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ABSTRACT 

     This research pertains to expand the formulation and applicability of using confinement and 

expansion due to Poisson’s ratio models for three dimensional non-linear finite element analysis of 

reinforced concrete members. A plasticity based model that acknowledges the asymmetric response 

of reinforced concrete under multiaxial stress conditions is used to account for the strength 

improvement under conditions of triaxial compression. Complex behavior of concrete such as 

compression softening and tension softening are incorporated to simulate concrete behavior.  

DIANA software is used for finite element analysis with the inclusion of confinement and 

expansion effects. The concept of material pre-strains is extended to accommodate modeling of the 

Poison’s ratio effect. The applicability of the suggested confinement and expansion models are 

verified by comparing the results of Kupfer and Vecchio – Collins tests on shear panels with that 

obtained from DIANA software. These comparisons illustrate the ability of the confinement and 

expansion models to obtain the response of reinforced concrete members subjected to multiaxial 

stress conditions. 
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INTRODUCTION 

     In concrete constitutive modeling, a number of different approaches have been used to calculate 

the material stiffness matrix. Traditionally, constitutive models for concrete have concentrated on 

reproducing the experimental observed nonlinear response of reinforced concrete specimens. Many 

constitutive models for multiaxial stress states are based on modifications to the uniaxial stress – 
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strain response. Concrete strength and stiffness are sensitive to multiaxial stress conditions. 

Ultimate strength and ductility are known to be significantly improved in the presence of lateral 

compressive stress which inhibits the propagation of microcracks (Figure (1)). Some modifications 

are required to extend the cracked concrete theory from two to three dimensions while a model is 

needed for material subjected to triaxial compressive stresses. To describe the response of 

reinforced concrete, models are required for strength degradation due to cracking, strength 

enhancement because of confinement and expansion due to effect of Poisson’s ratio, pre and post-

peak stress-strain response in tension and compression. 

 
Fig (1): Effect of confinement on strength and ductility of concrete [Chen 1982]. 

 

STRESS - STRAIN CURVES FOR COMPRESSIVE RESPONSE 

     The constitutive equations for multiaxial stress state are based on modifications to the concrete 

uniaxial stress – strain curve. The Hognestad parabola describes the stress – strain response of a 

normal strength cylinder loaded in uniaxial compression. The parabolic relationship to determine 

the compressive stress fc3 corresponding to the compressive principal strain εc3 (Vecchio and Collins 

1982) is: 
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where fp  and εp are the peak stress and the strain at peak stress, respectively. The strain at peak 

stress is calculated as 2 cf ′ /Ec where Ec is the initial slope to the parabola. For the case of uniaxial 

compression, the peak stress will be the cylinder strength cf ′  which occurs at the strain εo   

     The uniaxial stress – strain response of high strength concrete is more linear in the ascending 

branch and the descending branch drops more sharply as shown in Figure (2). Therefore, the 

Hoghnestad parabola does not provide a good representation of the response of high strength 
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concrete. Also, in low strength concrete ( cf ′ < 20 MPa), the Hognestad parabola tends to 

underestimate stresses at intermediate levels (Vecchio and Collins 1993). Thus, various alternatives 

were considered. It was found that the Thorenfeldt et al. (1987) model resulted in a good correlation 

for the full range of concrete strength represented in the database. The Thorenfeldt base curve later 

was calibrated by Collins and Porasz (1989) and as follows: 
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62

f
67.0k c

′
+=                                                                                                                                    (4) 

for the descending branch ( where cf ′   is in MPa ). For this curve, the strain at peak stress under 

uniaxial compression is estimated as: 
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The effect of the cylinder strength on the shape of this curve is shown in Figure (2).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig (2): Effect of cf ′′′′  on the shape of curve given by Eq. (2) (Collins and Porasz 1989). 

 

CONFINED CONCRETE MODEL 

    Lateral confining stresses increase the strength, stiffness and strain at peak stress of concrete 

cylinders. The strength enhancement is modeled by modifying the peak stress of the base curve. 

