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ABSTRACT 

In adjustment of geodetic and photogrammetric networks, the surveying engineer faces many 

problems, such as errors of blunder nature in the observations (when comparing the homogeny of 

precision) make these observations odd from the result, and effecting directly on observation values after 

adjustment, and the statistical results after analysis as, adjusted coordinates of points, standard deviations, 

and ellipse of errors. 

The research is deal with some of the most common usage of statistical methods to detect these 

odds observations to confirm which best method is, by studying the advantages and disadvantages of each 

method to geodetic network. 

 Three statistical methods will use in the analysis, these are:- 

1. Standardized residuals method 

2. F-t test 

3. Robust estimation method 

The adjustments were accomplished by preparing a Matlab program with the three blunder detection 

methods and the results were evaluated and some scientific conclusions were reached. 

It was found that the robust estimation method represent the better blunder detection technique due to its 

ability in what is called (multi-blunder detection) , and the resulted higher accuracy indices. 

 

 الخلاصة 

ٍرا َجرُد طاءراا راث غرالط  هءر  مى مرُسجمهت مه الأ تانمساحمٍىذس تصحيح انشبكاث انجيُديسيت َشبكاث انتخهيج انجُي تعتشض عىذ 

الاسصراداث  ف  لعط الاسصاداث )عىذ مقاسوت تجاوس انذقت( تجعم مه ٌزي الاسصاداث شارة عه انبقيت ,َترثحش لصرُسة مباشرشة عهرم قري 

 لأاءرااالاٌهيهيجر  نانشركم  اظافت انرمالاوحشافاث انمعياسيت َنمصححً نهىقاغ االإحذاحياث صحيح َانىتائج الاحصائيت لعذ انتحهيم كتلعذ ان

 انىاتجت.

لاقرشاس انءشيقرت الافعرم مره ار ل  انشصرذاث انشرارة ٌرزي َانمستخذمت نهكشر  عرهانشائعت نءشق الإحصائيت مه ا تمجمُعانبحج  يتىاَل

 احصائيت متمخهت لالات :غشق  تح ح نشبكت جيُديسيت .حيج ااتيشث دساست محاسه َ مساَئ كم غشيقت

  (Standardized residuals method)  غشيقت انبُاق  انقياسيت .1

   test (F-t) غشيقت ااتباس .2

 (Robust estimation method)  هغشيقت انتخميه انمتي .3

نكشر  عره انشصرذاث َا هحصرُل عهرم لعرط الاسرتىتاجاث انعهميرتنتخمريه انىترائج اجشاا انتصحيح َ ت   (Matlab) لهغت َلاعذاد لشوامج

 .انشارة لتءبيق انءشق انخ ث طع ي
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تمخرم طفعرم تقىيرً فر  انكشر  عره انشصرذاث انشرارة اسرتىادا  نرم  ( Robust estimation method) َقذ َجذ ان غشيقت انتخميه انمتيه

َلسبب انذقت انعانيت انت  تُفشٌا ٌزي انءشيقت مقاسورت  (multi –blunder detection) قالهيت انءشيقت ف  انكش  انمتعذد نهشصذاث انشارة

 .لأاشييهمط انءشيقتيه ا
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INTRODUCTION 
When computing and adjusting geodetic networks, It is quiet important to ensure that the 

considered observations are free of blunders and systematic errors, and therefore the results are only 

affected by the random errors which presented in every measuring process. 

Obviously, precaution in the observation process has to be the first step to avoid undesirable error 

appearance. Moreover, an adequate data filtering previous to the adjustment, checking reciprocal 

observations, and closures even with more detailed schemes is a suitable routine to be adopted in order to 

detect and eliminate the wrong observations. 

Blunders or mistakes could be defined as obviously incorrect data points or results that are not 

reasonably close to the expected value. Some blunder or systematic errors may slip into the adjustment 

process. So it would be interested to deal with the subject that deals with the blunder detection. 

