamics, Aerodynamic 

Coefficients, Hydrofoils, Lift, Pressure Distribution 

 

INTRODUCTION: 
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One of the basic assumptions of airfoil theory deal with the presence of 

stagnation point at the sharp trailing edge, what is commonly called Kutta Condition. 

While the existence of this condition is well established for steady non-separated flow 

situation, its validity for time-dependent cases is still controversial (Hess & Smith 

1966). 

It can be shown that Kutta Condition can be applied for force and moment 

prediction in unsteady small amplitude non-separated high Reynolds Number flows. 

As a first approximation it is reasonable assume that the flow can be regarded as 

inviscid so long as the flow in the region of the trailing edge is not separated.  

For general unsteady motion it is possible to obtain numerical solutions by 

imposing either the condition of finite velocities about the trailing edge or the 

condition of zero loading about the trailing edge (Basu and Hancock 1978).  

The most comprehensive numerical solution is due to (Gesing 1968) and is 

based on (Hess & Smith 1966) procedure to solve two-dimensional airfoil in steady 

incompressible flow by using source and vortex distribution on the surface and by 

using Kutta condition invoked velocities equal in both magnitude and direction at 

midpoint of the two trailing edge elements. The method discrete vortex shedding from 

the trailing with strength equal to the negative vortex strength of the airfoil, it found 

that the approach gives good behavior of the wake and loads when the airfoil move in 

unsteady motion. (Basu and Hancock 1978) developed a numerical method to 

calculate two-dimensional airfoil under going an arbitrary unsteady motion in an 

inviscid incompressible flow. The method of Gesing is modified by adding additional 

panel at the trailing edge with length and angle depends on the solution of airfoil 

vorticity and by application of zero loads at the trailing edge, so that, a system of non-

linear equation is produced due to this element and with iteration technique is used to 

solve these equations. Good results obtained with this modification as compared with 

Gesing. (Chen and Sheu 1980) used the interior singularities to solve the unsteady 

incompressible inviscid airfoil. Same approach of Basu and Hancock for oscillations 

motion analysis although results have been presented for a sudden change in 

incidence at high frequency oscillation and entry into a sharp-edge gust, the method is 

completely general. (Kats and Weihs 1981) used a thin airfoil theory to solve the 

unsteady motion, as compared with other published experimental data. It is found that 

when the trailing edge displacement is small the range of linearized theory 

calculations using Kutta condition can be extended far beyond reduced frequency 

larger than 1. (Poling and Telionis 1986) presented two cases of unsteady flow field 

over a NACA 0012 airfoil at an angle of attack, the results indicates that the unsteady 

Kutta condition proposed by Gesing is examined and some evidence is provided for 

its support. 

In the present work will adapt the method stated by (Katz and Plotkine 1991) 

which created to solve the unsteady flow about thin (Flat Plate) airfoil, and then 

coupled with Hess & Smith method to solve thickness problem (e.g. NACA 0012). 

Some modification presented to solve airfoil load coefficients which illustrated in 

numerical procedure. 

 

MATHEMATICAL MODEL: 

 The flow field is assumed to be potential (inviscied and irrotational) and 

incompressible. In that case velocity potential satisfies the laplace equation: 

0         (1) 
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 The equation is the same, both for steady and unsteady flows. Owing to that, 

methods for steady cases can be applied for the solution of unsteady flow problems, 

as well. Unsteadiness is introduced by the unsteady boundary condition: 

 0. nQ


        (2) 

Of the Kelvin theorem: 

 0


Dt

D
        (3) 

And the unsteady form of the Bernoulli equation: 
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In order to define the aerodynamic characteristics of the airfoil, two models 

should be established: airfoil model and wake model. 

 The airfoil model is modeled by (Hess & Smith 1966) method, which enables 

to model airfoil with different shape by using constant source and vortex panel on the 

airfoil surface. 

  Numerical modeling of the wake must be done carefully due to its high 

influence on the lift force generation. To satisfy the unsteady Kutta Condition at the 

trailing edge, the pressure coefficient for the unsteady flow is defined as: 
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 According to that, the difference between the upper and lower surface pressure 

coefficients at the trailing edge is: 
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Where u and l are the upper and lower surface value; 

 The potential difference is: 

 lu             (7) 

 The Kutta condition can be expressed as the uniqueness of the pressure 

coefficients at the trailing edge, which mathematically expressed, takes the form: 

 TEV
t





         (8) 

 From this equation it can be clearly seen that the variation of airfoil circulation 

in time can be compensated by releasing vortices of magnitude γTE. 

 

NUMERICAL METHOD: 

 

The solution for the flow about an airfoil under going an arbitrary time-

dependent motion which started at t = 0 is calculated at successive intervals of time. 

