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AABBSSTTRRAACCTT  

In this paper a detailed study of the theory of free axisymmetric vibration of thin 

isotropic prolate spheroidal shells is presented. The analysis is performed according to 

Rayleigh – Ritz method. This method as well as an approximate modeling technique were 

attempted to estimate the natural frequencies for the shell. This technique is based on 

considering the prolate spheroidal as a continuous system constructed from two spherical 

shell elements matched at the continuous boundaries. Through out the obtained results it is 

found that this method predicted fairly well the natural frequencies of a prolate spheroidal 

shell for all values of eccentricities.     
 

 الخلاصة

يتناول  هذا  البحث الدراسة  النظرية  للاهتزازات  الحرة  للقشريات  نحيفة    الجدران البيضوية الشكل المتطاولة            
رتز .إن هذه -الخواص في جميع الاتجاهات ،  وقد  أجري  التحليل  النظري  بطريقة  رايلي ةالمتناظرة المحور المتشابه

 نها تقريبية ، ولكن بالإمكان الاعتماد عليها لحساب الذبذبة الطبيعية لهذه القشريات .الطريقه بالرغم من كو 
من خلال النتائج وجد إن تلك الطريقة أعطت نتائج جيدة للترددات الطبيعية للقشرة البيضوية المتناظرة المحور لكل           

 قيم أللامركزية.
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IINNTTRROODDUUCCTTIIOONN  

                    PPrroollaattee    sspphheerrooiidd  sshheellllss  ccaann  bbee  oobbttaaiinneedd  bbyy  rroottaattiinngg  aann  eelllliippssee  aarroouunndd  iittss  mmaajjoorr  aaxxiiss,,        

sseeee  FFiigg..11..  IItt  iiss  wwoorrtthhyy  ttoo  iinnddiiccaattee  tthhee  iinndduussttrriiaall  aapppplliiccaattiioonnss  aanndd  iimmppoorrttaannccee  ooff  sshheellll  

ssttrruuccttuurreess..  TThhiiss  iinntteerreesstt  wwaass  aapppprreecciiaatteedd  ttooddaayy  iinn  aaeerroossppaaccee,,  sseeaa  vveehhiicclleess  iinndduussttrryy  aanndd  tthhee  

ssttrruuccttuurree  ooff  rroocckkeett  ccaann  bbee  ccoonnssiiddeerreedd  aass  aa  pprroollaattee  sshheellllss..  IInn  ssuucchh  ssttrruuccttuurreess  tthhee  rreessoonnaannccee  

pprroobblleemm  mmaayy  ooccccuurr,,  tthheerreeffoorree  tthhee  ssttuuddyy  ooff  ffrreeee  vviibbrraattiioonn  bbeeccoommee  vveerryy  iimmppoorrttaanntt  ttoo  pprreevveenntt  tthhee  

rreessoonnaannccee  aappppeeaarraannccee..  

The study of free vibration of prolate shells take a considerable attempt in the 

published literature. several investigators, using a variety of mathematical techniques, have 

obtained approximate solutions for the natural frequencies of axisymmetric vibrations of thin 

prolate spheroidal shells.  

(De Maggio and Silibiger 1961) obtained a solution for the torsional vibrations of thin 

prolate spheroidal shell in terms of spheroidal angle functions. (Kanins 1963) was concerned 

with the vibration analysis of spheroidal shells, closed at one pole and open at the other, by 

means of the linear classical bending theory of shells. Frequency equations are derived in 

terms of Legender function with complex indices, and axisymmetric vibration of  the natural 

frequencies and mode shapes are deduced for all opining angles ranging from a shallow to 

closed spherical shell. It was found that for all opening angles the frequency spectrum consist 

of two coupled infinite sets of modes that can be labeled as bending (or flexural) and 

membrane modes. It was also found that membrane modes are practically independent of 

thickness, whereas the bending modes vary with the thickness. The same author concerned 

with a theoretical investigation of the free vibration of arbitrary shells of revolution by means 

of the classical bending theory of shells.  

A method is developed that is applicable to rotationally symmetric shells with 

meridional variations (including discontinuities) in Young’s modulus, Poisson’s ratio, radii of 

curvature, and thickness. The natural frequencies and the corresponding mode shapes of 

axisymmetric free vibration of rotationally symmetric shell can be obtained without any 

limitation on the length of the meridian of the shell. The results of free  vibration of spherical 

and conical shells obtained earlier by means of the bending theory. In addition, parapoloidal 

shells and sphere-one shell combination are considered, which have been previously analyzed 
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by means of the inextentional theory of shells, and natural frequencies and mode shapes 

predicted by the bending theory are given.  