 

BLUNDER DETECTION METHODS 

The used methods for blunder detection will be explained theoretically and mathematically as follows: 

 

Standardized Residual 

The detection of blunder among the observations was treated using a technique pioneered by the 

geodesist Baarda (1968). In Baarda’s method a statistical test which is called as Standardized residuals 

used to detect blunder [Baarda, 1968]. 

Blunders will affect the observations badly and produce incorrect estimations of the unknowns and 

their covariance matrix. If the blunders are detected by a statistical test, then those contaminated 

observations are removed, the network is re-adjusted, and we obtain the final results. 

 

This method of standardized residuals, detect one blunder in every iteration and remove it from the 

observations, and readjust the network with the original observations, the iterations continued until 

remove all blunders and until the chi square test (
2
) passed depend upon the significance level, variance 

and the degree of freedom. The method also depends on computing the variance-covariance matrix of 

residuals vv . 

The standardized residuals are computed as:  

     
ii

i
i

q

v
v                  (1) 

  Where  iv  is the standardized residual, 

   iv   is the residual, and  

   iiq  is the   diagonal element of  the vv  matrix. 

 Since a computed parameter divided by its standard deviation which is a random normal variable, 

we can compute a (t) value as:  
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 However, this equation should be based on "good "value for the reference variance since a 

blunder automatically affects the value of 0S , the method summarized as follows: 

1) Locate all measurements that qualify for rejection. 

2) Reject the single observation with the largest standardized residuals. 

3) Repeat adjustment 1& 2 until all observations qualify for rejection are rejected, and until 

(goodness of fit) pass. 

Robust estimation method  

The method is the latest method for blunders detection, that was obtained by scientist Huber in 1981 

[Huber, 1981] and developed in 1990's [Francis, 2004]. The basics of this method are depending upon the 

original weights of observations. 

 

Ordinary Least square adjustment is not sensitive to the blunder in the observation. From the Figure 

(1) below, it could be noticed  how the regression line of least square dropped to the blunder points ,and  

affect the regression line by this amount ,but if we use the method of robust estimation that resistant to 

blunder the problem will be  very different . 

 

The regression line by both ordinary least square method, and robust line fit shown, and it could be 

noticed how the blunder point could not affect the regression line of the robust estimation method, and 

how affects on the least square line regression.  

Robust estimation method will treat the  blunder from a new view of point, which  will compute a 

weight  through  a special  function  upon the scientific function  which detect blunder and give  a correct  

result, then  treat the blunder. 

 

One can notice how the blunder points dropped the least square line towards the blunder points, how 

the regression line of robust estimation is canceled the blunder point and how resistant the dropping of the 

blunder point and did not let it to affect the line of regression. 
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Fig (1). robust regression line and  ordinary least square regression line  (with one blunder). 

 

Specifies a weight function, a tuning constant, and the presence or absence of a constant term. The weight 

function can be any of the names listed in the following Table (1). 

 

 

Table (1). Weight function used in robust estimation function. 

 

Tune 

constant 
Meaning 

Weight 

function 

1.339      rrrabsW /)sin())((   Andrew 

4.685      22 )1())(( rrabsW   Bisquare 

2.385      )1/(1 2rW   Cauchy 

1.400      ))(1/(1 rabsW   Fair 

1.345      ))(/(1 rabsW   Huber 

1.205      rrW /)tanh(  Logistics 

2.795      ))(/(1 rabsW   Talwar 

2.985      )exp( 2 rW  Welsech 

 

Procedure for robust estimation method could be summarized as follow: 

1) Solve as ordinary least square method 

2) Solve for hat matrix Ĥ (covariance of observations) 

 

Where: 

  tt BBBBH  1)(                        (3)                                                                                                    

3) Compute r  

 

)-1( ii

i
i

hstune

V
r


                                                                                                 (4) 

 

Where: 

iV : the residuals of observation i, 

 tune: the tuning constant from table (1), 

 s: an estimate of the standard deviation of the error term. s = MAD/0.6745, and 

iih  : the vector of leverage values (diagonal element of the hat matrix H). 

