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ABSTRACT

In this paper a detailed study of the theory of free axisymmetric vibration of thin
isotropic prolate spheroidal shells is presented. The analysis is performed according to
Rayleigh — Ritz method. This method as well as an approximate modeling technique were
attempted to estimate the natural frequencies for the shell. This technique is based on
considering the prolate spheroidal as a continuous system constructed from two spherical
shell elements matched at the continuous boundaries. Through out the obtained results it is
found that this method predicted fairly well the natural frequencies of a prolate spheroidal
shell for all values of eccentricities.
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INTRODUCTION

Prolate spheroid shells can be obtained by rotating an ellipse around its major axis,
see Fig.l. It is worthy to indicate the industrial applications and importance of shell
structures. This interest was appreciated today in aerospace, sea vehicles industry and the
structure of rocket can be considered as a prolate shells. In such structures the resonance
problem may occur, therefore the study of free vibration become very important to prevent the
resonance appearance.

The study of free vibration of prolate shells take a considerable attempt in the
published literature. several investigators, using a variety of mathematical techniques, have
obtained approximate solutions for the natural frequencies of axisymmetric vibrations of thin
prolate spheroidal shells.

(De Maggio and Silibiger 1961) obtained a solution for the torsional vibrations of thin
prolate spheroidal shell in terms of spheroidal angle functions. (Kanins 1963) was concerned
with the vibration analysis of spheroidal shells, closed at one pole and open at the other, by
means of the linear classical bending theory of shells. Frequency equations are derived in
terms of Legender function with complex indices, and axisymmetric vibration of the natural
frequencies and mode shapes are deduced for all opining angles ranging from a shallow to
closed spherical shell. It was found that for all opening angles the frequency spectrum consist
of two coupled infinite sets of modes that can be labeled as bending (or flexural) and
membrane modes. It was also found that membrane modes are practically independent of
thickness, whereas the bending modes vary with the thickness. The same author concerned
with a theoretical investigation of the free vibration of arbitrary shells of revolution by means
of the classical bending theory of shells.

A method is developed that is applicable to rotationally symmetric shells with
meridional variations (including discontinuities) in Young’s modulus, Poisson’s ratio, radii of
curvature, and thickness. The natural frequencies and the corresponding mode shapes of
axisymmetric free vibration of rotationally symmetric shell can be obtained without any
limitation on the length of the meridian of the shell. The results of free vibration of spherical
and conical shells obtained earlier by means of the bending theory. In addition, parapoloidal

shells and sphere-one shell combination are considered, which have been previously analyzed
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by means of the inextentional theory of shells, and natural frequencies and mode shapes
predicted by the bending theory are given.

(Numergut and Brand 1965) determined the lower axisymmetric modes of prolate
shell with five values of eccentricity. (DiMaggio and Rand 1966) using membrane shell
theory in which the effects of bending resistance are ignored. Their work was distinguished
by applying their solution to constant thickness membrane shell by means of integrating
numerically the equations of motion. It was found that the frequencies associated with higher
modes are strongly dependent on the eccentricity ratio.

(Zhu 1995) based upon general thin shell theory and basic equations of fluid-mechanics; the
Rayleigh-Ritz’s method for coupled fluid-structure free vibrations is developed for arbitrary fully or
partially filled in viscid, irrigational and compressible or incompressible fluid, by means of the
generalized orthogonality relations of wet modes and the associated Rayleigh quotients.

(Wasmi 1997) used the finite element and modal analysis techniques to investigate the
static and dynamic behavior of oblate spheroidal dishes, prolate and the relevant structures.
Different types of elements were considered in one dimension, two dimensions and three
dimensions.

For framed structures, Euler Bernouilli theory, Tiomshenko theory, integrated Tiomshenko
and improved Tiomshenko theories were applied. While for plates and shells, Kerchief’s,
Zienkiewicz and Mindlin theories were applied. The capability of these trenchancies was
investigated in this work to predict the natural frequencies and mode shapes, as well as the static
analysis of framed structures and spheroidal dishes. It was found that the natural frequencies of
oblate and prolate shells have two types of behavior against increasing the shell thickness and
eccentricity, which are the membrane and bending modes. The membrane modes natural
frequencies tend to increase with increasing the eccentricity of oblate, while the bending mode
natural frequencies decrease with increasing the value of eccentricity.

