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ABSTRACT 

 Numerical solutions are presented for the transient natural convection heat transfer problem in 

horizontal isothermal cylindrical annuli, enclosed in heated inner and cooled outer cylinders. Solutions 

for laminar case were obtained within Grashof number based on the inner diameter which varied from 

1x10
2
 to 1x10

5
 in air. Both vorticity and energy equations were solved using alternating direction 

implicit (ADI) method and stream function equation by successive over relaxation (SOR) method. 

The structure of fluid flow such as a velocity vector and temperature distribution as well as Nusselt 

number were obtained and the effect of diameter ratio on them is examined. In addition, the Grashof 

number was changed with the influence of variation Prandtle number and diameter ratio. Our 

numerical calculation are summarized by Nussult number vs. Grashof number curves with diameter 

ratios and prandtl as a parameter, which serves as a guide to natural convection heat transfer 

calculated from annulus. Good agreement with previous data were obtained. 
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INTRODUCTION 

IN RECENT years, natural convection heat transfer in a cylindrical annulus has attracted much 

attention with relation to thermal storages systems, solar collectors, spent nuclear air fuel cooling, 

nuclear reactors, aircraft fuselages insulation, cooling of electrical equipments. The horizontal 

convection isothermal cylinders were used pressurized gas underground electric transsimition cables 

(Pederson et.al. 1971). In this paper, we present a brief review of selected experimental papers and 

concerned theoretical studied. (Liu et.al. 1961) measured the overall heat transfer and radial 

temperature profiles of air , water and silicone fluid. Qualitative flow descriptions were given for each 

fluid-Photographs of flow patterns in air using smoke were presented by (Bishop and Caley 1966) 

and (Bishop et.al 1968). Different flow regimes depending on the Grashof number and diameter ratio 

were delineated by  (Powe et.al. 1969). The first determination of local heat transfer coefficients in 

annular geometry with air was made by (Eckert and Soehngen 1970) using Mach-Zender 

interferometer The first numerical solution of natural convection between horizontal convection 

cylinders was obtained by (Crawford and Lemlich 1962) using Gauss-Seidel iteration approach for 

Prandtl number of 0.7 and for diameter ratio of 2, 8 and 57. (Abbot 1964) obtains a solution for 

diameter ratio close unity using matrix inversion techniques. (Mack and Bishop 1968) employed a 

power series expansion valid in the range diameter ratios from 1.15 to 4.15. However, as pointed out 

by (Hodnett 1973), if the diameter ratio becomes too large; there is a region in the annulus where 

convection effects are as important as conduction effects. Such a problem has been attacked by 

(Hodnett 1973) using a perturbation method. (Powe et. al. 1971) examined the transition from steady 

to unsteady flow for air with Prandtl around 0.7 by determining the critical Rayleigh number at which 

an eddy forms and turns in the opposite direction of the main cells. (Kuehn and Goldstein 1978) 

performed experimental and theoretical–numerical studies for air and water at Rayleigh numbers from 

2.1x10
4
 to 9.8x10

5
 at diameter ratio of 2.6. (Charrier-Mojtabi et al 1979) presented numerical 

solutions at a Prandtl number of 0.7 and 0.02 with various diameter ratios and Rayleigh numbers. 

(Tsui and Tremblay 1983) carried out theoretical-numerical study at Grashof number from 7x10
2
 to 

9x10
4
 and Prandtl number of 0.7 with diameter ratio of 1.2, 1.5 and 2. A numerical investigation has 

been performed by  Hand and  Back (1999), to examine the interaction between radiation and steady 

laminar natural convection in cylindrical annuli filled with a dry gas. Radiation was found to play an 

important role in determining thermo-fluid dynamics behavior in natural convection induced by hot 

inner cylinder under large temperature difference. All references cited except references (Charrier-

Mojtabi et.al.1979) and (Tsui and Trembaly 1983)are confined to the steady-state analysis. Even 

(Charrier-Mojtabi et al 1979) gives the steady- state results only, and (Tsui and Tremblay 1983) 

presents the transition-state results with Prandtl around 0.7 only.  

      The purpose of this paper is to present the transient-state results with the effect of variation of 

Prandtl number and diameter ratio, which are new to the author's knowledge. 
 