The failure surface proposed by Hsieh et al. (1979) is: 

 01
f

I
2312.0

f

f
1412.9

f

J
9714.0

f

J
0108.2

c

1

c

1c

c

2

2

c

2 =−
′

+
′

+
′

+
′

                                                     (6) 

is used to find the stresses required in the major compressive direction to cause failure,  fc3f  , in the 

presence of the stresses fc1 and fc2. The invariants J2 and I1 are defined in terms of the stress fci in 

concrete according to: 
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and  fc1 is the tensile principal stress in concrete.  

The multipliers in this equation are curve fitting factors chosen to represent the results of a number 

of tests (Chen 1982). The stress fc3f  is used as the peak stress of the base curve and a peak stress 

factor , σK  is defined as: 
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while experimental evidence suggests the same factor can be applied to find the peak stress and the 

corresponding peak strain in cracked concrete, different factors must be applied to cf ′ and oε  for 

confined concrete. The peak strain increases much more rapidly than the peak stress as confining 

pressure is increased. To relate the peak stress factor and the strain at peak stress factor, εK , a two 

part expression is implemented as shown in Figure (3). For low peak stress ratios ( σK < 3), a fit to 

the data of Kupfer et al. (1969) is used. 
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And for peak stress ratios, the expression is: 

 εK  = 5 σK - 4                                                                                                                                 (11) 

The coordinates of the apex of the base curve become 

 cp fKf ′⋅= σ                                                                                                                                    (12) 
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Fig (3): Peak stress and corresponding peak strain in confined concrete. 
  

     The ratio fc3 / fc3f  is a measure of the degree of nonlinearity. When this value is low, the strain at 

peak stress is close to σK  oε . At ultimate strength level, the strain at peak stress becomes closer to 

εK oε . The modified stress – strain curve is then used to determine all three concrete stresses from 

the corresponding principal strains. Increased ductility is evident when concrete is confined. To 

simulate the descending branch given in Figure (4) of the stress – strain curve of confined concrete, 

a liberal modification was made to modify Kent – Park model (Scott et. al. 1982). The descending 

branch is given by: 

[ ( ) ] pp3cmp3c f2.0Z1ff −≤−+−= εε                                                                                 (14) 

where 

Eq. (11) 

Eq. (10) 
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I1 is the first stress invariants, fci is the current stress in the principal direction under consideration, 

and εo and  εp  are negative quantities. This equation is in S.I. units. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig (4): Compressive stress-strain model for confined concrete. 

 

     Lateral expansion increases rapidly near the peak stress as shown in Figure (5). At compressive 

stresses close to failure, the Poisson’s ratio can exceed 0.5 (i.e., volume increasing). This behavior 

is modeled by a fit to the Kupfer et al. (1969) as follows: 
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where υo ratio is the initial Poisson’s ratio. This relationship implies that only three Poisson’s ratios 

are independent since: 
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Fig (5): Increase in Poisson’s ratio close to peak stress. 

 

Eq. (15) 

Eq. (16) 
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For uncracked concrete in tension, the initial Poisson’s ratio is used. Upon cracking in the tensile 

principal direction, expansion normal to this direction is set to zero only. (i.e., υ21 = υ31 = 0, but all 

other Poisson’s ratio are nonzero). If the intermediate principal direction also cracks, υ12 and υ32 are 

set equal to zero. All Poisson’s ratios are zero if three orthogonal tensile failures occur (i.e., cracked 

concrete case). 

    In the current work, concrete cracking is based on the smeared model approach with plasticity 

model. It is simulated by an elastic-plastic work hardening response (based on Thorenfeldt base 

curve) followed by a perfectly plastic plateau which is terminated at the onset of crushing. 

