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ABSTRACT:

The continuous and rapid development of shapes for architectural members and structural
researches development in stability field encourage the designers and researchers to study the effect
of member shape on the load capacity. The optimum strength of compression members with
economical dimensions can be obtained to satisfy the architectural and technical requirements. A
different nonlinear tapered member shapes have been studied under compression axial force with
simply supported end conditions. Then graphical comparisons for different member shapes are
presented to find the maximum axial force and minimum member volume at buckling state. This
study is based on modified stability functions that have been based on Bessel functions. The results
of this study provide structural and architectural designers the most proper member’s shape, with
more economical dimensions to carry the design load.
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INTRODUCTION:

The model of this study is a tapered member in both dimensions. The section depth and
width along the member length producing the linearly or non-linearly tapered member is shown in
Fig. (1). This model is subjected to compression axial force. Increasing the section dimensions will
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enhance the strength of the individual structural members and enhance the whole structure load
capacity.
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Fig. 1: Tapered beam-column member.

MODIFIED STABILITY FUNCTIONS:
The modified stability functions of non sway and non-prismatic members in different non-

linear configuration shape as derived in previous researches by (AL-Damluji and Yossif 2005), (Al-
Sarraf and Yossif 2005) and (Yossif 2006) can be written in the form of modified slope deflection
equations as given in eq. (1) and eq. (2) below:

M, =%(sle1 +SCH,) oy
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M, =E—I'_2(scel+szez) )

These two equations can be written in matrix form as given in eq. (3).

M| _EL|S, SC| 6 3)
M,[ L |SC S,]|]e,
Therefore the stiffness matrix [K] for simply supported beam-column member can be written as
given in eq. (4).

El,[S, SC
[K]:T{sc Sj @)

Where I, is the moment of inertia at smaller depth of member, S;, SC and S, are the
modified stability functions and L is the member length.

The derivation of the modified stability functions based on the exact solution given in eq. 5
of second order differential equation of the deflected shape of beam column member subjected to
compression axial force and bending moments.

El(x)j%+@y=%(x—a)+%(x—b) (5)

where 1(x) is the moment of inertia at distance x from origin O that can be written with respect to
member dimensions as given in eq. (6) and with respect to member depth as given in eq. (7): —

1) =1,(x/a)" (6)
I(x) = d(x)* /12 @)

Where m is the modified shape factor as obtaine from eq. (8). Otherwise the equation of shape
factor can be obtained using eq. (9) (Al-Sarraf , 1979) and (Al-Damarchi, 1999) which depends
on logarithm ratio of moment of inertia between two ends and tapering ratio: —

m=Am (8)

m=1log(l,/1,)/logu 9)
In fact, the non-linear shape of non-prismatic members can be classified in three types according to
the non-linearity factor A :

1. A >1, for concave tapered member along its axis.
2. A =1, for linear tapered member along its axis.
3. A <1, for convex tapered member along its axis.

Where u and U are the tapering ratio and modified tapering ratio respectively that can be obtained
from eq. (10), eq. (11) and eq. (12): —

u=a/b (10)
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u=u* (11)
1
ut* =alb (12)

Where b and a are the distance from origin O to end 1 and end 2 respectively as shown in Fig. (1).
The depth d (x) may be expressed by eq. (13):

d(x) =d,(x/a)' (13)
From eq. (13), the depth d; at end 1 when x = b can be obtained from eq. (14):

d, =d,(b/a)’ (14)
The moment of inertia of the strut may be expressed in the form shown in eq. (15):
I(x) =1,(x/a)" (15)

The basic differential equation of beam- column as given in eq. (5) can be written as in eq. (16)
after substituting eq. (8) and eq. (15) into eq. (5).

x\" d2y M M
El,| = | —2+Qy=—2(x—-a)+—2(x-b 16
z(anQyL()L() (16)
The right hand side of eq. (16) can be reduced to zero by replacing “y” by “Z” when
Z=y-Mi(x_a)-Mz(_p). (17)
QL QL

Thus, the differential equation becomes:

2
dxf +o?XZ=0 (18)
Where
o’ =Qa" /El,. (19)