MATHEMATICAL FORMULATION 

 
 The physical model and the coordinate system in the present analysis are shown in Fig.1. A 

fluid layer is enclosed between two concentric cylinders with radii ri and ro. Temperatures at the 

heated inner cylinder surface and the cooled outer one, designated by Th and Tc , respectively, are to be 

constant. Flow and temperature fields are assumed to have a symmetric nature with respect to vertical 

plane (θ=0
o
 and 180

o
) and the region of computation is limited between θ=0

o
 and 180

o
. 

 The physical system consists of a Newtonian fluid air, in an annulus bounded by two 

isothermal surfaces. To formulate the problem it is assumed that: (a) the fluid motion and temperature 

distribution are two-dimensional (2-D), (b) the fluid is viscous and incompressible, (c) frictional 

heating is negligible, (d) the difference in temperature between the two isothermal boundaries is small 

compared with 1/β, (c) the fluid properties are constant except for the density variation with 

temperature. Thus, within the Boussinesq approximation, four governing equations (two momentum, 
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one energy and continuity) in polar coordinate are as follows  (Torrance 1985) and (Chun-Yen 

1979): 
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where all constants, variables and operators are dimensional. 

     

  The coordinates are r, measured from the center of the system, and θ, measured counterclockwise 

from the downward vertical line. The radial velocity u is positive radially outwards, and the tangential 

(angular) velocity v positive in the counterclockwise direction for 0
o≤ θ ≤ π . 

      The vector potential Ψ  and vorticity vector Ω are introduced (Torrance 1985)  
 

              Ψ∇= xV                                                                                                   (5) 
              

             xV∇=Ω                                                                                                    (6)  

                    

where  Ψ  and Ω   satisfy the following solenoid condition 
               

             0. =Ψ∇                                                                                                      (7) 
                

              0. =Ω∇                                                                                              (8) 
    

   The vector potential satisfies the equation of continuity, eq. (1), automatically. Then, the relation 

between Ψ  and Ω  is presented in the following dimensionless form 
    

Ψ−∇=Ω 2
                                                                                                 (9) 

 

                                             

     

 

 

 

 

 

 

 
Fig.1. Natural Convection in Air Filled Annulus Bounded by Two Isothermal Walls 

 

         Taking the curl of eqs.(2)and(3) to eliminate the pressure term, the vorticity transport equation 

is obtained in the dimensionless form 
 

Heated wall  Th 
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In the same manner, the dimensionless form of the energy equation is written as   
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    where all constants, variables and operators are dimensionless. 

      In the eqs. (9-12), the following dimensionless variables and parameters are used 
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Eqs. (10) and (11) are coupled through the buoyancy force. Furthermore, both the vorticity eq (10) 

and energy eq. (11) are non-linear due to the convective terms. It is to be noted that both the vorticity 

eq. (10) and energy eq. (11) are of the parabolic type and the stream function eq. (9) is of the elliptic 

type. Eq. (9) is coupled with eqs. (10) and (11) through eq. (12) which relates the stream function to 

the velocities. Our problem is to seek    Θ(r,θ,t), Ω(r,θ,t) and ψ(r,θ,t) which satisfy three partial 

differential eqs. (9), (10) and (11) as well as the following initial and boundary conditions. To begin 

with, the fluid in the annulus is stationary with a uniform temperature:    

 

 0==Ψ=Ω T every where at τ =0                                                                              (14)         

      The boundary conditions are  
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on both walls,i.e. R=Ri and R=Ro,                                              (15) 

          θ = 1  at   R = 1,                                                                                                (16-a) 

          θ=0 at   R =                                                                                                           (16-b) 

 

Eqs (5) and (9-11) are the final form of governing equations, which were transformed into the 

finite difference equations and solved numerically (Chun-Yen 1979). The relaxation factors chosen 

(1.7) for the stream function, and the number of nodal points in the grid was 41, 21 for the R-θ 

respectively. 
 

NUMERICAL SOLUTION 

In the field of heat transfer, several numerical methods have been developed to deal with complicated 

physical problems. The finite difference method is one of the most widely used numerical methods for 

decades. The present work is concerned with numerical simulation of two dimensional transient 

natural convection flow, by means of alternating direction implicit (ADI) method for vorticity and 

energy equation, and by successive over relaxation (SOR) method for stream function equations. The 

time increment ( Tsui and Trembaly1983) is 

 

 (10) 
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The convergence criteria for Nusselt number is  
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The way for checking the convergence is to compare the mean Nusselt numbers at the inner and outer 

radius. These are usually within 410−=ε at convergence. This convergence criteria is employed in this 

paper.  