 

EXPANSION EFFECT 

      The Poisson effect of a material determines the lateral displacement of a specimen subjected to 

a uniaxial tensile or compressive loading. If these displacements are constrained, a passive lateral 

confinement will act on the specimen. This effect is considered important in a three-dimensional 

modeling of reinforced concrete structures. This effect is modeled through a pre-strain concept in 

which the lateral expansion effects are accounted for with an additional external loading on the 

structure with 2-dimensional nature (Vecchio 1992). Cracked concrete treated using the smeared 

crack approach is inherently modeled as an orthotropic material. In confined concrete, the adoption 

of an orthotropic model allows for the consideration of anisotropic behavior close ultimate. The 

three dimensional orthotropic material stiffness matrix can be written in the principal directions 

(Weaver and Johnston 1984) as: 
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where Ei  is the modulus of elasticity in the i-direction and the Poisson’s ratio νij is the component of 

strain in the i-direction due to a stress in the j-direction and  

 2312311332211331122123321 ννννννννννννφ −−−−−=                                                                   (19) 

The three shear moduli are given by: 
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To maintain symmetry in the stiffness matrix, the following three conditions must be satisfied: 

 212121 EE νν =                                                                                                                                 (23) 

 323232 EE νν =                                                                                                              (24) 

 313131 EE νν =                                                                                                                                 (25) 

     In cracked concrete, most orthotropic material descriptions (i.e., smeared crack models) have 

assumed that the Poisson’s ratio effect is negligible. All of diagonal terms in Eq. (18) become zero 

since the six Poisson’s ratios are neglected, i.e., νij = 0. This assumption is relatively good for many 

cases, but for the case in which the tensile strains in cracked concrete are relatively small, the lateral 
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expansion of concrete arising from Poisson’s ratio effect can be predicted in this situation. Also, in 

triaxial compressive stress conditions the Poisson’s ratio effect cannot be neglected. 

    This concept is also applied to the nonlinear material model implemented in DIANA software. 

Provisions were included to model pre-strains arising from strain offset effects such as pre-stressing 

of reinforcement, shrinkage or expansion of concrete and thermal expansion of either concrete or 

reinforcement. For concrete, a pre-strain vector is { }o

cε  defined relative to the global x, y, and z 

system as: 
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accounting for all nonstress related straining. A similar vector developed for the reinforcement pre-

strains. An equivalent force approach was then used to incorporate the pre-strain effects. From the 

known pre-strains, free nodal displacements { }cr  and { }sr  were calculated for the concrete and 

steel, respectively: 
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The equivalent nodal loads due to the pre-strains, { }*F   can be calculated as: 
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where [ ]ck and [ ]
isk are the element stiffness matrices evaluated separately for the concrete and 

each reinforcement component. These equivalent nodal forces due to the pre-strains are then added 

to the externally applied nodal forces to determine the total nodal forces. The total nodal load vector 

is updated on each iteration since the equivalent nodal forces depend on the component stiffness. 

This algorithm will be modified here to include the expansion effect due to Poisson’s ratio effect. 

The expansion strains in the principal directions are written as: 

 { } { }To

3c

o

2c

o

1c

o

c εεεε ρ =                                                                                                               (30) 

where 

 
3c

3c13

2c

2c
12

o

1c
E

f

E

f ν
νε −−=                                                                                                               (31) 

 
3c

3c23

1c

1c
21

o

2c
E

f

E

f ν
νε −−=                                                                                                                (32) 

 
2c

2c32

1c

1c
31

o

3c
E

f

E

f ν
νε −−=                                                                                                                (33) 

The expansion strains are then transformed to the global x, y, and z axes according to: 

 { } [ ] { }o

c

o

c T ρεε =                                                                                                                            (34) 

where [T] is the transformation matrix that defines the orientation of the principal axes. Equivalent 

nodal loads are calculated as outlined in Eq. (29) to include all straining arising from expansion in 

the right hand side of Eq.  (35). 

 [ ]{ } { }FrK =                                                                                                                                    (35) 

 All of the expansion strains are modeled through the pre-strain concept so the material stiffness 

matrix then includes diagonal terms only. 
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where Ec1, Ec2   and Ec3 are the tangent modulus. 
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and the shear modulus are given by: 
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The principal strains used in Eqs. (37 – 39) are that part of strains occurred due to direct stress. That 

is, any nonstress-related strains are first subtracted from the total strains before calculating the 

principal values. The pre-strains approach is valid for both uncracked and cracked concrete. An 

iterative procedure is required for finite element analysis based on this approach. 