Eq. (18) can be transformed into Bessel Equation of the form shown in eg. (20) (McLachla, 1961):

2 _ 2 n2,2
d E_(Zoc 1) dz Biyix2? 4 LY 7 g, (20)
dx X dx X
This equation has a general solution (McLachlan, 1961):
z=x*|AJ, (Bx" )+ B3, (x| (21)
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Depending on (n) is not an integer; here J, is the Bessel functions of the first kind of order n; A and
B are the constants of integration. Therefore, the solution can be written down in terms of Bessel
functions by giving particular values to the constants a, B,y and n, by comparing the two

equations eg. (18) and eq. (20), the constants o, 3,y and n can be obtained: —

0=05, p=+29  ,-2=M 1
2-m 2 2-m

Hence, the general solution of the fundamental eq. (16) is:

v N Moy —a) e Ma (
y = VXA, (px7)+ B, (B b Gt (x-2)+ S (x D) (22)

There are four unknowns A, B, My, and M,, which have to be determined from the

following boundary conditions:

at x=a, deflectiony =0 and rotation dy/dx=0,,
and x =Db, deflectiony =0 and rotation dy/dx =6,.

The solution of the basic differential equation as given in eq. (22) can be represented by the
modified stability functions for each type of nonlinear shape as given in Table (1) (Abdul Mahdi,
2002), (Al-Azawi 2005) and (Yossif, 2006).

Table (1): Modified stability functions for different non-linearity shape (Yossif, 2006).
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o | 1g |79 (oLf, +Za%°) (oLf, — za®**Y) (oLf, +Zb%)
| 7| |ePEL/LZQb*®| | |0PEL,/LZQa*h%] |oPEL, /LZQa*? |
i ool s (oLf, +Za**) (wLf, +2a%%°°) (oLf, +Zb**)
“ 77 |[FopEL /LzQb*] | [0PEL /LzQa*b°*] | [-wPEL/LZQa"]
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Where any symbol in the above equations is defined in appendix Al, :A2 andA3

ELASTIC CRITICAL LOAD:

A compression force Q if loaded axially on any beam-column member by a small value that
is applied through the centroid of the cross section, the column remains straight and undergoes only
axial compression. This straight form of equilibrium is stable, which means that the column returns
to the straight position if it is disturbed. For instance, if a small lateral load is applied which causes
the column to bend, the deflection will disappear and the column will return to the original position
when the lateral load is removed. As the axial load is gradually increased, it reaches a condition of
neutral equilibrium in which the column may have a bent shape. The ideal column may undergo
small lateral deflections with no change in the axial force, and a small lateral load will produce a
bent shape that does not disappear when the lateral load is removed. The stiffness matrix of beam-
column member is gradually vanished at this load therefore such a load is called the elastic critical
load.

The elastic critical load Q. of any tapered member shape can be obtained using eq. (23) as
given below:

Q. =pPQe- (23)

Where: p. is non-dimensional axial force parameter at the elastic critical load.

Q. is the equivalent Euler load for tapered member which equal to El,n*/L?

E is modules of elasticity for steel

I, is the moment of inertia at smaller end depth

L is member length
The elastic critical load is obtained for linear tapered members and five types of tapering ratio
which equal to 1.5, 2, 3, 4 and 5, then tabulated with respect to the properties ratio I,/L” as given in
Table (2) and presented graphically as shown in Fig. (2).
The value of non-dimensional axial force parameter at the elastic critical load can be obtained using
stability equations that given in Table (1).