      In order to gain confidence in our numerical results, we tried to compare ours with previously 

published resultsre (Charrier-Mojtabi et.al.1979) and (Tsui and Trembaly1983). Fig.2-a, which 

depicts streamlines and isotherms for Gr=10 000, Pr=0.7 and a=2, resemble results presented by (Tsui 

and Tremblay 1983) at Gr =10000, Pr=0.7, and a=2.0.  Fig.2-b which shows streamlines and 

isotherms for Gr =38800, Pr=0.71 and a=2, is similar to one given by (Charrier-Mojtabi et al. 1979) 

at Ra = 3x10
4
, Pr = 0.7 and a = 2.0.  We see good agreement in results at diameter ratio of 2.0 and 

some deviation occurs in results with diameter ratio of 1.5.   

      After obtaining confidence in our results see Table1, we processed to compute the mean transient 

Nusselt numbers at inner and outer radius for our calculations, which cover the Grashof number 10
2
 to 

10
5 

including physical realistic cases and (Tsui and Trembaly 1983). 
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Trembaly 1983). 
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2.0 

10 000 1.64 1.658 
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88 000 3.08 2.99 

       

Local Nuselt numbers at the inner and outer radius Nui and Nuo are defined as follows:  
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Table 1.  Mean Nusselt number resultsfor a=2.0, Pr=0.7 
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The mean Nusselt numbers
i

Nu  and 
o

Nu are the angular average of their local values over the cylinder 

inner and outer surface and can be carried out using numerical integration by Trapezoidal rule 

(Gerald 1970), through eq. (19c). 
 

∫=
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dANu
A

Nu .
1

                                                                                                   (19c) 

      Both mean transient iNu  and oNu , vs. dimensionless time, τ, are plotted in  Fig.3,  which  

included physical realistic cases (Tsui and Trembaly 1983). As τ increases, both iNu  and oNu  

approach to their steady- state values and should be equal based on a simple energy balance. In fact, 

due to the numerical techniques involved, the values actually obtained differ somewhat. Generally, we 

can note that the dimensionless time increases with increases diameter ratio and decreases with 

increased Grashof number. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.2: Streamlines and isotherms, diameter ratio=2.0, Pr = 0.7,(Tsui and Trembaly 

1983). 

b) Gr=38 800 (Charrier-

Mojtabi et.al.1979) 

a) Gr=10 000 (Tsui 

and Trembaly 1983). 
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    The effect of Prandtl number on results was determined by varying Prandtl number at values 0.7, 

5.0, and 10.0 respectively, corresponding to the same values of Grashof numbers and diameter ratios. 

Looking at the effect of variation in Prandtl number that when the diameter ratio changes from 1.2 to 

2.0, It seen that, at a diameter ratio a=1.2, there is no significantly change in the convection heat 

transfer, i.e., Nu  even Gr=1x10
5
 

The maximum non-dimensional transition time increases with increases Prandtl number and high 

convection occur, see Fig.4 The values of mean Nusselt number of higher Prandtl number are higher 

than those for air.  

The convection heat transfer increases very rapidly when the diameter ratio increases further 

from 1.5 to 2.0 and especially at high Grashof number. A review of Fig.3 and 4 show both iNu  and 

oNu  approach unity as time increase. 

The maximum non-dimensional transition time from transient- state to steady- state is 

increased with increase Grashof number that less than unity and excesses unity at high Prandtl number 

and diameter ratio. 

      Local Nusselt number is generally smaller and more uniform at lower Prandtl number as, 

including an approach to conduction. The numerical data obtained in the present study are correlated 

to one-fourth power law see Fig.5. 

The win OS cpu 1.7G and software (Grafer 4.0 and surfer 7.0 )to plot graphs in present study.   
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RESULTS AND DISCUSSION 

Our range of interest covers Grashof numbers from approximately 1x10
2
 to 1x10

5
 and diameter ratio 

from 1.2, 1.5 and 2.0. Three steady state mean Nusselt number, Nu vs. Grashof number, Gr, curves 

are shown in Fig.5 with diameter ratio, a, as a parameter. It is seen that, at a diameter ratio a=1.2, 

there is no or little convective heat transfer even Gr=1x10
5
 which has been substantiated by Kuehn 

and Goldstein's calculation (Kuehn and Goldstein 1978). 

 

      Also, it is clear that the maximum increment in the amount of convection heat transfer with larger 

Prandtl number (Gr=10
5
) by 31% and 25%  at a=1.5, 2.0 respectively compared with corresponding 

values at low Prandtle number. 