(Aleksandr Korjanik et al. 2001) investigated the free damped vibrations of sandwich
shells of revolution. As special cases the vibration analysis under consideration of damping of
cylindrical, conical and spherical sandwich shells is performed. A specific sandwich shell finite
element with 54 degrees of freedom is employed. Starting from the energy method the damping
model is developed. Numerical examples for the free vibration analysis with damping based on the
proposed finite element approach are discussed. Results for sandwich shells show a satisfactory
agreement with various references solutions.

(Antoine et, al 2002) investigated the linear and nonlonear vibrations of shallow spherical
shells with free edge experimentally and numerically. Combination resonances due to quadratic
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nonlinearities are studied, for a harmonic forcing of the shell. Identification of the excited modes is
achieved through symmetric comparisons between spatial results obtained from a finite element
modelling, and spectral information derived from experiments.

This investigation -deals with the free vibration characteristics of thin elastic prolate
spheroidal shell. The shell is assumed be of isotropic material. The analysis depends on the

Rayleigh _ Ritz method.
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Fig. (1): Prolate spheroidal co-ordinates

MATHEMATICAL ANALYSIS

Through out the review of literature, it is found that even though the governing equations for
shells of revolution are well spelt out, nevertheless, the governing equations for prolate spheroidal
shells are not available, therefore the approximate energy procedure will be followed.

For a shell undergoing deformation in which the normal to the middle surface of
undeformed shell remains straight and of a constant length under deformation, the shell

displacements can be expressed as, (Burroughs 1978):

W, (D', 1) =W (D")e™

Uy (@',t) =U,, (D")e™ @
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where, @ denotes the circular frequency. The stress resultants and couples are related to the

displacement of the reference surface by the same expressions derived in appendix A with the
eccentricity set equal to zero. (Kalnins 1963) show that the actual @ -dependent coefficients of

the variables can be written as:

3

W=>" [AP;(x)+B Q, (X]

i=1

Uo=> ~(0+0)C, [A Py (9+B,Q; (%]

U, = - @+ )G AP, (0 + BQ, ()]

i=1

3
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‘D (1 V) i=1
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The value of (3; 's are the three roots of the cubic equation:
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B =[a+ (1= )P B + |4+ (A= vD)Q? + 1+ E)(1-17)]

(1-0Y) B+ (1—v)(1—v2)[92 —i}{u L+ vz)[gzz —iﬂ ~0 (14)
1-v 1+v
Where,
0? = &;R‘i (15)
And:
D, =" _
1201-%)

(16)

In the above equations Pn(x), Qn(X) are the Legendre functions of the first and second kinds,

respectively, P'(x),Q' (x)are the derivatives with respect to (@) for the Legendre functions of the

first and the second kinds, respectively. Aj's & By's are arbitrary constants.

The above solutions can be applied to study the free vibration of an elastic spherical shell
bounded in general by any two concentric openings.

As the shell is taken to be closed at the apex (® =0), and since the Legendre function for the
second kind is singular at this point, then the arbitrary constants (B;’s ) are set equal to zero. For this

reason all terms involving Qn(x) are omitted.

RAYLEIGH-RITZ METHOD

Rayleigh-Ritz method, which is an extension of the Raleigh’s method, helps to
determine the natural frequencies and mode shapes with general boundary condition in
approximate form.