      

The quantity MAD is the median absolute deviation of the residuals. The constant 0.6745 makes 

the estimate unbiased for the normal distribution.    
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4) If the value of ir  is greater than rejection level, then this observation is considered as a blunder, 

and it must be down weighted to a new weight according to the weight function in the table above. 

 

5) Readjust according to the new weight. 

 

F-T TEST METHOD  

It is one of the traditional methods for detecting blunders; it was presented by the researcher Xu 

Pieliang. The basic of this method depends upon the tests F-t. Initially F test used for the global test and 

then t test to check for each blunder immediately after an F test. The U statistics here is actually the 
2
 

statistics given by Stefanovic [Xu Pieliang, 1987]. 

 

Compared with an F test or (
2
) test, this method is convenient for testing each blunder after the global 

test, and makes it possible to discuss the relationship of significance levels between the global test and the 

test of each blunder. 

 

Let the mathematical model be: 

 

   VBL                                                                                                                                   (5) 

Where 

B: the design matrix, 

L: the observational vector with the weight matrix W, 

Δ: the vector with u unknown parameters, and 

V: the normally distributed error vector. 

 

If there are blunder in ( l ), eq. (5) is rewritten as: 

111 VBl                                                                                                                                  (6) 

 

2222 VlBl                                                                                                                       (7) 

Where:  

1B : a matrix with full column rank, 

 1l : a no-blunder observational error, 

2l : may be considered to be a vector containing some blunders ( 2l ) after the initial       

identification, and 

V1 and V2 are the normally distributed error vectors of ( 1l ) and ( 2l ), respectively. 

 

         The ordinary least square solutions are: 

 

)()( 111

1

111 lWBBWB tt                                                                                                                            (8) 

xx
=

1-

111 )( BWB t 2                                                                                                                                  (9)                                                                                                                                                                                                                    

)(ˆ
111

2 umnVWV t                                                                                                                        (10) 

111 lBV                                                                                                                                             (11) 
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Where  

1W : the weight matrix of ( 1l ), and  

 n: total number of observations, 

       The predicted vector ( 2l̂ ) of ( 2l ) is:   

111
1

111222 )..(ˆ.ˆ lWBBWBBBl tt                                                                                                        (12) 

For each element ( 2l̂ ) of ( 2l  ) (i > n-m): 

              111
1

111 )(ˆ lWBBWBBl tt
ii

             (13) 

 Where   

iB : a row vector of 2B . 

The predicted residuals vector is therefore (denoted by 2V̂ ) 

 22222 -ˆ-ˆ BlllV                                                                                                                 (14) 

For each element of  2V̂          

 iii BlV -ˆ
                                                                                                                               (15) 

If ( 1l ) and ( 2l ) are unrelated, ( 2l ) is unrelated to Δ, thus we can get from eq. (14) and (15) 

)ˆ()( 22 lDlDvv 
           

              2

2

1

1112

1

2 .)(   
vv

tt BBWBBW                                                                                                  (16) 

21-

111

1- ])([ t

i

t

iivv BBWBBW 
                        (17)                                                                                                      

To test if blunders exist in 2V̂  we test the zero hypotheses: 

           02  LHo                                                                                                                            (18) 

When a priori value of the unit weight variance is known, the quadratic form: 

 

            )(~ˆˆ 2

2

1

2 VVU vv

t                                                                                                                 (19) 

If eq. (18) is correct the noncentral parameter (δ) of U is equal to zero; otherwise,  

22
1

2 )ˆ( LVDLt   .                       (20) 

 In fact statistics U is Stefanovic’s 
2
 tests. 