Table (2): Elastic critical load for different depth at smaller depth’s end

/L Elastic Critical Load Q (kN)

2 b/a=1.5 b/a=2.0 b/a=3.0 b/a=4.0 b/a=5.0
0.000833333 3.70 6.58 14.80 26.32 41.12
0.013333333 59.22 105.28 236.87 421.10 657.97
0.067500000 | 299.79 532.96 1199.16 2131.83 3330.99
0.213333333 | 947.48 1684.41 3789.93 6737.65 10527.58
0.520833333 | 2313.19 4112.34 9252.75 16449.34 25702.09
1.080000000 | 4796.63 8527.34 19186.51 34109.35 53295.86
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2.000833333 8886.35 15797.95 35545.38 63191.79 98737.17
3.413333333 | 15159.71 26950.60 60638.85 107802.40 | 168441.25
5.467500000 | 24282.93 43169.65 97131.71 172678.60 | 269810.31
8.333333333 | 37011.02 65797.36 148044.07 | 263189.45 | 411233.52
12.20083333 | 54187.83 96333.92 216751.32 | 385335.67 | 602086.99
17.28000000 | 76746.04 136437.41 306984.18 | 545749.64 | 852733.82
23.80083333 | 105707.16 187923.85 422828.66 | 751695.39 | 1174524.05
32.01333333 | 142181.52 252767.15 568726.08 | 1011068.59 | 1579794.68
42.18750000 | 187368.27 333099.15 749473.08 | 1332396.59 | 2081869.68
54.61333333 | 242555.40 431209.60 970221.59 | 1724838.38 | 2695059.98
69.60083333 | 309119.71 549546.15 | 1236478.84 | 2198184.61 | 3434663.45
87.48000000 | 388526.85 690714.39 | 1554107.39 | 2762857.58 | 4316964.97
108.6008333 | 482331.27 857477.81 | 1929325.07 | 3429911.24 | 5359236.31
133.3333333 | 592176.26 | 1052757.80 | 2368705.06 | 4211031.21 | 6579736.27
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Figure (2): Elastic critical load for different tapering ratio of linear tapered shape

Then the modified stability function values substituted into the matrix given in eq. (4) with
different compressive axial force value until the equation of stiffness matrix becomes equal to zero.
At this case the axial load is the elastic critical load. The non-dimensional axial force parameter at
elastic critical load are tabulated for nine different non-linearity shape and five tapering ratio as

given in Table (3).

Table (3): Non-dimensional Axial Force Parameter

A b/a=1.5 | b/a=2.0 | b/a=3.0 | b/a=4.0 | b/a=5.0
0.2 1.190 1.364 1.685 1.982 2.263
0.4 1.408 1.821 2.727 3.69 4.716
0.6 1.657 2.358 4.232 5.995 8.978
0.8 1.935 3.134 6.297 | 10.461 | 15.611
1.0 2.250 4.000 9.000 | 16.000 | 25.000
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1.4 2.991 6.219 | 16.518 | 32.005 | 52.706
1.8 3.892 9.139 | 27.001 | 54.812 | 92.567
2.2 4963 | 12.793 | 40.532 | 84.453 | 144.561
2.6 6.212 | 17.198 | 56.088 | 12.902 | 203.633

ECONOMICAL AND OPTIMUM SHAPE:

The economical member shape in this study represents the member that has a minimum
material weight i.e. minimum member volume while the optimum member shape can be defined as
the member which has minimum shape volume with maximum load capacity. The optimum shape
IS not necessarily being the economical member shape.

The optimum member shape depends on the optimum degree ratio represented by the ratio between
member capacity and member volume. That mean the member shape convergence to the case of
optimum shape when the optimum degree increased.

Nine different shapes of tapered beam-column members are presented in this study assigned
according to the degree of non-linearity factor. General volume equations for different cross section
area of tapered member derived as a function of non-linearity degree as given in Table (4) that can
be used to compare between volumes of different member shapes having the same capacity of axial
load.

Table (4): General volume equation

Section Type Volume Function
. d 2 b2k+l _a2k+1
Square section 2 (zx )
a?(2n+1)
2 20+1 22+1
Rectangular section LI Zx(b a )
a?(2n+1)
2 2+1 2A+1
Circular section d;_ . (g a )
4.2 (20 +1)

The ratio of the elastic critical loads of different non-linearity shape from the elastic critical
loads of linear tapered member at tapering ratio u=2 are presented in Table (5) as the first
numerical comparison between different tapered member shapes having the same other properties.