Looking at the variation of Nu vs.  a  at fixed Gr it follows that when the diameter ratio, a, changes 

from 1.2 to 1.5, the mean Nusselt number increases very rapidly. When the diameter ratio increases 

further from 1.5 to 2.0, there is a substantial enhancement of the convective heat transfer .However; 

the rate of increase of Nu  vs. a slow down (with increase a than 2.0).  After (a) it reaches 2, the rate 

of increase of convective heat transfer flattens out. This is demonstrated (Kuehn and Goldstein 

1976). 

], which despite a collection of experimental data from previous authors. From an engineer viewpoint, 

there is no advantage to increase the diameter ratio beyond two as far as natural convection is 

concerned.      

      The flow and heat transfer results can be divided in to several regimes (Kuehn and Goldstein 

1978).Near Grashof number of 10
2
 the maximum stream function or center of rotation is near 90

o 
. 

The flow in the top and bottom portions of the annulus is symmetric about the 90
o
 position. The 

velocity profiles at any one position are similar, with the magnitudes directly proportional to the 

Grashof number. The velocities too small to affect the temperature distribution, which remains 

essentially as in pure conduction, see Fig.6. 

      This makes the convection terms in eqs. (10) and (11) vanish. Therefore, eqs. (10) and (11) can 

be approximated by 
 

            








∂

Θ∂
−

∂

Θ∂
=Ω∇

RR
Gr θ

θ
θ cos

1
sin2                                                        (19) 

        

             02 =Θ∇                                                                                             (20) 

       

      A transition region exists for Grashof numbers between 10
2
 and 10

4
. The flow remains in 

essentially the same pattern but becomes strong enough to influence the temperature field. As the 

Grashof number increases, the center of rotation moves upwards.  

     The isotherms begin to resemble eccentric circles near a Grashof of 10
3
, as can be seen in   Fig. 6 

at different diameter ratio. This has been called the 'pseudo-conductive regime'  (Grigull and Hauf 

1966), since the overall heat transfer remains essentially that of conduction.  

      With further increase in Grashof number and increasing diameter ratio, the temperature 

distribution becomes distorted, resulting in an increase in mean Nusselt number. From a plot of 

streamlines and isotherms at Grashof number of 10
4
, the radial temperature inversion appears 

indicating the separation of the inner and outer cylinder thermal boundary layers which obvious 

Fig.5 Correlation of mean Nusselt number as a function of Grashof number 

for different Prandtl number 
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clearly at the top portion of  a=2.0. The cross indicates the location of maximum value of the stream 

function, which would be the center of rotation. This maximum is located near the 70
o 

position. Local 

heat transfer flux values are becoming further distorted from those of conduction. Essentially heat is 

being convected from the lower portion of inner cylinder to the outer cylinder. The vorticity in the 

central core is almost constant, including a region approaching solid-body rotation; see Fig.6-c at high 

Grashof number. 

 

       In addition, steady laminar boundary layer regime exists between Grashof number of 10
4
 and 

10
5
. Streamlines and isotherms in this region are shown in Fig.5. Boundary layer exists on both 

cylinders although the lower portion of the annulus is practically stagnating. 

      As the Grashof number increases further, the flow above the inner cylinder will become turbulent. 

This will create a turbulent boundary layer on the outer cylinder while the inner boundary layer 

remains laminar (Lis1966). Eventually, the inner boundary layer will also become turbulent. 

      The effect of diameter ratio on the results was determined by vary Ro/Rin from 1.2 to 2.0 for the 

whole range of our numerical calculations. The flow pattern don’t change significantly at lower 

Grashof numbers although the center of rotation moves towards the top with increasing diameter ratio 

(a), but separation is clear at high Grashof numbers. The maximum Nusselt number occur near a=2.0 

at Gr=10
5
 but occurs at smallest value at larger a. However, the mean Nusselt number increased as the 

outer cylinder is made large at constant Grashof number. As the outer cylinder becomes large relative 

to the inner diameter, the mean temperature in the annulus decreased. This indicates that the thermal 

resistance around the inner cylinder is becoming the dominant factor in the mean Nusselt number. As 

the outer cylinder become infinitely large, the only thermal resistance is around the inner cylinder with 

the temperature in the gap equal to that of the outer cylinder. At large diameter ratio, the total heat 

flow will be essentially that from a single horizontal cylinder in an infinite medium. 