 (Numergut and Brand 1965) determined the lower axisymmetric modes of prolate 

shell with five values of eccentricity. (DiMaggio and Rand 1966) using membrane shell 

theory in which the effects of bending resistance are ignored. Their work was distinguished 

by applying their solution to constant thickness membrane shell by means of integrating 

numerically the equations of motion. It was found that the frequencies associated with higher 

modes are strongly dependent on the eccentricity ratio.   

(Zhu 1995) based upon general thin shell theory and basic equations of fluid-mechanics; the 

Rayleigh-Ritz’s method for coupled fluid-structure free vibrations is developed for arbitrary fully or 

partially filled in viscid, irrigational and compressible or incompressible fluid, by means of the 

generalized orthogonality relations of wet modes and the associated Rayleigh quotients.    

(Wasmi 1997) used the finite element and modal analysis techniques to investigate  the 

static and dynamic behavior of oblate spheroidal dishes, prolate and the relevant structures. 

Different types of elements were considered in one dimension, two dimensions and three 

dimensions.  

For framed structures, Euler Bernouilli theory, Tiomshenko theory, integrated Tiomshenko 

and improved Tiomshenko theories were applied. While for plates and shells, Kerchief’s, 

Zienkiewicz and Mindlin theories were applied. The capability of these trenchancies was 

investigated in this work to predict the natural frequencies and mode shapes, as well as the static 

analysis of framed structures and spheroidal dishes. It was found that the natural frequencies of 

oblate and prolate shells have two types of behavior against increasing the shell thickness and 

eccentricity, which are the membrane and bending modes. The membrane modes natural 

frequencies tend to increase with increasing the eccentricity of oblate, while the bending mode 

natural frequencies decrease with increasing the value of eccentricity. 

 (Aleksandr Korjanik et al. 2001) investigated the free damped vibrations of sandwich 

shells of revolution. As special cases the vibration analysis under consideration of damping of 

cylindrical, conical and spherical sandwich shells is performed. A specific sandwich shell finite 

element with 54 degrees of freedom is employed. Starting from the energy method the damping 

model is developed. Numerical examples for the free vibration analysis with damping based on the 

proposed finite element approach are discussed. Results for sandwich shells show a satisfactory 

agreement with various references solutions.  

(Antoine et, al 2002) investigated the linear and nonlonear vibrations of shallow spherical 

shells with free edge experimentally and numerically. Combination resonances due to quadratic 
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nonlinearities are studied, for a harmonic forcing of the shell. Identification of  the excited modes is 

achieved through symmetric comparisons between spatial results obtained from a finite element 

modelling, and spectral information derived from experiments. 

This investigation deals with the free vibration characteristics of thin elastic   prolate 

spheroidal shell. The shell is assumed be of isotropic material. The analysis depends on the 

Rayleigh _ Ritz method.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MATHEMATICAL  ANALYSIS 

Through out the review of literature, it is found that even though the governing equations for 

shells of revolution are well spelt out, nevertheless, the governing equations for prolate spheroidal 

shells are not available, therefore the approximate energy procedure will be followed.  

For a shell undergoing deformation in which the normal to the middle surface of 

undeformed shell remains straight and of a constant length under deformation, the shell 

displacements can be expressed as, (Burroughs 1978): 
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Fig. (1): Prolate spheroidal co-ordinates 
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where,    denotes the circular frequency. The stress resultants and couples are related to the 

displacement of the reference surface by the same expressions derived in appendix A with the 

eccentricity set equal to zero.  (Kalnins 1963)  show that the actual   -dependent coefficients of 
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The value of i s are the three roots of the cubic equation:  
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In the above equations Pn(x), Qn(x) are the Legendre functions of the first and second kinds, 

respectively, )(xPn
 , )(xQn

 are the derivatives with respect to ( ) for the Legendre functions of the 

first and the second kinds, respectively. Ai's & Bi's are arbitrary constants. 

       The above solutions can be applied to study the free vibration of an elastic spherical shell 

bounded in general by any two concentric openings. 

      As the shell is taken to be closed at the apex ( =0), and since the Legendre function for the 

second kind is singular at this point, then the arbitrary constants (Bi’s ) are set equal to zero. For this 

reason all terms involving Qn(x) are omitted.  

 

RAYLEIGH-RITZ METHOD 

 Rayleigh-Ritz method, which is an extension of the Raleigh’s method, helps to 

determine the natural frequencies and mode shapes with general boundary condition in 

approximate form. 

The Rayleigh-Ritz procedure is essentially statement on the ratio of potential energy to 

the kinetic energy. At the natural frequency ( ), and assuming separation of  variables,  the 

shell  displacements may be written as give by Eq. (1).  Substituting these in the strain energy 

expression gives: 
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The kinetic energy is: 

 

                                                                                                                                           (21)                              

After integration with respect to (z) and substituting for the appropriate expression, the 

maximum kinetic will take the form: 
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Equating the maximum kinetic energy to the maximum potential energy, the natural frequency 

can be written as: 
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Where, N and D represent the equations in numerator and denominator, respectively. 