Table (5): Ratio of elastic critical load from linear tapered shape

A b/a=1.5 b/a=2 b/a=3 b/a=4 b/a=5
0.2 1.35930 1.35456 1.34557 1.33771 1.33122
04 1.34392 1.30339 1.24151 1.18318 1.13540
0.6 1.31595 1.20208 1.06945 0.87873 0.84358
0.8 1.27325 1.12498 0.86182 0.67749 0.54964

1 1.22161 1.00000 0.65237 0.44444 0.31868
14 1.09224 0.73125 0.31682 0.15197 0.08113
1.8 0.94111 0.48686 0.12854 0.04121 0.01585
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2.2 0.78294 | 0.29878 | 0.04549 | 0.00950 | 0.00259
2.6 0.63044 | 0.17111 | 0.01426 | 0.00195 | 0.00037

The comparison presented in Table (5) explains that the convex shape has a more axial load
capacity than other shapes in which it will reach about to 136% from the linear shape capacity; on
the other hand the concave shape is less axial load capacity than other shapes in which it will be
reach less than 0.04% from the linear shape capacity.

The elastic critical load of different non-linearity shape as a ratio from linear tapered shape

is presented as the first comparison in graphical curve for different tapering ratio as shown in
Fig. (3) for members having the same member length, volume and support conditions.

1.6

=2

1.4

=02

1.2 4

1.0 A

0.8 1

0.6 1

0.4

0.2

Axial force ratio with respect to linear shape at u

0.0

15 2 2.5 3 35 4 4.5 5
Tapering ratio

Figure (3): Comparison of models according to elastic critical loads
The ratio of members volume from the volume of linear tapered member at tapering ratio

u=2 is presented in Table (6) as the second numerical comparison for different non-linearity shape
and different tapering ratio.

Table (6): Volume ratio with respect to linear shape at u=2

Trz"t’f(;'ﬂg A=0.2 | A=0.4 | A=0.6 | A=0.8 | A=1 | A=1.4 | A=1.8 | A=2.2 | A=2.6

15 0.86 | 0.86 | 0.87 | 089 |090| 096 | 1.03 | 1.13 | 1.26
0.86 | 0.88 | 091 | 094 [1.00| 117 | 1.43 | 1.83 | 2.42
0.86 | 0.90 | 097 | 1.08 |124| 1.77 | 2.79 | 468 | 8.37
0.86 | 092 | 1.07 | 1.21 | 150 | 256 | 4.92 | 10.25 | 22.63
087 | 094 | 1.09 | 1.35 |1.77 | 351 | 7.04 | 19.61 | 52.16

g~ winN

3238




W.V. Yousif Optimam Shape of Tapered Columns
E. Nabil Under Axial Compressive Force
R. A. Faraj

The comparison of Table (6) explains that the convex shape needs more volume than other
shapes to carry the same axial load capacity which can be reached to 5216% as that of the linear
shape. On the other hand the concave shape needs less volume than other shapes to carry the same
axial load capacity which can be reached to 86% as that of the linear shape.

The volume for members having the same length and the same elastic critical load capacity
with different tapering ratios is presented as the second comparison in another graphical curve as
shown in Fig. (4).

15

14 b/a/1.b //
., 13 7
£ .
= 12 ] /Hfa=2
) I | I
Z 10
8 o1 / blat3
5 ool
N A
S 6
% 5 [/ bla=4
g P
L/
211/ e S R — blA=5
0 _%//
0 10 20 30 40 50 60 70 80 90 100

Volume of linear member in m?
Figure (4): Comparison of models according to member volume

APPLICATIONS:-

The three simply supported steel beam-column members subjected to a compressive axial
force with equal lengths of 4.0 m and solid rectangular cross sections tapered in different
configuration shapes:
1-linear tapered member
2-concave tapered member with non-linearity equal to 2.6
3-convex tapered member with non-linearity equal to 0.2
The members have the same dimensions at the smaller depth’s end which is equal to 5 cm for
members depth and width, and the same tapering ratio of 3.