 

Now we further establish two statistics, denoted by F and t, respectively [Xu Pieliang, 1987]: 

2

2

1

2

1

1112

1-

22

22

ˆ/ˆ])([ˆ

/ˆ//





mVBBWBBWVF

mUF

ttt




                                                                               (21) 

~F (m, n-m-t) 

Using eq. (21) we can conveniently test whether ( 2l ) contain some blunders. When the zero hypotheses 

are rejected, further testing is needed to determine which ( 2l ) is responsible.  

Therefore establish the zero hypotheses for each elements of ( 2l ): 
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   02  LHo                                                                                                                           (22) 

 

It is clear that when eq. (21) is correct, 

 
22 /ˆ/ˆ vvvt 

                                                                                                                (23) 

~t (n-m-t) 

After the F test, the t test can therefore be used to detect blunder in ( 2l ). It is not difficult to see 

that a (t) test makes it easy to test each element ( il ) of ( 2l ). 

The steps according to this method may be summarized as follow: 

 

  1) Initial identification of blunders. 

2) Division of model in eq. (5) into two parts–the adjustment model in eq.(6) and the prediction 

model in eq.(7) according to the initial identification and then solving for Δ in eq. (8), the predicted 

residuals vector 2V̂  from eq. (16) and its variance-covariance matrix. 

 

3) Use of the F test for the global test. If the zero hypotheses are rejected, further investigation (a t 

test) is needed to determine which ( il ) is responsible. 

 

APPLICATION TO ACTUAL NETWORK: 

For mathematical verification, a combined (Hybrid) geodetic net were chosen, which was adjusted 

by [Ghilani, 1994]. The systematic errors are corrected and the observed distances are reduced to mean 

see level. Goodness of fit test for this net after ordinary least square adjustment was failed which means 

that blunders exist, so the net was suitable to check our methods for blunders detection. 

 

 The specifications of this network were as follows [Ghilani, 1994]; (see appendix A) 

-Two control points (2000, 2001). 

-11 unknown points. 

-19 distance observations, and 17 angles. Fig (2) shows the configuration of the net. 
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Fig (1). Configuration of the geodetic net 

 

RESULTS AND DISCUSSIONS 

After performing the least square adjustment, each method was checked for blunders detection in 

the observation. The results had been summarized in the Table (2) 

 

Table (2) Comparison between blunder detection methods used for adjusting the geodetic network. 

 

T

he 

adj

ust

me

nt 

of 

the 

abo

ve 

net

work by using 1
st
 method (Standardized residuals) was done by [Ghilani, 1994], while this research adjust 

the same network by using the two other methods. 

 

Method Iteration 


2
 

test 
±σ  

Blundered 

observations 
Redundancy 

Standardized residuals method 3  Pass 1.162 2 12 

Robust estimation method 
1 

(One step) 
Pass 0.983 2 14 

F-t test method 
1 

(Two steps) 
Pass 1.165 2 12 
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It was found that the robust estimation method represent the better blunder detection technique due to its 

ability in what is called (multi-blunder detection), and the resulted higher accuracy indices, this is obvious 

from the comparing the values of ( ±σ). 

 

 

CONCLUSIONS 

It could be concluded the following: 

1. It is clear that standardized residuals method, Robust estimation method and F-t test method are 

all effective in blunder detection. 

2. A disadvantage on standardized residuals method was noticed, in that it is an iterative procedure 

or a single blunder detection technique. Robust estimation and F-t test has the advantage in that it 

is a multiple blunder detection techniques. 

3. From the two applications discussed, it is quite evident that Robust estimation technique gives a 

lower value for the final variance of unit weight ( 2

0̂ ) and also for the standard deviations of the 

adjusted unknown, which indicates that Robust estimation is the best blunder detection method. 