Following the procedure of Rayleigh-Ritz’s method, the radial (or transverse) and tangential 

displacements can be written in power series form as: 

                                                                                                                                           (24) 

 

Where, the ai's and bi's are coefficients to be determined.  

     The functions Wi(
' ), U( , ) satisfy all the geometry boundary conditions of the system. 

Eq.(23) is an exact expression for the frequency according to Rayleigh quotient. In order to 

use the procedure of Rayleigh-Ritz’s method, Eq. (24) is substituted into Eq.(20) and (22), 

then the results are used in Eq. (23). 

  Now substituting Eq. (24) into Eqs. (20) and (22), and after some mathematical 

manipulations, the following equation will results: 

                                                                                                                                           (25) 

   

Where, 
 

 

 

 

 

 

 

 

 

                                                                                                                  

                                                                                                                                           (26)               
 

  ''

2

01 1

sin  

 
 dRRWWUUcc jiji

n

i

n

i

ji 



                                                                       (27)   

An n-term finite sum leads to the estimation of the first frequencies. Eqs. (26) and (27) gives 

the physical properties of the shell from the stiffness and mass distribution point of view.  

   The stiffness and mass of the shell are given by the following two equations respectively: 
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  and                                                                                                                                    

(28) 

  ''

2

0

sin   dRRWWUUhm jijiij 



                                                                              (29)   

Then 

 

                                                                                                                                           (30)                                                                      
 

 

The exact frequency is always smaller than the approximate value. In order to minimize the 

approximate value, which given by Eq.(30), it should be differentiated with respect to c i and 

equating the resulting expression to zero, that is:  

    

                                                           ,i=1,2,3,……n                                                          (31)                                                     

 

The only way in which this equation can equal is zero if the numerator equals zero, since D is 

never equal to zero. The numerator can be written in a more useful form as:  

 

                                                                                                                                           (32)                                                                      
=N / D  
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It is as given by equation (23)    
D

N
r 2 , and n is the number of terms in the  approximate 

solution. The infinite degrees of freedom system has been replaced by an n degree of freedom 

system. Therefore, Eq. (31)  can be written in a matrix form as: 

       02  cMK                                                                                                            (33) 
The stiffness and mass are determined at the edge ( 0 ) of the spherical shell using (28 

and 29) respectively. The values equated in above equations are then substituted in the 

following determinant: 

 

 

                                                                                                                                           (34) 

 

The value of 2  which make the determinant equal zero represent the natural frequency of 

the shell. 

 

RESULTS AND DISCUSSION 

In order to confirm the accuracy of the theoretical results, these results are compared 

with the available literature due complexity of obtaining a closed form solution for the free 

vibration characteristics of a prolate spheroid shell. From Table (1) it can be noted that the 

variation of the natural frequencies of bending modes increase with thickness and with the 

mode number. This phenomenon can be elaborated due to the fact that the strain energy 

increased with increasing the ratio of thickness for larger eccentricities ratio.  

The non-dimensional frequency coefficients for the first three flexural modes which 

computed from the present work with (h/a=0.05) are presented in Table (2) along with the 

results of (Burroghs and Magrab 1978). From this table it is seen that there is reasonable 

agreement between these results, which provide the accuracy of the formulation and results.  

 Fig.2  shows the non-dimensional natural frequency )/( aE   of the first three 

modes of vibration as a function of the eccentricity ratio obtained by the Rayleigh- Ritz’s 

method using the non-shallow shell theory. It is clearly shown that the tendency of the natural 

frequencies towards higher values as the eccentricity ratio increases. This behavior could be 

explained by the mode shapes of a closed spherical shell would resemble those of a prolate 

spheroid up to certain eccentricity.  As the eccentricity increases, the bending stress increased 
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and the potential energy increased.  Another reason is that the geometry of the prolate shape 

is stiffer than the spherical shape. 

 

Fig.3 gives the first few natural frequencies as a function of the thickness ratio for a 

prolate spheroid with (e=0) obtained by RRM. Fig.4 show the first few natural frequencies as 

a function of thickness ratio with (e=0.7). All these figures are obtained for )3.0(   and they 

depend on the bending as well as the membrane modes using the non-shallow shell theory. It 

can be noted that the variation of the natural frequency of the bending modes increases with 

thickness and with the mode number. This phenomenon can be elaborated due to the fact that 

the strain energy increased with increasing the thickness ratio. Also, for larger eccentricity 

ratio, the variations are more pronounced than for smaller eccentricities.  