The comparison of the elastic critical force and volume for the three members are tabulated to
verify the optimum member’s shape:

First member:
The elastic critical load of this member can be obtained using eg. (23) and Table (3) as given

below:
Q=p. E =0, 2 =578.3kN

The volume of this beam-column can be obtained using Table (5) as given below:

El,n? 200000000 0.05* /12X t°
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2 201 420 2 2x1+1 _ 2x1+1
v '(2'2 2 )20'052'(53 2) 5 043 m?
a?(2x+1) 22%(2x1+1)
Second member:
The elastic critical load of this member can be obtained using eq. (23) and Table (3) as given

below:
__ElLR® 200000000x 0.05* /12x rt
Q - p' LZ 42
The volume of this beam-column can be obtained using Table (5) as given below:
d.2 (bzml _a2x+1) 0.052 (62><2.6+l _ 22><2.6+1)
, ~ 0.05%,
a?(2n+1) 2225(2x 2.6 +1)

Third member:
The elastic critical load of this member can be obtained using eq. (23) and Table (3) as given

below:
El.* 200000000x0.05" /12 x 7t
Q=p. Ijz =1.685. Ve

The volume of this beam-column can be obtained using Table (5) as given below:

=56.088. =3604kN

=0.732m?

=108.3kN

B dzz. (b2x+1 _a2x+1) B 0-052.(62><0.2+1 _ 22><0.2+1)
o a?(2a+1) 22°%(2x0.2+1)

=0.013m®

The above results are tabulated according to the non-linearity degree as given in Table (8):

Table (8): Application Results

Concave A=2.6 | Linear A=1.0 Convex A=0.2
Elastic critical load
Q. kN 3604 578.3 108.3
Elastic critical load 623% 100% 18.7%
Q%
Volume V, m* 0.732 0.043 0.013
Volume V, % 1702% 100% 30%
% 36.6% 100% 62.3%
V% . 0 0 . 0

CONCLUSIONS:

This study is based on mathematical solution of nine different models of tapered members
having square or circular solid cross-sectional area to find mathematical functions which named
modified stability functions which are used to obtain the elastic critical load for each member
shape.

The results of this study are presented by two comparison tables and graphical curves. The
maximum shape strength is obtained at the non-linearity factor of 2.6 “concave shape” with
tapering ratio of 1.5 which is equal to 136% of the linear shape strength. The minimum shape
strength is also found at the non-linearity 0.2 “convex shape” with tapering ratio of 5 which is less
than 0.04% of the linear shape strength. Then the more economical shape is found at the non-
linearity degree of 0.2 and tapering ratio of 1.5 in which it requires about 86% of the linear shape
volume to carry the same axial load, on the other hand the least economical shape is found at the
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non-linearity degree of 2.6 and tapering ratio of 5 which is required about 5216% of the linear
shape volume to carry the same load.

Another comparison can be resulted from the application using load capacity-volume ratio in which
the first optimum degree is obtained in the non-linearity degree equal to 1“linear shape”, and the
less optimum degree when the non-linearity value convergence to 1.
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SYMBOLS:
d; and d, : Depth at end 1 and end 2 respectively
fy, f2,...fs : Parameters function

K : Stiffness of the strut

m, m : Shape factor and modified Shape factor respectively
n : The order of Bessel function

y : Deflection

u : Tapering ratio

u : Modified tapering ratio

E : Young’s modulus

I, I, : Moment of inertia at end 1and end 2 respectively

—

: Member length
Mi, M, : Bending moments at end 1 and 2 of the member
: Axial load