 

This lower value of variance could be explained in that the redundancy (n-u) remain fixed while in 

the standardized residuals method and F-t test method the redundancy decreased each time a 

blunder detected and removed 

 

4. Among all the weight functions used in robust estimation method it is highly recommended to use 

the (Cauchy) weight function. 
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APPENDIX (A) 

Blunder detection example 

============================ 
Number of Control Stations           = 2 
Number of Unknown Stations       =11 
Number of Distance observations  = 19 
Number of Angle observations     = 17 

 
Initial approximations for unknown stations        Control Stations 

 

Station X Y  Station X Y 

1 2 477 233.88 420 353.62 2000 2 476 334.60 419 710.09 

2 2 477 497.99 419 951.98 2001 2 476 297.98 419 266.82 

3 2 477 832.67 420 210.17  

4 2 478 023.86 420 438.88 

5 2 477 630.64 420 567.44 

6 2 477 665.36 420 323.31 

102 2 476 454.17 419 743.39 

103 2 476 728.88 419 919.69 

201 2 476 576.25 419 589.24 

202 2 476 948.76 419 331.29 

203 2 477 463.90 419 819.56 

 

Distance Observations 

 

Station 

Occupied 

Station 

Sighted 
Distance S 

1 3 615.74 0.02 

1 2 480.71 0.02 

3 1 615.74 0.02 

3 4 298.10 0.02 

3 6 201.98 0.02 

3 5 410.44 0.02 

3 2 422.70 0.02 

5 2 629.58 0.02 

5 1 450.67 0.02 

5 6 246.61 0.02 

5 4 397.89 0.02 

5 3 410.46 0.02 

102 103 327.37 0.02 

103 1 665.79 0.02 

201 202 453.10 0.02 

202 203 709.78 0.02 

203 3 537.18 0.02 

2000 102 125.24 0.02 
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2001 201 425.90 0.02 

Angle Observations 

 
Station 

Back sighted 

Station 

Occupied 

Station 

Fore sighted  
Angle S 

2 1 3 316° 48' 00.5" 6.3" 

      2       3 4  167° 32' 28.0"  14.5" 

2 3 6   71° 42' 51.5"       15.1" 

2 3 5 98° 09' 36.5"      10.3" 

2 3 1 51° 07' 11.0"        7.2"  

203 3 2    8° 59' 56.0"        6.5" 

2 5 3 318° 20' 54.5"      7.0" 

1 5 3 268° 49' 32.5" 9.8" 

6 5 3 338° 36' 38.5" 10.7" 

3 5 4 324° 17' 44.0" 8.1" 

2000 102 103 162° 58' 16.0" 28.9" 

102 103 1 172° 01' 43.0" 11.8" 

2001 201 202 263° 54' 18.7" 9.7" 

201 202 203 101° 49' 55.0" 8.1" 

202 203 3 176° 49' 10.0" 8.4" 

102 2000 2001 109° 10' 54.0" 25.5" 

2000 2001 201 36° 04' 26.2" 7.4" 
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SOLUTION  
 

 

         Adjusted stations 

                                               Error ellipse confidence level at 0.950 

         Station   X             Y           Sx        Sy        Su        Sv     t 

        ================================================================================ 

         1  2,477,236.78    420,351.57    26.138    27.582    95.745    40.382 137.21° 

         2  2,477,500.02    419,949.06    18.862    32.883    95.031    41.414 158.93° 

         3  2,477,835.61    420,206.18    22.972    41.726   124.575    38.036 155.07° 

         4  2,478,007.59    420,410.17    28.839    47.264   145.573    41.617 151.30° 

         5  2,477,631.63    420,566.15    32.636    36.320   127.266    40.399 138.75° 

         6  2,477,667.20    420,320.89    26.259    37.620   118.995    39.741 147.78° 

       102  2,476,455.42    419,742.35     9.931     6.023    27.726    15.494  75.95° 

       103  2,476,731.25    419,918.44    14.445    13.310    40.980    34.721 120.10° 

       201  2,476,576.61    419,589.00     8.329     9.077    27.541    19.397  37.62° 

       202  2,476,948.76    419,330.06    12.410    16.494    46.100    32.569  16.98° 

       203  2,477,465.47    419,816.79    15.649    30.287    85.777    36.510 163.29° 

 