    Fluids with larger Prandtle number will remain steady until larger Grashof number is attained. This 

is observed (Liu et.al. 1980) and (Charrier-Mojtabi 1979) and confirmed by the present numerical 

results. Fig.6 shows streamlines and isotherms at different Grashof number and diameter ratio with 

Prandtl around 0.7. 

The maximum stream function is about 15
o
 from the top with lower portion of annulus particularly 

stagnant. The vorticity approaching to zero in the central portion of the annulus, indicating the 

beginning of stationary core region. The center of rotation moved near the top as the Prandtl number 

increased. 

        Also, with further increase in Grashof number and increasing diameter ratio, the temperature 

distribution becomes distorted, resulting in an increase in mean Nusselt number. From a plot of 

streamlines and isotherms at Grashof number of 10
4
, the radial temperature inversion appears 

indicating the separation of the inner and outer cylinder thermal boundary layers which is obvious 

clearl at the top portion of  a=2.0. As the Grashof number increased further, the flow above the inner 

cylinder will become turbulent. This will create a turbulent boundary layer on the outer cylinder while 

the inner boundary layer remains laminar (Lis 1966).  

Eventually, the inner boundary layer will also become turbulent. An oscillating laminar flow 

regime begins near Grashof number of 10
5
. 

At low Prandtl number, the velocity profile at any one position is similar with the magnitude directly 

proportional to the Grashof number. The velocities are too small at low Grashof number and increases 

with increased Garshof number and Prandtle number causing the separation of inner and outer 

cylinder thermal boundary layer. 

        The velocity profile in the outer cylinder boundary layer in the top half of the annulus (30
0
 ≤ θ ≤ 

90
o
) are independent of angular position. As the fluid moves down past the 90

o
 position the outer 

boundary layer weakens, and disappears entirely near the bottom, see Fig.7, at high Grashof number. 

The velocities at the bottom of the annulus are very low compared to the velocities at the middle and 

top regions (Kuehn and Goldstein 1978). 
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 On the basis of the good agreement between numerical results of the present study and experimental 

and numerical results of previous work. It seems possible to determine heat transfer parameters free 

convection in enclosures using either method. The experiments have the advantage of being applicable 

to unsteady flow and turbulence, where the numerical computation becomes unstable. However, the 

numerical analysis gives more information, including the velocity vector, which is difficult to obtain 

experimentally. The error in numerical results arise from the constant property assumption, the finite 

number of grid of nodes and the convergence level of the solution though not perfect owing to the 

consideration mentioned above is quite good lending validity to results with previous work. 
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 Fig.7 Velocity vector for natural convection in an annulus at Pr=0.7 
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SUMMARY 

The numerical study of natural convection heat transfer and fluid flow between horizontal 

isothermal concentric cylinders has been presented. Quantities obtained numerically include 

temperature distribution, local and average Nusselt numbers. The numerical solutions confirm 

velocity distribution and extend results to lower Grashof numbers.. Numerical solutions covered the 

range of Grashof numbers from pure conduction to steady laminar boundary layer flow for R=1.2, 1.5, 

and 2.0. The flow was steady for all Grashof numbers investigated. The influence of diameter ratio 

and Prandtl number was determined. Good agreements with available previous published resultes. 
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NOMENCLATURE 

∆r    mesh interval in r-direction   

∆θ   mesh interval in θ-direction 

a     diameter ratio, radius ratio, ro/ri 

cp    specific heat at constant pressure 

g     gravitational acceleration  

Gr   Grashof number, g β (Th-Tc) ri
3
 /υ

2 

k     thermal conductivity 

Nu   local Nusselt number 

Pr   Prandtl number, υ/α 

r      radial distance 

R     dimensionless radial coordinate, r/ri 

Ra   Rayleigh number, Ra= Gr.Pr 

T     temperature 

U   dimensionless radial velocity, uri/ υ 

u   radial velocity 

V   dimensionless tangential velocity, vri/ υ 

v   tangential velocity 

 

GREEK SYMBOLS 

ψ    dimensionless stream function 

τ    dimensionless time, tυ/ ri
2 

ρ    fluid density 

α    thermal diffusivity,( k/ρ cp) 

β  thermal expansion coefficient of fluid 

Θ  dimensionless temperature, (T-Tc )/(Th-Tc) 

υ     kinematics viscosity 

Ω   dimensionless vorticity 

 

SUBSCRIPTS 

h,c hot and cold,  respectively 

i,o inner and outer, respectively 

 

SUPERSCRIPTS 

           mean 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