The Rayleigh-Ritz procedure is essentially statement on the ratio of potential energy to
the kinetic energy. At the natural frequency (@), and assuming separation of variables, the
shell displacements may be written as give by Eq. (1). Substituting these in the strain energy

expression gives:

h/2 271'271'1 . . ) i
P = J' IIE[UQ €y +0O, EQ]R(DRH sin® d® d&dz (17)

-h/2 00
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Where,
E . . E . .
O-(D' =m[e(pv +UEQ] y 09=m[€9 +v G(D-] (18)
and
e, =€ +2K, €,=€, +ZK, (19)

An expression for the maximum strain energy ( P, ) may be obtained upon taking e™ to be

unity and applying the appropriate expressions for o, , o, , €, and €, to given by:

N TT{E 1] 8 |U, aw
™ 20-v?¥y 4 12| RZ| 0| R, R,OD
2 ' 2 1
2cog fDZ [Uq)_a_vv} 2y cozs<I>_ [U 8W]
Ry R, sin“ @ od R, Ry sin®

2
o | U, oW R T RCCPY
op'| R, R, 0D R: | 00

s 1
(R, sin®')?
. 2v { U,
R, Ry Sin @' o'
R, R, sin®'dd' do

(U, cos®' +W sind') ?

+W}(U®cosd>'+w sind') |

(20)
The kinetic energy is:

hi2 2z 2rx 1 au 6\N . , ,
K:J' I J Ep“#]:[a o Ry SiN@'dDd'd (21)

hi2 0 0
After integration with respect to (z) and substituting for the appropriate expression, the

maximum Kkinetic will take the form:

2 27 27
K., = a)zph [ | (Ui +w)R,R,sin@'da'do (22)

0 0
Equating the maximum kinetic energy to the maximum potential energy, the natural frequency
can be written as:

(23)
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Where, N and D represent the equations in numerator and denominator, respectively.
Following the procedure of Rayleigh-Ritz’s method, the radial (or transverse) and tangential

displacements can be written in power series form as:
R : R , (24)
w(®') =) a;w; () Uy (@) = D_buy, (V)
i=1 i=1

Where, the a;'s and b;'s are coefficients to be determined.

The functions W;(® ), U(®") satisfy all the geometry boundary conditions of the system.
Eq.(23) is an exact expression for the frequency according to Rayleigh quotient. In order to
use the procedure of Rayleigh-Ritz’s method, Eq. (24) is substituted into EQ.(20) and (22),
then the results are used in Eq. (23).

Now substituting Eq. (24) into Eqgs. (20) and (22), and after some mathematical

manipulations, the following equation will results:

2_ @ (25)
o =—
¥
Where, n. n T K2 : P
o= cC; Eh’z | h AUaUs - 205 + W' W/ ]sina’
i1 il (1-v%) ¢ |12R;
Vh2 r n !
R AT [U UL —U W —U W +W W, Jcos @
2 ’
z[uq), S0, W w0
12R Rs sin®’
+F[u;piu;pj +2U W, +WW' Jsin @’
D
+% UoUs, C:_;q‘)b +2U W, Cos ' -+ WW, sin &’
|
2 [UyU 4 COSD" +U , W, sin @' — U , W, cos &' +WW, sind'] }
(ORI
, 26
R,R,d® (26)
¥ = zzc,c,j[uu +WW, R,R,sin @ dd (27)
i=l i=1l

An n-term finite sum leads to the estimation of the first frequencies. Eqgs. (26) and (27) gives
the physical properties of the shell from the stiffness and mass distribution point of view.

The stiffness and mass of the shell are given by the following two equations respectively:
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Ehzr % . N A
= (1_V2)I R [Ucp. Ul —2U5 W, "+ W," W, sin @
YR T, UL —U WUl W W, W, cos
6R R3 @i ~ i @i Vi oi Vi i VY
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D
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9 sin®
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(ORI
R, R, 0"
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(28)
27
m; = [ phaluu; +Ww, R, R, sin @ do: (29)
0
Then
2GiCiky
ol = I (30)

.M3

N

CiCj mij
i=1l j=

The exact frequency is always smaller than the approximate value. In order to minimize the
approximate value, which given by Eq.(30), it should be differentiated with respect to ¢; and
equating the resulting expression to zero, that is:

0 _DoN7oc —NaD/aoe, _ i=1,2,3,.....n (31)

oc D?