 

Adjusted Distance Observations 

 

     Station   Station 

    Occupied   Sighted     Distance      V         S     Std.Res.    Red.# 

   ======================================================================= 

         1         3        616.23     0.495     5.356     26.05     0.746 

         1         2        480.95     0.243     5.921     13.29     0.689 

         3         1        616.23     0.495     5.356     26.05     0.746 

         3         4        266.81   -31.287     6.525  -1802.59     0.622* 

         3         6        203.77     1.789     6.889    106.83     0.579 

         3         5        413.76     3.317     5.059    171.47     0.773 

         3         2        422.77     0.069     5.459      3.67     0.736 

         5         2        630.97     1.394     6.012     76.87     0.679 

         5         1        449.39    -1.281     7.192    -79.16     0.541 

         5         6        247.83     1.225     7.100     74.85     0.553 

         5         4        407.04     9.153     7.819    614.84     0.458 

         5         3        413.76     3.297     5.059    170.43     0.773 

       102       103        327.25    -0.121    10.056    -17.16     0.103 

       103         1        665.70    -0.087    10.048    -12.18     0.105 

       201       202        453.37     0.268    10.526     92.01     0.017 

       202       203        709.85     0.075    10.051     10.51     0.104 

       203         3        537.24     0.060    10.056      8.53     0.103 

      2000       102        125.05    -0.188    10.138    -28.72     0.089 

      2001       201        425.95     0.048    10.063      6.82     0.102 
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Adjusted Angle Observations          

        2         1           3    316°49'53.8"     113.32"   2334.36   28.07   0.411 

        2         3           4    167°35'29.5"     181.54"   5764.13   22.07   0.322 

        2         3           6     71°43'01.5"      10.01"   5660.17    1.05   0.397 

        2         3           5     97°55'08.5"    -868.02"   2793.81 -101.88   0.684 

        2         3           1     51°06'18.6"    -52.42"    2462.81  -10.32   0.498 

      203         3           2      8°59'35.6"    -20.36"    3049.99  -13.36   0.055 

        2         5           3    318°25'19.8"    265.26"    1871.66   45.52   0.693 

        1         5           3    268°58'58.7"    566.22"    3246.9    79.45   0.529 

        6         5           3    338°42'49.1"    370.61"    4309.5    62.85   0.304 

        3         5           4    322°04'20.0"  -8004.04"    3222.81 -1745.41  0.321* 

     2000       102         103    162°23'46.9"  -2069.09"   10624.86 -110.49   0.420 

      102       103           1    171°57'47.3"   -235.73"    5605.07 -112.46   0.032 

     2001       201         202    263°58'29.6"    250.90"    4536.27  104.48   0.061 

      201       202         203    101°52'55.9"    180.90"    3608.54   58.03   0.148 

      202       203           3    176°50'15.3"     65.26"    3819.12   23.14   0.113 

      102      2000        2001    109°40'20.8"   1766.77"    9348.51  106.51   0.423 

     2000      2001         201     36°07'53.9"    207.69"    3440.52  104.46   0.072 

 

 

 Adjustment Statistics 
               Iterations = 4 

             Redundancies = 14 

 

       Reference Variance = 232,981.728 

             Reference So = ±482.7 

 

           Failed to pass X² test at 95.0% significance level! 

                          X² lower value = 5.63 

                          X² upper value = 26.12 

        Possible blunder in observations with Std.Res. > 1,588 

                      Convergence! 

 

Then the problem be as following:- 

 

Number of Control Stations            = 2 
Number of Unknown Stations        = 11 
Number of Distance observations   = 18 (It was 19) 
Number of Angle observations       = 17 

  

 After that readjustment will be done. 
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