QO
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Qc . Elastic critical load
Qe : Eular load = EI,L? / x?
S1,S : Modified stability function at end 1and end 2 respectively
SC : Carrying factor of the modified stability function
A : Non-linearity factor
0,,0 - Rotation at end 1 and 2 of member due to bending moment and axial force
p : Non-dimensional axial force parameter
P, : Elastic critical load parameter
W2 : Ratio of member cross sectional dimensions (width to depth) at smaller depth
APPENDIX A
Table A-1: Symbols of Stability Equations for members having A=0.2, 0.4 and 0.6
©
= m=0.8 Ar=0.2 m=1.6 Ar=04 m=24 i=0.6
%)
Z 3 o6 (Q)Jo.ms (B)_Jo.me (a)‘]—o.lﬁﬁ (B) J s (a)Jo.z.s (ﬁ) —Jys (Q)J 25 (B) Jos (055 (B)— o5 (5 (B)
® (a°® Q/El, ) (a** Q/El, )" (a>* Q/EL, )
o 1.667wa’® 5ma’? 5wa %?
p 1.667wh° 5ob®? 5b 2
A I\/Il‘]—0.167((x‘)\/a + MZ‘]—O.167 (B)\/B _ Ml'] -25 ((X)\/a + M 2‘]—2.5 (B)\/B Ml‘]—Z.S ((X)\/a + M 2‘]—2.5 (B)\/B
JabzQ JavhzQ JavhZzQ
B MyJoe ((x)\/a + 'vlz‘]o.167(B>\/B Ml‘]zﬁ(m)\/a + Mz‘lz.s(ﬁ)‘/B My, (aNa+M,J, (B)\/B
JabhZQ JahzQ JaybzQ
f; 31166 (0y 565 (B) Iy (0] 1 15 (B) J_55(0)55(B) = J55(0)d 55 (B) J_55(00)35(B) = Ja5 (o) _55(B)
fa 3 0150 (@355 (B) 155 (@)) g 155 (B) 35500055 (B) =355 ()3 _,5(B) I35 ()55 (B) = J55(0)d_,5(B)
fa 3 0365 (0) 1365 (B) + 35155 ‘]—1166(B) J_55(0)J35 (B) +J,5(a)d_55(B) J 55(0)55(B) +J,5(0) 55 (B)
fs 3166 (BWrs (@) + 90166 BN 1166(@) | I 55 (B (00) + 3,5 (B) g5 () J 25 (BWas(0) + 3,5 (B) 45()
fo | Jouss (BN B) 0w BWrss (B) | Jos (BN -5 (B) + 325 (B)s5 (B) 325 (B) 55 (B) +J_55 (B35 (B)
fe 3 160 (D365 (0) F J6s (0 135 (00) | 5 (00D (00) + 3,5 (00)J g5 (ct) J 5 (0)J35(00) + 3,5 (00)J 5 (ct)
P1 (fb%° —f,a%) (f.b%° —f,a%) (fb%° —f,a%)
) (f4b°'5 _f6ao.s) (f4b0'5 —f6a°'5) (f4b0'5 _f6a0.5)
P | Z-a®p-b%p,|-olff, | Z[0%P,—a%P|-wlff, | Za%P —b*P,|-wLff,
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Table A-2: Symbols of Stability Equations for members having 2=0.8, 1.0 and 1.4