 

tk ( t0 = 0, k=1,2,3…..)      (9) 

 

By a method based on (Hess and Smith 1966) approach to solve steady linear 

incompressible flow about airfoil at time tk, the model of non-linear unsteady 

incompressible flow is shown in Fig (1). 
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The airfoil contour at time tk is replaced by N straight-line elements. A 

uniform source distribution (σi)k and a uniform vorticity distribution (γ)k are placed on 

i
th

 element ( i =1,2,…..,N) where (σi)k varies from element to element but (γ)k is the 

same for all elements on airfoil and the subscript k refer to the time tk. The over all 

circulation (Γk) can be calculated from (γ)k * (airfoil perimeter). 

The unsteady motion of the airfoil is characterized by the presence of the 

trailing vortex wake emanating from the trailing edge of the airfoil. The vorticity shed 

during any time tk is equal in magnitude and opposite in sign to the change in 

circulation about the airfoil during tk.  

 
 

Fig (1): The unsteady motion of a two-dimensional airfoil. 

 

Once the vorticity is shed it moves as a fluid particle subjected firstly to the 

onset flow and secondly to the perturbation velocity due to the airfoil and then to the 

induced velocity due to the remainder of the shed vorticity, this procedure is 

implemented as indicated in Fig (2). From any initial stage the prescribed movement 

of the airfoil during next tk is carried out and the vorticity shed during tk is computed 

from the simultaneous application of the usual Kutta condition at the trailing edge of 

the airfoil and the vorticity conservation low mentioned above. This vorticity is 

placed in the fluid as a line vortex at a location representative of the average fluid 

velocity over the trailing edge locus during tk. Finally, all previously shed line 

vortices are moved to new locations using a predictor-corrector method. As shown in 

the Fig (2). 

 

Bound vortex 

x 
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Fig (2):  (a) Airfoil Moves. (b) Wake Moves (from Hess J. L. 1975) 

 

The solution can be summarized at time tk, there are N+2 unknowns (σi)k ( i 

=1,2,3,………,N) , (γ)k and the ΓW. The basic set of equations can be formulated as 

follows; 

 

1- the condition of zero normal velocity (Qn) at the external midpoint of each airfoil 

element j at time tk such that, 

 

  0
0


kjnQ          (10) 

2- the condition of equal velocities at the midpoint of the two elements on the airfoil 

on either side of the trailing edge is, 

 

kNtkt QQ )()(
1

          (11) 

Where Qt1, QtN: is the total tangential velocity at the midpoint of element 1 and N 

at time tk. 

3- the vorticity conservation low ( the Kelvin's Conditions), 

 

ΓW = Γk – Γk-1          (12) 

 

Where    ΓW = is the Wake Circulation. 

         Γk = is the circulation about airfoil at time tk. 

 

Since the problem is concerned with incompressible flow the formula for the 

induced velocities by source and vorticity distributions are the same as for the 

steady case. Thus the experience gained with the steady (Hess and Smith 1966) 

method carries over to the unsteady problem.  

 

Original wake position  

Former position of the trailing edge 

V∞ 

x 

y 

V∞ 

New airfoil position 
Position of new Shed vortex 

Average position of trailing edge over time step 

(a) 

(b) 

The wake vortices are aligned with total velocity  
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4- The boundary condition of the equations represents the normal velocity 

component due to the motion of the airfoil which is known from kinematics 

equation. Since the strength of the other wake vortices is known from the 

previous time steps. So that, their effect on the normal velocities will be included 

in the boundary condition also. 

5- Solving the set of equations and once the source and vorticity strengths and wake 

vortex have been determined the velocity distribution on the airfoil or at any 

point in the flow field is known. The unsteady Bernoulli's equations namely(Basu 

and Hancock 1978). 

tVV

Q
C P









2

2
2

1        (13) 

Where Q: is the total velocity on the outer airfoil surface and   is the velocity 

potential. 

 

6- The forces and moments are obtained by direct integration of the pressure 

distributions. In calculation of unsteady pressure coefficient, (
t


) has to be 

determined. In the present numerical method the value of (
t


) at the midpoint of 

the j
th

 element at time tk is approximated by; 
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7- The velocity potential ( ) is obtained by integrating the velocity field along the 

x-axis from upstream of the airfoil and then around the airfoil surface 

8- Once the solution at time tk has been determined, the model stepped for time tk+1, 

with the wake pattern calculated from the solution at time tk. The distributed 

vorticity on the wake element at time tk is now assumed to be concentrated into a 

vortex strength (ΓW ) at time tk+1 situated at , 
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The resultant velocity at the center of each of the other concentrated vortices 

in the wake is calculated from the solution at time tk. Then the position of that 

vortex at time tk+1 follows directly. 