Fig.5 shows the effect of eccentricity ratio on the first membrane mode. It is seen that 

the natural frequency increased with increasing the eccentricity ratio. The eccentricity ratio 

affects the natural frequency hardly at the lower range, while this effect decreased when the 

eccentricity ratio beyond 0.8. 

 The mode shapes of the first three modes of the prolate spheroid shell are shown in 

Fig.8, in which both the transverse and tangential displacements are illustrated. This figure 

shows that the modes of the transverse displacement occurs at a position in which the 

tangential; displacement has maxima and vice versa. 

 

 

CONCLUTIONS 

         The main conclutions from the present work can be summarized as; 

1- Natural frequencies are seen to have two types of behaviour against increasing the 

thickness to major radius ratio. One type, which is associated with the bending modes, 

tends to increase with thickness, while the other type, which is associated with 

membrane mode, remains unaffected by the thickness variation. 

2- Both bending and membrane modes natural frequencies tend to increase with increasing 

eccentricity ratio. 

3- The natural frequency tends to increase with increasing the ratio of thickness of the 

shell. 
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APPENDIX 

The principal curvatures of the surface as a function of the angle of inclination ( ) in the following 

form. 

 

 

 

 

Where ( ' ) is the angle in the space between the vertical axis and the normal vector, it is given by  




22 cos1

sin
'cos

e
 , 

 (e) is the eccentricity ratio of the spheroidal shell , which is given by;  

 

 

The strains, expressed in terms of displacement can be written as: 
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If E,  are as in nomenclature then, the forces and  moments per unit length will be 
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Table (1): Dimensionless natural frequency coefficients for the axisymmetric free      

vibration  of a prolate spheroidal shell. 

 

 

 

 

 

 

                                                                 

 

 

 

Table (2): Comparison of other estimates of Ω for the flexural modes of a thin prolate  
spheroidal shell with e=0.7 
 

 

Mode Number 

E=0.3 e=0.7 

h/a=0.01 h/a=0.05 h/a=0.01 h/a=0.05 

1 0.0 0.0 0.0 0.0 

2 0.16 0.16 0.725 0.725 

3 0.18 0.19 0.87 0.89 

4 0.2 0.23 0.91 0.93 

Mode Number Present Work 

h/a=0.05 

Reference [9] 

2 0.725 0.73 

3 0.89 0.90 

4 0.93 0.95 
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Fig. (4): Effect of the thickness ratio on the natural   

frequency of a prolate spheroidal shell (e=0.7) 

obtained by RRM  

Fig. (3):Effect of the eccentricity  ratio on the natural   

frequency of a full sphere (e=0) obtained by RRM  

Fig.(2): Effect of  eccentricity on the first three  

bending modes obtained by RRM 

 

Fig.(5): Effect of eccentricity on the first 

membrane mode 
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Fig. :(6) Mode shape associated with the first three natural frequency of non-

shallow spheroidal shell (e=0.7) obtained by RRM  

 

(a) First mode (b) Second mode 
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NOMENCLATURE 

iA           Arbitrary constants.                                

a            Major semi-axis of a prolate spheroid shell.  

iB          Arbitrary constants.     

b           Minor semi-axis of a prolate spheroid shell. 

jic ,        Element of the boundary conditions matrix.                            

bD        Bending stiffness ( )1(12/. 23 vhE  ).           

E          Young's modulus of elasticity (N/
2m ).                        

e           Ecentricity ratio(
22 /1 ab ). 

h          Shell  thickness(mm).  

 MM ,   Moments per unit length (Nm/m).                          

 NN ,         Membrane forces per unit length (N/m).   

Pn(x)      Legendre function of the first kind.        

 

Pn’(x)    First derivative of the Legendre function of the 

first kind. 

Pn”(x)     Second derivative of the  Legendre function of 

the first kind. 

  )(xQn            Legendre function of the second kind. 

)(' xQn      First derivative of the Legendre function of 

the second kind. 

Q            Transverse shearing force per unit length 

(N/m). 

 RR ,       Principal radii of curvatures of a prolate shell. 

t               Time (sec). 

 uu ,       Tangential displacement (m). 

w             Transverse or radial displacement (m). 

  ,        Strains. 

,             Inclination angle of a prolate spheroid.  

              Inclination angle of a spherical shell model. 

0           Opening angle of the approximate spherical 

shell. 

             Non-dimensional frequency parameter 

(( aE .)/ 2/1  ). 

              Angle of rotation in the meridian direction    

             Density (kg/m
3

).  

             Non-dimensional frequency parameter 

(( ).)/ 2/1 RE  . 

             Circular frequency (rad/sec). 

0            dhE /)/( 2/1 . 

 ,        Stress resultants (N/m
2

). 

                Poisson’s ratio. 

  

 