     

CRACKED CONCRETE MODEL 

     Cracked reinforced concrete is treated as an orthotropic nonlinear material based on a smeared 

rotating crack model. In cracked concrete, large strains perpendicular to the principal compressive 

direction reduce the concrete compressive strength. Thus, the compressive stress fc3 is a function of 

εc1 in addition to εc3. The compression softening factor, λ, is given by: 
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where εc1 is the tensile principal strain. 

     The above compression softening relationship was derived by (Vecchio and Collins   1982) from 

tests on reinforced concrete panels of normal strength concrete. Also, high strength concrete is 

thought to exhibit a more pronounced compression softening effect due to smoother fracture planes. 

The compression softening factor was updated (Vecchio and Collins 1993) based on statistical 

evaluations of data, the strength and strain softening model shown in Figure (6) is referred as Model 

A and takes the form: 
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 cf f1825.0K ′=                                                                                                                            (46) 

and  cf ′   is expressed in MPa. The Ks   factor   accounts for the effect of the transverse straining and 

Kf represents the influence of the concrete cylinder strength. The peak stress and strain of the base 

curve are modified to account for the effect. 

 fp  =  λ .  cf ′                                                                                                                                      (47) 

 εp   =  λ . εo                                                                                                                                       (48) 

 After that, only slightly weaker correlation was obtained by using a strength only softening model 

as a function of εc1. The optimal form attained, referred to as model B (Vecchio and Collins 1993) 

which is adopted in this research and illustrated in Figures (7) and (8), is:  
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Fig (6): Model A for compression softening (Vecchio and Collins 1993). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig (7): Model B for compression softening (Vecchio and Collins 1993). 
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Fig (8): Model B for compression softening due to lateral cracking  

                                        , Eq. (49) (Vecchio and Collins 1993). 

 

 

 

    In tension, a strain softening model is used by adopting the behavior which is based on a bilinear 

stress-strain relationship (Hillerborg et al. 1976) and as shown in Figure (9). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig (9): Hillerborg et al strain softening model (Hillerborg et al. 1976) 

 

    The shear stiffness at a cracked sampling point becomes progressively smaller as the crack 

widens. So the shear modulus is reduced to β G. Before cracking, the factor β is set equal to 1.0. 

When the crack is sufficiently opened, a constant value is assigned to β, to account for the dowel 

action as shown in Figure (10). The following relations are used to account for the shear retention 

effect (Al-Shaarbaf 1990). 
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where γ1 , γ2  and γ3  are the shear retention parameters. γ1 represents the rate of decay of shear 

stiffness as the crack widens, γ2 represents the sudden loss in the shear stiffness at the onest of 

cracking, and γ3 represents the residual shear stiffness due to the dowel action. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig (10):  Shear retention model for concrete (Al-Shaarbaf 1990). 

 

MODELING OF REINFORCEMENT  

      Modeling of reinforcing steel in connection with the finite element analysis of reinforced 

concrete members is much simpler than the modeling of concrete. The steel bars are long and 

relatively slender, and therefore, they can be assumed to transmit axial force only. In the current 

work, the embedded reinforcement model with an elastic-linear work hardening model is adopted to 

simulate the uniaxial stress-strain behavior of reinforcing steel bars, Figure (11). 

 

 

 

 

 

 

 

 

 

 

 

Fig (11): Stress-strain relationship of reinforcing steel bars (Al-Shaarbaf 1990). 

 

FORMULATION OF FINITE ELEMENT ANALYSIS 

    In the present study, the computer software, DIANA V9.0 (Witte and Kikstra, 2002), has been 

adopted to carry out the numerical analysis. The main objective of the study is to analyze some 

experimental cases to verify the use of both the confining and expansion models and as follows: 

 

A - CONCRETE IDEALIZATION 

     The 20-node hexahedral brick element is used in the current study to model the concrete. Each 

node of this element has three translation degrees of freedom u, v and w in the x, y and z directions 

respectively as shown in Figure (12) (Al-Shaarbaf 1990). The element employs the standard shape 

functions to define the displacement field (Dawe 1984). The displacements of the brick element are 

given by: 
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B - REINFORCING BAR IDEALIZATION 

    The reinforcing bars are idealized as axial members embedded within the brick elements 

(Zeinkiwecz 1977). Reinforcing bars are assumed to be capable of transmitting axial force only. 