A computer program has been developed in FORTRAN power Station, and is 

applied to, 

 

i. Sudden Change in Angle of Attack: 

 

The analytic solution of impulsive incidence (for flat plate thin airfoil) was 

studied by Wagner in 1925 and illustrated in (Yuong 2006), who provided what is 

now referred to as the Wagner Function. The Wagner Function has else where been 

used as a validation of unsteady panel method (e.g. Katz and Plotkin 1991). The lift 
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coefficient ratio )(1
)(

t
tc

c

l

l 


 with  (t) is an approximation to the Wagner 

function, 

 

  tt eet 6.0091.0 335.0165.0             (16) 

 

This equation is valid for angle of attack of 5 deg.   

 

ii. Heaving Oscillation: 

 

The general equations of motion and parametric nomenclature for the 

configuration used to simulate numerical solution are illustrated in Fig (3). The 

equations of motion are shown. From the equations illustrated in the figure the airfoil 

will oscillate up and down the x–axis with amplitude equal to h. this oscillation create 

a velocity on the boundaries of the airfoil showed in terms of u/V∞ and v/V∞. It must 

be note that these velocities must be in concluded in the boundary condition of the 

zero normal velocity. The equations show a harmonic behavior so that, it expected the 

results has these effects. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig (3): Equation of motion of heaving oscillation and nomenclature. 

 

iii. Pitching Oscillation: 

 

 The pitching motion and its equations are illustrated in fig (4). The figure 

shows that the airfoil will translate with pitching motion about a pivot point called xcp. 

The position of this point is changed to study its effect on the airfoil wake and forces 

coefficients. 
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Fig (4): Equation of motion of Pitching oscillation and nomenclature. 

 

 NACA 0008 thick symmetrical airfoil is used in pitching oscillation for a 

mean incidence angle of 0 deg. At high reduced frequency k=20 with amplitude of 

θo=0.01 rad., So that, the results can be compared with those obtained from (Basu 

and Hancock 1978).  

 

RESULTS AND DISCUSSION: 

 

For sudden change in angle of attack calculation presented in Fig (5) is at 

angle of attack equal to 5
o
 and 

 

c

tV
0.25. The results for computation of lumped 

vortex method (LVM) which is used to find the unsteady flow over thin airfoils is 

also shown in the figure for comparison. The LVM depends on using lumped vortex 

on the quarter chord and Kutta condition was valid at third quarter chord of the airfoil. 

The wake rollup calculation and forces such that at each time interval (dt) a vortex 

shed from the Trailing edge where the strength of each vortex is equal in magnitude 

and opposite in sign to the change in circulation of the airfoil bound circulation. This 

procedure is continued for the next time steps. The results obtained is in good 

accuracy as compared with the other approaches, and it could be conclude that at time 

t=0 there are an impulse lift which arises from instantaneous change in   with time as 

shown in pressure coefficient Eq (5). This change in   with time due to acceleration 

of the flow becomes smaller with reduced influence of the starting vortex. 

Fig (6) show that there is a drag force, this force could be divided into two 

components, first is the wake induced downwash and the second is due to fluid 

acceleration these two components calculated and presented in figure. 

 While examining the wake vorticity as presented in Fig (7), it can be observed 

that the first vortices are the strongest and that all vortices have a counterclockwise 
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values. Also if the wake is allowed to rollup, due to the velocity field induced by the 

wake and the airfoil, the shape is as shown in Fig (8). It could be concluding that the 

present method gives at least good behavior and trends for sudden change in angle of 

attack motion of the airfoil. 

For heaving oscillation (Katz and Plotkine 1991), presented a wake shape 

visualizations for a flat plate under going heaving oscillation (Plunging motion), 

corresponding solution were performed with the present Method for comparison. 

Assume that thickness of the airfoil is NACA 0001 (i.e. 1% thickness) instead of flat 

plate. 

 Three results were performed with k = 8.5, k = 2.1 and k =0.6 with amplitude 

h = 0.019. Fig (10,11 and 12), show a very close agreement with (Kats and Plotkine 

1991) results in terms of the shape of the wake and the degree of self induced roll-up. 

 Overall the present method demonstrated excellent qualitative and quantitative 

agreement with published Panel Method data.  

 Other comparisons are performed between experimental wake visualization of 

airfoil NACA 0012 oscillating in different reduced frequencies and amplitudes with 

computational procedure discussed in the previous section and illustrated in Fig (13). 

 Also figures shows wake behavior of the airfoil with lines represents positive 

vortices(clock wise) and lines which represents negative vortices ( counter clock 

wise). So that, with simple procedure solution depending on linear equations the non-

linear behavior of the problem was solved with good accuracy. 

 For the airfoil thickness NACA 0008 the calculation of heaving oscillation for 

the mean angle of incidence 0 deg with an amplitude h=0.018 c and reduced 

frequency k = 8.5. 