The only way in which this equation can equal is zero if the numerator equals zero, since D is

never equal to zero. The numerator can be written in a more useful form as:

ON N oD .

——— =0, 1=123..,n

oc, D o, (32)
=N/D
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It is as given by equation (23) :%, and n is the number of terms in the approximate

r

solution. The infinite degrees of freedom system has been replaced by an n degree of freedom

system. Therefore, Eq. (31) can be written in a matrix form as:

[{K}-w* Mifc}= o} (33)
The stiffness and mass are determined at the edge ( @ =®,) of the spherical shell using (28

and 29) respectively. The values equated in above equations are then substituted in the

following determinant:

k11 _szll k12 _Q2m12 kle _szlii
Koy — sz21 Kgo — szzz Kos — szzs =0 (34)
k31 _szsl ksz _Q2m32 k33 _Q2m33

The value of Q® which make the determinant equal zero represent the natural frequency of
the shell.

RESULTS AND DISCUSSION

In order to confirm the accuracy of the theoretical results, these results are compared
with the available literature due complexity of obtaining a closed form solution for the free
vibration characteristics of a prolate spheroid shell. From Table (1) it can be noted that the
variation of the natural frequencies of bending modes increase with thickness and with the
mode number. This phenomenon can be elaborated due to the fact that the strain energy
increased with increasing the ratio of thickness for larger eccentricities ratio.

The non-dimensional frequency coefficients for the first three flexural modes which
computed from the present work with (h/a=0.05) are presented in Table (2) along with the
results of (Burroghs and Magrab 1978). From this table it is seen that there is reasonable

agreement between these results, which provide the accuracy of the formulation and results.
Fig.2 shows the non-dimensional natural frequency (1=./p/Ea) of the first three

modes of vibration as a function of the eccentricity ratio obtained by the Rayleigh- Ritz’s
method using the non-shallow shell theory. It is clearly shown that the tendency of the natural
frequencies towards higher values as the eccentricity ratio increases. This behavior could be
explained by the mode shapes of a closed spherical shell would resemble those of a prolate
spheroid up to certain eccentricity. As the eccentricity increases, the bending stress increased
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and the potential energy increased. Another reason is that the geometry of the prolate shape
is stiffer than the spherical shape.

Fig.3 gives the first few natural frequencies as a function of the thickness ratio for a
prolate spheroid with (e=0) obtained by RRM. Fig.4 show the first few natural frequencies as

a function of thickness ratio with (e=0.7). All these figures are obtained for (v = 0.3) and they

depend on the bending as well as the membrane modes using the non-shallow shell theory. It
can be noted that the variation of the natural frequency of the bending modes increases with
thickness and with the mode number. This phenomenon can be elaborated due to the fact that
the strain energy increased with increasing the thickness ratio. Also, for larger eccentricity
ratio, the variations are more pronounced than for smaller eccentricities.

Fig.5 shows the effect of eccentricity ratio on the first membrane mode. It is seen that
the natural frequency increased with increasing the eccentricity ratio. The eccentricity ratio
affects the natural frequency hardly at the lower range, while this effect decreased when the
eccentricity ratio beyond 0.8.

The mode shapes of the first three modes of the prolate spheroid shell are shown in
Fig.8, in which both the transverse and tangential displacements are illustrated. This figure
shows that the modes of the transverse displacement occurs at a position in which the

tangential; displacement has maxima and vice versa.

CONCLUTIONS

The main conclutions from the present work can be summarized as;

1- Natural frequencies are seen to have two types of behaviour against increasing the
thickness to major radius ratio. One type, which is associated with the bending modes,
tends to increase with thickness, while the other type, which is associated with
membrane mode, remains unaffected by the thickness variation.

2- Both bending and membrane modes natural frequencies tend to increase with increasing
eccentricity ratio.