The stiffness matrix of steel bars is added to that of the concrete to obtain the global stiffness matrix 

of the brick element. The shape functions of the brick element can be used to represent the 

displacements of the embedded bar (Al-Shaarbaf 1990). For example, 
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where a bar is considered lying parallel to the local coordinate axis ξ  with cη=η  and cζ=ζ  

(constant), Figure (13). 
 

 

 

 

 

 

 

 

 

 

Fig (13): Representation of embedded reinforcement. 

 

 

 

Fig (12): 20-Nodded isoparametric brick element 
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C- General Nonlinear Solution Procedure 

    The incremental-iterative method is the most common technique used for solving nonlinear 

structural equations. Loading on the studied specimens is induced by means of a prescribed 

displacement at the point load. The numerical integration has been conducted by using the 27 points 

Gaussian rule (3x3x3).  

 

VERIFICATION WITH EXPERIMENTAL RESULTS 

A – Confined Concrete Model 

     The data collected by Kupfer, Hilsdorf and Rusch (Kupfer et. al 1969) from a series of plain 

concrete specimens tested under different combinations of in plane biaxial loading were selected to 

establish the ability of proposed model for confined concrete under multiaxial compressive stresses. 

The 200 mm square and 50 mm thick specimens subjected to biaxial compression were selected. 

The plain concrete had cylinder strength of 18.7 MPa. Further concrete properties are shown in 

Table (1). Analysis was carried out using DIANA for lateral confining stress equal to zero (i.e., 

uniaxial compression), σ3 / 2 and σ3 (i.e., equal biaxial compression). The ratio of lateral to axial 

stress, σ2 / σ3 was held constant throughout the test. The out of plane stress σ1 was zero in all three 

tests. Also another analysis was made but without including the effect of confinement. For biaxial 

compression, the volumetric strain (i.e., ∆V/V =.ε1+ ε2+ ε3) for various stress ratios (fc3/fc) are 

shown in Figure (14). The response, including the peak stress and strain at peak stress, was well 

duplicated in all cases. Also, the expansion was realistically reflected even near ultimate. It was 

noted that confined concrete model was capable of adequately obtaining the strength and 

deformation response under multiaxial stresses of the plain concrete.  

 

B – Expansion Model 

    Two of Vecchio – Collins shear panels (Vecchio 1982) were selected to show the improvement 

in modeling that can realize when the Poisson’s ratio effect is included in the cracked concrete 

theory. The normal strength panels, PV23 and PV25, were 890mm square by 70mm thick and 

symmetrically reinforced with two layers of wire mesh of 50mm grid. A clear cover of 6 mm was 

provided. They were equally reinforced in the longitudinal and transverse directions (ρx = ρy = 

1.875%, see Table (1)) and were loaded in shear and equal biaxial compression. No reinforcement 

yielded in either specimen before failure by crushing of the concrete. The improvement is evident in 

Figures (15) and (16) which shows the results of analyses using DIANA with and without the 

expansion model. It was noted that the effect of expansion on the load deformation response is to 

increase the strength and to increase the stiffness near ultimate. Little influence is apparent at low 

and intermediate stress levels. 
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Fig (14): Volumetric response of the Kupfer et al. analysis 
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Fig (15): Influence of expansion Effect for Panel (PV23) (Vecchio 1982). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig (16): Influence of expansion Effect for Panel (PV25) (Vecchio 1982). 

 

 

 

Table (1): Specimens properties 

 

Specimen 
cf ′ ,MPa ft,MPa εo νo ρx , % fyx,MPa ρy , % fyy,MPa 

Kupfer et al. 18.7 1.46 0.002 0.15 - - - - 

PV23 20.5 1.5 0.002 0.3 1.785 518 1.785 518 

PV25 19.2 1.45 0.002 0.3 1.785 466 1.785 466 

 

 

 

CONCLUSIONS  

    Based on the analytical work, the following conclusions are made: 

1- The proposed confined concrete model proved capable of providing good estimates of 

strength and deformations for concrete elements subjected to multiaxial compressive 

stresses. Applications of the model to finite element analyses were successful when behavior 

was sought on a “macroscopic” level. 