 The lift and drag coefficients for the upper conditions are presented in Fig 

(14). Due to the strong non-linear effects of the discrete vortices in the wake, the 

variations of lift and drag distribution are not simply harmonic. 

 The comparison shows good trends between experimental and computations. 

So that, it could be find complex and nonlinear problems by a linear solution with 

good accuracy. 

For pitching oscillation, generally speaking, the non-linearity in the problem 

arises from the wake, it is non-linear process to find the position and the shape of the 

wake, the wake pattern in the Fig (15), shows the rollup of the wake vorticity into 

discrete vortices of opposite sign.  

 Fig (16) show the wake rollup for NACA 0008 thick symmetrical airfoil in 

pitching oscillating with various oscillatory amplitudes θo and various oscillatory 

positions xcp on mean chamber line at reduced frequency 20 respectively. It could be 

shown that the effect of oscillatory amplitude θoon the wake rollup is significant if the 

airfoil is oscillating about the position between the leading edge xcp =0 and the mid-

point on the mean camber line xcp =c/2.  

 The lift and drag forces coefficients are predicted and simulated in Fig (17). 

The variation in lift and drag are not simply harmonic behavior due to the skew ness 

and the phase shift in the neighborhood of the peak values. 

 The vorticity distributions will influence the vortex shedding from the trailing 

edge and overall lift and drag distributions on the airfoil surface. 
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CONCLUSIONS: 

 

The numerical method out lined in this paper leads to the calculation of the 

inviscid flow field about an airfoil undergoing an arbitrary time-dependent motion. If 

it is assumed that the flow remains attached and that it separates at the trailing edge of 

the airfoil. Although results have been presented for a sudden change in incidence and 

a high frequency oscillation the method is completely general. 

The wake rollup calculations show good agreement with the available flow 

visualization data. The effects of the wake rollup on the calculation of unsteady lift 

and drag coefficients are significant. 
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Nomenclature: 

 

c  Chord length (m) 

Cd Drag coefficient per unit span D/(q∞c) 

Cl Lift coefficient per unit span L/(q∞c) 

Cp Pressure coefficient 

h Amplitude level in heaving oscillation (m) 

k Reduced frequency, ωc/ 2V∞ 

Q Total velocity on the airfoil surface (m/s) 

Qn Total normal velocity on the airfoil surface (m/s) 

Qt Tangential velocity on the airfoil surface (m/s) 

t Time (s) 

u horizontal kinematic velocity (m)  

Uw Wake influence velocity in x-direction (m/s) 

v Vertical kinematic velocity (m/s) 

V∞ Free stream velocity (m/s) 

Vw Wake influence velocity in y-direction (m/s) 

x Horizontal displacement of airfoil in terms of c  

xcp Pivot point at which the airfoil pitching in terms of c 

xTE Airfoil trailing edge displacement in horizontal displacement 

y Vertical displacement of airfoil in terms of c 

yTE Airfoil tailing edge displacement in vertical oscillation 

Γw Wake vorticity 

Γk Vorticity due to airfoil motion at k
th 

step 

 ∞ Uniform flow velocity potential 

γ Vorticity strength distribution 

 Angle of attack 

ω Circular frequency 

θo Amplitude angle in pitching oscillation 

θ Pitching angle of oscillating airfoil 



  Angular velocity of pitching oscillation airfoil 

  Velocity potential and Wagner function 
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(a) Katz and Plotkin (1991)           (b) Present Method 
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Fig (9): Wake rollup behind a two-dimensional 

airfoil which was suddenly set into motion. 
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Fig (10): Wake pattern calculated from Katz and Plotkin (1991) and 

corresponding present calculations for heaving oscillation of 
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Fig (11): Wake pattern calculated for heaving oscillation of 



V

c
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
=2.1 and h=0.019. 
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Fig (12): Wake pattern calculated for heaving oscillation of 
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
=0.6 and 

h=0.019. 
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Fig (13): NACA 0012 Wake pattern visualization from Young J. (2006) as compared 

with computed wake for heaving oscillations at various amplitudes . 
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(a) Katz and Plotkin (1991)           (b) Present Method 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) Young J. (2006)     (b) Present Method 
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(a) Basu and Hancock (1978)   (b) Present method 
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Fig (14): Lift and Drag coefficients of NACA 0008 airfoil oscillating with 

Heaving motion k=8.5, h=0.018. 
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Fig (15): Wake Pattern for pitching oscillation as compared with Basu and 

Hancock (1978), airfoil with k=20, θo=0.01 rad. 
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Fig (16): Wake patterns for NACA 0008 thick symmetrical aerofoil in pitching oscillation 

at reduced frequency k=20. 
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Fig (17): Lift and Drag coefficients of NACA 0008 airfoil oscillating with 

pitching motion k=20, θo =0.01 rad. 

 