©
§ m=32 2=08 m=4 =1 m=56 A=14
(7p]
Z Joad®)J_o g5elB) I o as(@)J g 554(B) Jos () I o5(B) —J o5 (0‘) Jos (B) oz (0‘)‘]-0.278 (B) = oo (a)‘]o.zm (B)
® (a*2Q/EL,)” (@*Q/El, ) (a°° Q/El, )"
o 0.56wa *® w/a 0.556ma
B 1.667wb™° w/b 0.5600b
A MlJ 70.833(a a+ M ZJ 70.833(B)’\/B M lJ -0.5 ((x') \/g + M ZJ -0.5 (B)\/B I\/I]_‘]—0‘278(a’)’\/5 + MZ‘]*0278 (B)\/B
JabzQ Jab ZQ VabZQ
B _ Ml‘]0.833(a a+ Mz‘]o.sss(B)‘/B Mg (@)va +M,J,(BWb _ M, 0279( )\/7*' M,J;, 278(B)\/B
JabzQ Javb zQ JavbzQ
f1 ‘]—1.833(0“)‘]1.833(B) - ‘]1.833(0‘)‘]—1.833(B Js (o) Jis B) - Jis (OL) Jis (B) J 1278 (091 575 (B) — I 575 (00)J ;575 (B)
f2 J —0.833(0‘)‘]0.833(B) -J 0.833(0‘)‘J—0.833([: ) J -05 (0') J 05 (B) -J 0.5 ((1) J -0.5 (B) ‘]—0.278 (0()‘]0.278 (B) - ‘]0.278 (a)‘]-o,zm (B)
fa I 833(0')‘]1 833(B)+ Jo. 833(0')‘]—1.83 (ﬂlo 5 (0) I (B) +Jgs (a) Jis (B) o (a)‘]ms @) +J 0278 (a)‘]71.273 B)
fs 3 036(B)d1.035(0) + 3y g5 1 6aa(@) J os (B) Jis (0‘) +Jos (B) Jis (‘1) J 0278 (B) 1275 (00) + 3y 575 (B) 75 (@)
f5 -0. 833( ) 1. 833( )+ ‘]0 833( ) 1833(B) J 0.5 (B) 'J -15 (B) + ‘] -0. 5( ) Jl 5 (B) J0.278 (B)J—1.278 (B) + J—0.278 (B)J1.278 (B)
fe 3 05s(@) 1 ss(@) + s 0] saasl@) 3 5(0) Iy () + Jo5(0) g5 (@) | I g8 (0)3y 75 (@) + Jg 05 ()T s 7 (1)
P1 (1:5b0'5 —f3a°'5) (f5b0'5 —f3a°'5) (f5b0'5 —f3a°'5)
P2 (f4b0'5 _fﬁao.s) (f4b0'5 —f6a°'5) (f4b0'5 —f6a°'5)
p Z[a“ p,—b* Pz} —oLf f, Z[a“’ p,—b" Pz} —oLf)f, Z[a?%p, —b**P, |- wLff,
Table A-3: Symbols of Stability Equations for members having A=1.8, 2.2 and 2.6
3
; m=7.2 Ar=1.8 m=88 A=22 m=10.4 A=2.6
(7p]
Z o1 (a)‘] 0192 (B)_‘]MQZ ((X)J 0192 (B) Jour (a)Jfo.m (B) = g1 (a)‘]o.m (B) Joa1g (a) o119 (B)_ o119 ((1) Joats (B)
® (a7.2 Q/E| , )0-5 (as.s Q/EI , )0-5 (a10.4 Q/EI , )0-5
a 0.385ma *° 0.294ma 0.238wa™*?
B 0.385wb 2° 0.294wb** 0.238w b™?
A Ml‘]—O.lQZ(a a+M,J o (B)\/B M,J 147( )\/7 a+My g, (BNB Mo 1) va + M,J_o o) Vb
Va\bhZzQ JahzQ Javb ZQ
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5 | M Joao(ONa +Mdy e BB Mgy (0Na + M, (BND |~ Mdyis(@)Va + Mydy,o(B)vb
JavbzQ JabzQ JavbzQ

f1 1102 (01362 (B) =102 (031 302 B Iy 117 (00 117 (B) = 17 (@) 10 (B) g ((x) Ji 119 ( ) 1119 ((1).] 1119 (B)
f2 | oo ( s (B)Josso (O o (B) 3510 @V (B) o (009 g1irB) | Y-osso (0550 (B) o0 (0) 0206 (B)
PR O O S T N R O 1 O PO IO
fs 0192(5)‘]1192(0‘)+~]0192(B)J 1392(®)] 3 g7 (BN 207 (@) + g0 BNy (@) | I (B) Ji 119 (“)+J0119 (B)‘] 1119(‘1)
fs | sV 116o)+ L osso i) | Joser BN 1100 B)+ 3 16 BV1sar B) | Joze (B)3-s106 B+ 30150 (8) 311 (B)
fo | Jousal00(@) + dossrl0) 116(@) | I g (@107 (0) 4 317 (@) 1 14r (@) | Tz 0] s (0001 (0) T 15l0)
P1 (f.b*® —F,a%®) (f.b*° —f,a%) (f.b>° —f.a%)

P2 (F,b%° —,a°°) (f,b%° —f,a°°) (F,b% —,a%°)

P | Za*P, —b*P,|-wLff, Z[a**P, —b**P, |- wLff, | za*'P,—b*"P,|-wLif,
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