2-  The consideration of the Poisson’s ratio effect can have a significant effect and has 

improved the accuracy near ultimate strength. 

3- The consideration of the Poisson’s ratio effect can have a significant effect when the tensile 

principal strain is relatively small. 

4- The pre-strain approach handled the asymmetry of the material stiffness matrix in a 

numerical stable manner when including the effect of Expansion due to Poisson’s ratio. 

5- Both confinement and expansion effect can model the response of concrete members 

subjected to different load conditions. 
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NOTATIONS 

[ ]′cD  Concrete material stiffness matrix in principal direction 

Ec Modulus of elasticity of concrete (initial tangent modulus) 

Ec1 Concrete tangent modulus in tensile principal strain direction 

Ec2 Concrete tangent modulus in intermediate principal strain direction 

Ec3 Concrete tangent modulus in compressive principal strain direction 

Es Modulus of elasticity of reinforcing bars 

fc Compressive principal stress in concrete 

cf ′  Compressive strength of concrete cylinder 

fc1 Tensile principal stress in concrete 

fc2 Intermediate principal stress in concrete 

fc3 Compressive principal stress in concrete 

fc3f Required fc3 to cause failure in presence of on  fc1 and  fc2 

fp Peak stress 

ft Modulus of rupture  

{F} Structure nodal force matrix 

{F
*
} Equivalent nodal loads due to prestrain 

G Shear modulus 

G12 Tangent shear modulus of concrete relative to 1,2 axes 

G23 Tangent shear modulus of concrete relative to 2,3 axes 

G13 Tangent shear modulus of concrete relative to 1,3 axes 

gf Area under tensile stress-crack strain curve 

 I2 Second invariant of stress vector 

J2 Second invariant of deviatoric stress tensor 

Kc   Coefficient reflecting influence of transverse tensile straining ( Model B) 

Kf Coefficient reflecting influence of nominal strength of concrete 

Ks   Coefficient reflecting influence of transverse tensile straining ( Model A) 

Kσ Peak stress factor 

Kε Strain at peak stress factor 

[K] Structure stiffness matrix 

[kc] Element stiffness matrix evaluated for concrete component 

[ks]i Element stiffness matrix evaluated for i-direction reinforcement 

n Curve fitting factor 

{r} Structure nodal displacement matrix 

{rc} Free nodal displacement due to concrete prestrain 

{rs} Free nodal displacement due to steel prestrain 

u,v,w Displacement coordinates in x,y and z Cartesian coordinates 

x,y,z Cartesian coordinates 

[T] Transformation matrix 

Zm Slope factor for post-peak compressive curve 

β Shear retension factor 

γ1, γ2, γ3 Shear retension parameters 

∆V/V  Volumetric strain = .ε1+ ε2+ ε3 

εc Compressive principal strain in concrete 

εcr Cracking strain 

εc1 Largest principal tensile strain in concrete 

εc2 Intermediate principal strain in concrete 

εc3 Compressive principal strain in concrete 
o

1cε  Concrete expansion strain in 1-direction 
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o

2cε  Concrete expansion strain in 2-direction 

o

3cε  Concrete expansion strain in 3-direction 

{ }o

cε  Concrete pre-strain relative to global axis 

{ }o

cpε  Expansion strain in principal direction 

εo Strain in concrete cylinder at peak stress cf ′  ( a negative value ) 

εp Strain at peak stress ( a negative value ) 

εs Strain in steel reinforcement 

εsu Ultimate strain for steel reinforcement 

{ }o

sε  Smeared reinforcement pre-strain relative to global axis 

εt Tensile fracture strain 

ε1 Tensile principal strain 

ε2 Intermediate principal strain 

ε3 Compressive  principal strain 

λ Concrete compression softening factor 

ν Poisson’s ratio of linear isotropic material 

σy Yield stress of reinforcing bars 

νij Component of strain in i-direction due to a stress in the j-direction   

νo Initial Poisson’s ratio 

γxy Shear strain relative to x,y axes 

γyz Shear strain relative to y,z axes 

γzx Shear strain relative to z,x axes 
 