3- The natural frequency tends to increase with increasing the ratio of thickness of the
shell.
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APPENDIX
The principal curvatures of the surface as a function of the angle of inclination (®) in the following
form.
B a(l—e?)
- (1—62 cos? q)!)3/2
R _ a
o (1-e?cos? d)

0]

Where (@) is the angle in the space between the vertical axis and the normal vector, it is given by
sin g3
Jl-e?cos? g’

(e) is the eccentricity ratio of the spheroidal shell , which is given by;

cosP'=

1 1
e= = —
cosha ¢

The strains, expressed in terms of displacement can be written as:
., 1 |ou,
84) = | = + W
R, | 0@

[u, cos®'+wsind' | = Ri[uq, cotd'+ w]
4

£0= o
R,sin®

1 01 ( awj
Ky =—— | —| Uy ——
R, 0'| R, o'

1 coscp'( 6wj
ka = - Up — =
ResSin®' | R, oP'

If E,v are as in nomenclature then, the forces and moments per unit length will be

N Z%[&%"‘&g]
h2
M, = 125_\/2) [k +vKk ]

2
M, — Eh
12Q—v

2) [KH +VK(I)]

Substituting the relevant expressions get:-
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1 o,
RCI)

Eh
)

+ W) + v (ug cotd' + w)}
1-v

3 R,

N,= Eh2 i(uq)cot(f[>'+w)+i(au—“’+w)
1-v°| R, R, 0D

v cos '
Ry R, sin®’

E h® 1 0 1 ow
o= < — —(Ug, — )+
12(1-v?)| R, 0D R, oD’

ow
(um_zﬁ;{

cos P!

3 E h? v
’ 12(1-0?)| R, R,sin®'

oW o 1
Up———) +— — (—(u, -
(Uy @cp') R, aqn'(Rg(‘D

ow
)

Table (1): Dimensionless natural frequency coefficients for the axisymmetric free

vibration of a prolate spheroidal shell.

E=0.3 e=0.7
Mode Number
h/a=0.01 | h/a=0.05 | h/a=0.01 | h/a=0.05
1 0.0 0.0 0.0 0.0
2 0.16 0.16 0.725 0.725
3 0.18 0.19 0.87 0.89
4 0.2 0.23 0.91 0.93

Table (2): Comparison of other estimates of Q for the flexural modes of a thin prolate

spheroidal shell with e=0.7

Mode Number Present Work Reference [9]
h/a=0.05
2 0.725 0.73
3 0.89 0.90
4 0.93 0.95
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NOMENCLATURE

A Arbitrary constants. R " R,  Principal radii of curvatures of a prolate shell.

a Major semi-axis of a prolate spheroid shell. t Time (sec).

B Avrbitrary constants. u,,u,  Tangential displacement (m).

b Minor semi-axis of a prolate spheroid shell. w Transverse or radial displacement (m).

Ci | Element of the boundary conditions matrix. €4,y Strains.

D,  Bending stiffness (E.h®/12(1—Vv?)). 0o} Inclination angle of a prolate spheroid.

£ Young's modulus of elasticity (N/ m? ) () Inclination angle of a spherical shell model.
D, Opening angle of the approximate spherical

e Ecentricity ratio( V1 — b? /a?).
shell.

h Shell thickness(mm).
A Non-dimensional frequency parameter

M¢, M, Moments per unit length (Nm/m).
(p! E)"?wa).

N, N, Membrane forces per unit length (N/m). o S
0 Angle of rotation in the meridian direction

Pn(x)  Legendre function of the first kind. . 3
Y2, Density (kg/m ™).

Py’(x) First derivative of the Legendre function of the Q Non-dimensional frequency parameter

first kind. ((p/ E)llza).R) .

P,”(x) Second derivative of the Legendre function of .
0] Circular frequency (rad/sec).

the first kind. s
1) E/ h/d.

Q,(x) Legendre function of the second kind. 0 (E/p)

Q, (X) First derivative of the Legendre function of Cg 0,  Stressresultants (N/m?).

the second kind. 1% Poisson’s ratio.

Q¢ Transverse shearing force per unit length

(N/m).
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